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Introduction

A subset S of a ring R is commutatively closed if for any a, b ∈ R such that ab ∈ S, we also have ba ∈ S. This notion was introduced and studied in [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF]. The aim of this paper is to investigate further this property and, in particular, to involve graph theory in the subject. Let us first mention some easy examples. Any subset of a commutative ring is commutatively closed. The set {1} is commutatively closed if and only if the ring R is Dedekind finite. Similarly, the set {0} is commutatively closed if and only if the ring R is reversible. The intersection of two commutatively closed subsets is easily seen to be commutatively closed and hence every subset of R is contained in a minimal commutatively closed subset: its commutative closure. The closure of a subset S ⊂ R is denoted by S. In [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF] different characterizations of S were given. It was shown that this notion is related to various kind of subsets such as idempotents elements, nilpotent elements, invertible elements, and various kinds of regular elements. It was also used to characterize, semicommutative rings, 2-primal rings, and clean rings . We will briefly recall some of the notions used in [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF] at the end of this introduction.

In section 1, we describe a graph structure on the sets {a} and define the diameter. Our aim is to compute the diameter of some classical rings, in particular, the ring of matrices over a division ring. In section 2, we give some ways of constructing {a} and study some particular rings such as the free algebras. In the last section, we investigate some properties of the commutatively closed graph of matrix rings and semisimple algebras.

For two elements a, b ∈ R we write a ∼ 1 b if there exists c, d ∈ R such that a = cd and b = dc. We then define by induction a ∼ n+1 b if and only if there exists an element c ∈ R such that a ∼ 1 c and c ∼ n b. For two elements a, b ∈ R, we also define a ∼ b if there exists n ∈ N such that a ∼ n b. For a subset S ⊆ R we denote S i the set {x ∈ R | x ∼ i s, for some s ∈ S}. Since our ring R is unital, the chain S i is ascending and we have S = ∪ i≥0 S i (for details about these constructions we refer the reader to [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF]).

We recall that an element a ∈ R is called von Neumann regular if there is x ∈ R such that a = axa. Similarly, we define a ∈ R to be a π-regular element of R if a n xa n = a n for some x ∈ R and n ≥ 1. An element a ∈ R is called right (left) π-regular, if a n+1 x = a n (xa n+1 = a n ) for some x ∈ R and n ≥ 1. We call a ∈ R strongly π-regular if it is both left and right π-regular.

Throughout this paper R will be a unital ring, U (R) and N (R) will stand for the set of invertible and nilpotent elements of R, respectively. For an element a of a ring R we denote l(a) (resp. r(a)) its left (resp. right) annihilator.

Let us mention some results from [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF]. They give motivation for the subject and basic information about the results.

Theorem 0.1. [1, Theorem 2.7] Let ϕ : R -→ S be a ring homomorphism, then

(1) For any X ⊆ R, ϕ(X) ⊆ ϕ(X).

(2) If ϕ is a ring isomorphism, then for any X ⊆ R, ϕ(X) = ϕ(X).

(

) If T ⊆ S is commutatively closed in S, then ϕ -1 (T ) is commutatively closed in R. (4) If S is reversible, Ker(ϕ) is commutatively closed. (5) If S is Dedekind-finite, then ϕ -1 ({1}) is commutatively closed. Proposition 0.2. [1, Proposition 3.6] (1) If R is Dedekind-finite and a ∈ U (R), then {a} = {uau -1 | u ∈ U (R)}. (2) The set of unit U (R) of a ring R is commutatively closed if and only if R is Dedekind-finite. Proposition 0.3. [1, Proposition 4.7] Let k be a commutative field and n ∈ N, the class of {0} in M n (k) is the set of nilpotent matrices. 3 
For notions related to graph theory, we refer the reader to [START_REF] West | Introduction to Graph Theory[END_REF].

Commutatively closed graphs and their diameters

First, we start this section with some examples of commutatively closed sets.

Examples 1.1.

(1) A ring R is reversible if and only {0} is commutatively closed;

(2) A ring R is Dedekind finite if and only if {1} is commutatively closed;

(3) For a right R-module M R the set E = {u ∈ R | ann M (u -1) = 0} is commutatively closed. Indeed, if u = ab ∈ E and 0 = m ∈ M is
such that m(ab -1) = 0, then ma = 0 and ma(ba -1) = m(ab -1)a = 0. This gives that ba ∈ E. (4) The ring R is symmetric if and only if for every a, b, c ∈ R, abc = 0 implies that acb = 0. This can be translated into asking that for any a ∈ R, r(a) := {b ∈ R | ab = 0} is commutatively closed. We refer the reader to [START_REF] Gürgün | On Cline's formula for some certain elements in a ring[END_REF] for more information on this kind of ring. ( 5) U (R) -1 is always commutatively closed. More generally, denoting the set of regular elements by Reg(R) = {r ∈ R | ∃x ∈ R such that r = rxr} we have that Reg(R) -1 is always commutatively closed. A similar result is true for the set of unit regular elements and also for the set of strongly π-regular elements. For proofs of these facts we refer the reader to [START_REF] Lam | Jacobson's lemma for Drazin inverses[END_REF]. [START_REF] Lam | Lectures on modules and rings[END_REF] We consider Z l (R) = {a ∈ R | r(a) = 0} the set of left zero divisors. We define similarly Z r (R) the set of right zero divisors. Similarly as in the item above, Z r (R) + 1 (resp. Z l (R) + 1) is commutatively closed ( [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF]). [START_REF] West | Introduction to Graph Theory[END_REF] The set N (R) of nilpotent elements of a ring R is easily seen to be commutatively closed. (8) Recall that an element r ∈ R is strongly clean if there exist an invertible element u ∈ U (R) and an idempotent e 2 = e ∈ R such that eu = ue and r = e + u. It is proved in Theorem 2.5 of [START_REF] Gürgün | On Cline's formula for some certain elements in a ring[END_REF] that the set of strongly clean elements is commutatively closed. In the same paper the author also shows that the set of Drazin (resp. almost, pseudo) invertible elements is also commutatively closed.

The three first statements of the following results were obtained in [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF]. So we will only prove the last one.

Proposition 1.2.

(1) For any n ≥ 1 and a, b ∈ R, we have a ∼ n b if and only if there exist two sequences of elements in R x 1 , x 2 , . . . , x n and y 1 , y 2 , . . . , y n such that a = x 1 y 1 , y 1 x 1 = x 2 y 2 , y 2 x 2 = x 3 y 3 , . . . , y n x n = b.

(2) If a ∼ n b, then a -b is a sum of n additive commutators.

(3) If a ∼ n b, then there exist x, y ∈ R such that ax = xb and ya = by.

Moreover, for l ∈ N, we also have b n+l = ya l x and a n+l = xb l y. In particular, b n = yx and a n = xy. (4) If elements a, b in a ring R are such that a ∼ m b, then for any 0 < l < m, we have a l ∼ q b l , where q is such that q = m l Proof. (4) We can write m = lq -r for some 0 ≤ r < l and, since 1 R ∈ R, a ∼ m b implies that we also have a ∼ m+r=lq b. We prove that a l ∼ q b l by induction on q. If q = 1, the statement (3) above shows that a m = xy and b m = yx for some x, y ∈ R and hence a m ∼ 1 b m . So let us now assume that q > 1 and put n := m + r = lq, so that we have a ∼ n b. We use the same notations as in statement (1) and assume that there exist two sequences of elements in R x 1 , x 2 , . . . , x n and y 1 , y 2 , . . . , y n such that a = x 1 y 1 , y 1 x 1 = x 2 y 2 , y 2 x 2 = x 3 y 3 , . . . , y n x n = b. We than have that a = x 1 y 1 ∼ l y l x l ∼ l(q-1) b. The case q = 1 and the induction hypothesis lead to a l ∼ 1 (y l x l ) l ∼ q-1 b l . This gives the conclusion.

Remarks 1.3.

(1) With the same notations as in the above proposition 1.2, if a ∼ n b and x, y are such that ax = xb and by = ya, then left multiplication by the elements y and x give rise to maps in Hom R (R/aR, R/bR) and Hom R (R/bR, R/aR). We then have the compositions

L x • L y = L a n and L y • L x = L b n . In particular, if a ∼ b then Hom R (R/aR, R/bR) = {0}.
(2) In section 3, we will study the ring of matrices over a division ring D.

It is interesting to observe that if A, B ∈ M n (D) are such that A ∼ B, then the central spectrum Sp(A) and Sp(B) are equal. Indeed, there exists

m ∈ N such that A ∼ m B. Proposition 1.2 (3) shows that there exist matrices X, Y ∈ M n (D) such that AX = XB and Y A = BY . So, if Av = λv for some 0 = v ∈ D n and λ ∈ k (k is the center of D), then BY v = Y Av = Y λv = λY v. Noting that λ m v = A m v = XY v, we conclude that Y v = 0 and hence λ is indeed a central eigenvalue of B.
Let us remark that in the case D is commutative, the equality between the spectrums is a consequence of the fact that the characteristic polynomials of A and B are the same (cf. [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF]).

In the following, we define the commutatively closed graph and show that the graph C(a) is always connected for every a ∈ R. Also, we analyze some other of his properties.

Definitions 1.4.

(1) Let a be an element in a ring R and let C(a) denote its commutative closure as defined in the introduction. We define a graph structure with the elements of C(a) = {a} as vertices and two distinct vertices x and y of C(a) are said to be adjacent if and only if y ∈ {x} 1 . The commutatively closed graph of a ring R is the union of all the graphs C(a), for a ∈ R. It will be denoted by C(R).

(2) Let a be an element in R. In the class {a} of a, we define a distance as follows: For two elements x, y ∈ {a}, we put d(x, y)

= min{n ∈ N | y ∼ n x}.
One can easily check that d is indeed a distance defined on {a}.

(3) Let R be a ring and a ∈ R, the diameter of a graph C(a) is defined as follows:

diam C(a) = sup d(x, y) | x, y ∈ {a} . Also, we define the diameter of a set S ⊆ R of a ring S as follows: Proof. We leave the easy proof to the reader. Proposition 1.6. Let a be an element in a ring R. If n ∈ N is the smallest integer such that a = {a} n , then n ≤ diam R C(a) ≤ 2n.

diam(S) = sup diam C(a) | a ∈ S .
Proof. We know that the distance between a and every other element of

{a} n is at most n. Now, if b, c ∈ C(a) then d(b, c) ≤ d(b, a) + d(a, c) ≤ 2n. So that diam R C(a) ≤ 2n. The fact that n is minimal such that a = {a} n implies that n ≤ diam R C(a) .
Lemma 1.7. Let R and S be two rings, and 

(a, b) ∈ R × S. Then {(a, b)} = {a} × {b}. Proof. Let (c, d) ∈ {(a, b)}. Thus (c, d) ∼ n (a, b), for some n ≥ 0. So there are (c 1 , d 1 ), . . . , (c n , d n ) ∈ R × S such that (c, d) ∼ 1 (c 1 , d 1 ) ∼ 1 • • • ∼ 1 (c n , d n ) = (a, b). One can easily see that c ∼ n a and d ∼ n b. Hence (c, d) ∈ {a} × {b}. Now, let (c, d) ∈ {a} × {b}. Since c ∈ {a} and d ∈ {b}, thus there are m, n ∈ N such that c ∼ m a and d ∼ n b. So we have c ∼ 1 c 1 ∼ 1 • • • ∼ 1 c m = a and d ∼ 1 d 1 ∼ 1 • • • ∼ 1 d n = b, for some c 1 , . . . , c m ∈ R and d 1 , . . . , d n ∈ S. We may assume that m < n. Thus we have (c, d) ∼ 1 (c 1 , d 1 ) ∼ 1 • • • ∼ 1 (c m , d m ) = (a, d m ) ∼ 1 (a, d m+1 ) ∼ 1 • • • ∼ 1 (a, d n ) = (a, b). Hence (c, d) ∼ n (
(S) = d 2 . Then diam(R × S) = max{d 1 , d 2 }. Proof. Assume that (a, b) ∈ R × S. For every (a 1 , b 1 ), (a 2 , b 2 ) ∈ {(a, b)}, we have a 1 , a 2 ∈ {a} and b 1 , b 2 ∈ {b}, by Lemma 1.7. Since diam(R) = d 1 and diam(S) = d 2 , then d(a 1 , a 2 ) ≤ d 1 and d(b 1 , b 2 ) ≤ d 2 . Thus there exist t ≤ d 1 and s ≤ d 2 such that a 1 ∼ t a 2 and b 1 ∼ s b 2 . Then we have a 1 ∼ 1 c 1 ∼ 1 • • • ∼ 1 c t = a 2 and b 1 ∼ 1 v 1 ∼ 1 • • • ∼ 1 v s = b 2 , for some c 1 , . . . , c t ∈ R and v 1 , . . . , v s ∈ S. Let t < s. We have (a 1 , b 1 ) ∼ 1 (c 1 , v 1 ) ∼ 1 • • • ∼ 1 (c t , v t ) = (a 2 , v t ) ∼ 1 (a 2 , v t+1 ) ∼ 1 • • • ∼ 1 (a 2 , v s ) = (a 2 , b 2 ). Hence d (a 1 , b 1 ), (a 2 , b 2 ) ≤ max{d 1 , d 2 }. Therefore diam(R × S) = max{d 1 , d 2 }.
1.9. In the above proposition, we showed that if R and S are two rings with finite diameter, then the diameter of R × S is also finite.

Let us remark that is easy to construct elements a, b, c, d in a ring such that a ∼ 1 b and c ∼ 1 d, but there is no path between ac and bd. For instance, consider the free algebra K < X, Y > where K is a field. Let a = XY, b = Y X, c = d = X 2 Y . We leave to the reader to check that there is no path from ac = XY X 2 Y to bd = Y X 3 Y . Proof. 1) The first statement is a direct consequence of the definition.

2) The second statement is easily obtained from Lemma 1.10. 

∈ {0} n-1 . We claim that A / ∈ {0} n-k for 1 < k < n. Let A ∈ {0} n-k . Thus A ∼ n-k 0. By Proposition 1.2 (3), there exist X, Y ∈ R such that A (n-k)+l = X(0) l Y (∀l ∈ N). If we put l = k + 1, then A n-1 = 0, which is a contradiction. Hence d(0, A) = n -1 for every n ∈ N. Therefore diam(R) = ∞.

Constructing the closure of a subset of R

Let us first remark that the commutative closure S of a subset S ⊆ R is the union of the commutative closure {s} of its elements s ∈ S. On the other hand to construct the commutative closure of an element we need to use factorizations of this element. We will use the following tools to build elements of s, for s ∈ R.

• For any a ∈ R, we have a ∼ • Somewhat more general than the above point, let us remark that if xb = 0 we always have xy ∼ 1 (y + b)x (resp. if c, y ∈ R are such that cy = 0 then xy ∼ 1 y(x + c)). We even have, for a = xy n , that (y + r(x)) n x ∈ {a} n (and for b = x n y we have y(x + l(y)) n ∈ {b} n ). • For a, b ∈ R we have a(1 + ba) ∼ 1 a(1 + ab). We leave the short proofs of these statements to the reader and start to apply them to different cases. Proof. Let c be any element in {b} n . According to Proposition 1.2, there are two sequence of elements x 1 , . . . , x n , y 1 , . . . , y n in r such that b = x 1 y 1 , y 1 x 1 = x 2 y 2 , . . . , y n x n = c. we thus have a = u -1 bu = (u -1 x 1 )(y 1 u) ∼ 1 y 1 x 1 ∼ n-1 c. We thus conclude that a ∼ n c. This yields the result. Theorem 2.4. Let k be a field and R = K x, y be the free k-algebra. Then diam(R) is infinite.

Proof. Consider x, y ∈ R. We show that for every l ∈ N, d(x + yx l , x + x l y) = l.

Since x + yx l = (1 + yx l-1 )x ∼ 1 x(1 + yx l-1 ) = (1 + xyx l-2 )x ∼ 1 x(1 + xyx l-2 ) = (1 + x 2 yx l-3 )x ∼ 1 • • • ∼ 1 x(1 + x l-1 y) = x + x l y, so d(x + xyx l , x(1 + x l y)) ≤ l.
The path we just described between the two elements x + xyx l and x + x l y is the only path between these two elements. This is a consequence of the fact that, for r, s ≥ 1, the only factorization in R of x + x s yx r are x + x s yx r = x(1 + x s-1 yx r ) = (1 + x s yx r-1 )x. We leave the arguments to the reader. 

k[x 1 , x 2 , . . . , x m , . . . ] such that σ(x i ) = x i+1 . Since the chain x 1 x ∼ 1 xx 1 = x 2 x ∼ 1 xx 2 = x 3 x ∼ 1 .
. . is infinite we get that diam(R) is infinite. Also assume that I = (x). We can easily see that

I is commutatively closed. Since R I ∼ = k[x 1 , x 2 , . . . , x m , . . . ] is commutative, we have diam(k[x 1 , x 2 , . . . , x m , . . . ]) = 0.
Example 2.6. Let R and S be two rings and ϕ : R → S is a morphism. In general we can get any relation between diam(R) and diam(S). For instance, there is homomorphism ϕ : k x, y → k, where k is a field. We know diam(k) = 1 while diam(k x, y ) is infinite.

The next proposition establishes a nice connection of our study with the notion of stably associated elements in a ring. In fact, we will just use a very special case of this notion and hence we do not introduce a formal definition (see PM Cohn [START_REF] Cohn | Skew fields, a general theory of division rings[END_REF] for more information about that). Let us recall that two square matrices A, B ∈ M n (R) are said to be associated if there exist invertible matrices P, Q such that P AQ = B. We shall say that A and B are stably associated if diag(A, I) is associated to diag(B, J) for some unit matrices I, J (not necesserily of same size).

Proposition 2.7. Let x, y be elements in a ring R. The 2 × 2 diagonal matrices diag(1 + xy, 1) and diag(1 + yx, 1) are associated.

Proof. First remark that -y -1 1 0

1 x 0 1 = -y -yx -1 1 x ; 1 0 -y 1 x 1 -1 0 = x 1 -yx -1 -y ,
so that the matrices on the right-hand side of the above equalities are invertible.

We have:

-y -yx -1 1 x 1 + xy 0 0 1 x 1 -yx -1 -y = 1 + yx 0 0 1 .
This proves our proposition.

Remark 2.8. Let us remark that the above result is due to the fact that, in the language used in [START_REF] Cohn | Skew fields, a general theory of division rings[END_REF], the equality (1

+ xy)x = x(1 + yx) is comaximal.
This leads to the following statement:

Proposition 2.9. Let S be a connected subset of a ring R. Then S is commutatively closed if and only if for any two elements a, b ∈ S we have that the diagonal matrices diag(1 -a, 1) and diag(1 -b, 1) are associated in M 2 (R).

Proof. if S is commutatively closed and connected (equivalently S = C(a) for some a ∈ S) subset of R and a, b ∈ S. then there is a path from a to b in S and, as in Proposition 1.2, we have two sequences x 1 , x 2 , . . . , x n and y 1 , y 2 , . . . , y n such that a = x 1 y 1 , y 1 x 1 = x 2 y 2 , y 2 x 2 = x 3 y 3 , . . . , y n x n = b and Proposition 2.7 easily implies that diag(1 -a, 1) and diag(1 -b, 1) are associated. Conversely, if a = xy ∈ S, then Proposition 2.7 gives that the diagonal matrices diag(1 -xy, 1) and diag(1 -yx, 1) are associated and hence yx ∈ S.

In the next corollary, we get some generalizations of classical examples.

Corollary 2.10. The set 1 -S is commutatively closed for any one of the following subsets S of R:

(1) S = U r (R) (resp. S = U l (R) or S = U (R)), the set of right (rep. left, two sided) invertible elements of R. (2) S = {A ∈ M n (K) | Rank(A) = l},
where K is a field and l ≤ n ∈ N.

(3) S = reg(R) the set of regular elements of R. (4) S is the set of strongly π-regular elements.

(5) S is the set of left (right) zero divisors in R.

Proof. We refer the reader to [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF] for the proofs or references for these statements.

On Commutatively closed graph over matrix rings

In this section, we study some properties of the commutatively closed graph over matrix rings.

For a ring R and n ∈ N, we denote N n (R) the set of elements of R that are nilpotent of index n. Proposition 3.1. Let R be a ring. Then (1) For any i ∈ N, we have {0} i ⊆ N i+1 (R). In particular, 0 ⊆ N (R).

(2) For any strictly upper triangular matrix

U ∈ M n (R), U ∈ {0} n-1 ⊆ {0}. (3) Let U n (R) ⊆ M n (R) be the set of all n × n strictly upper triangular matrix over R. Then diam U n (R) ≤ 2(n -1).
Proof.

(1)This is easily proved by induction using Proposition 1.2.

(2) We may assume that U = 0 and we denote the lines of U by L 1 , L 2 , . . . , L n . In fact, the last line L n is zero, and we define r ∈ {1, . . . , n -1} to be minimal such that L i is zero for i > r. We will prove that U ∈ {0} r by induction on r. We write

U = I r,r 0 0 0 U and B := U I r,r 0 0 0 ∈ {U } 1 ,
where I r,r denotes the identity matrix of size r × r.

If r = 1, we get that B = 0 ∈ M n (D) and this yields the thesis.

If r > 1, write B = (R 1 , . . . , R n ) where R i is the i th row of B.
The matrix B is easily seen to be upper triangular and such that the rows R r , . . . , R n are zero. This means that this matrix has at least one more zero row than the matrix U . The induction hypothesis gives that B ∈ {0} r-1 , but then U ∈ {B} 1 ⊆ {0} r ⊆ {0}, as required.

(3) By the above statement (2), we know U n (R) ⊆ {0} n-1 ⊆ {0}. So that for two matrices A, B ∈ U n (R), we have A ∼ n-1 0 ∼ n-1 B. This yields the conclusion.

We will now determine the diameter of the class C(0) ∈ M n (D) where D is a division ring. The following lemma is well known, we give a proof for completeness. Lemma 3.2. Every nilpotent matrix with coefficients in a division ring is similar to a strictly upper triangular matrix.

Proof. The proof is based on the fact that any nonzero column can be the first column of an invertible matrix. So let A ∈ M n (D) be a nilpotent matrix with coefficients in a division ring D and let u ∈ M n,1 (D) be a nonzero column such that Au = 0. Let U ∈ M n (D) be an invertible matrix having u as its first column. We conclude that

U -1 AU = 0 r 0 A 1 ,
for some row r ∈ M 1,n-1 (D). It is easy to check that A 1 is again nilpotent. An easy induction on the size of the nilpotent matrix yields the proof.

The next result was proved in [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF] for matrices with coefficients over fields. Proof. We have seen that, in any ring, {0} i ⊆ N (R) i+1 (cf. Proposition 3.1). Conversely, if A ∈ M n (D) is nilpotent, the above lemma 3.2 shows that there exists an invertible matrix P and a strictly upper triangular matrix U ∈ M n (D) such that P AP -1 = U . Since the class of an element is the same as the class of any of its conjugate, we conclude that {A} = {U }. Proposition 3.1 (1) and ( 2) implies that {U } = {0}.

A Jordan block J l (associated to zero) is a matrix of the form 

J l =          0 
         ∈ M l (D) (1) 
If A ∈ M n (D) is a nilpotent matrix, where D is a division ring, A is similar to a diagonal sum of Jordan blocks. This is classical if D is commutative and for a proof in a noncommutative setting we may refer to Chapter 8 of P.M. Cohn's book ( [START_REF] Cohn | Skew fields, a general theory of division rings[END_REF]) or to the more recent paper [START_REF] Hoopes-Boyd | Representing nilpotent matrices as single commutators[END_REF]. Let us notice that J 1 = 0. Lemma 3.4. Let J l be a matrix block of size l > 1. Then J l ∼ l-1 0 Proof. As above, we write J l for the Jordan matrix presented in [START_REF] Alghazzawi | Commutatively closed sets in rings[END_REF].

We proceed by induction on l. If l = 2, we have

J 2 = 0 1 0 0 = 1 0 0 0 0 1 0 0 ∼ 1 0 1 0 0 1 0 0 0 = 0 0 0 0 .
Similarly, for l > 2, we have

J l = ( l-1 i=1 e ii )J l ∼ 1 J l ( l-1 i=1 e ii ) = J l-1 0 0 0 ∼ l-2 0.
Where we have used the induction hypothesis: J l-1 ∼ l-2 0. This implies that J l ∼ l-1 0, as required.

Let us extract from the above proof the following observation.

Corollary 3.5. If l > 1, we have J l ∼ 1 diag(J l-1 , J 1 ).

We will now look more closely to the class of nilpotent matrices.

Proposition 3.6. Let D be a division ring. Then for A ∈ M n (D), we have

A l+1 = 0 ⇔ A ∼ l 0.
Proof. We suppose that A = 0. We know (cf. Proposition 3.3) that the class C(0) consists of all the nilpotent matrices. Thanks to Lemma 2.2 we know that we can replace A by a conjugate to evaluate the length of path from A to 0. Using a result from [START_REF] Hoopes-Boyd | Representing nilpotent matrices as single commutators[END_REF], we know that there exists an invertible matrix P ∈ GL n (D) such that P AP -1 is of the form diag(J n1 , J n2 , . . . , J ns ) where the square matrices J i ∈ M i (D) are of the form given in (1) above. Moreover the maximal size of the Jordan blocks is l + 1 i.e., for all 1 ≤ i ≤ s, we have n i ≤ l + 1. Since for any integer i ∈ N, we have {0} i ⊆ {0} i+1 , the above Lemma 3.4 implies that, for all 1 ≤ i ≤ s, J ni ∼ l 0. This easily leads to the conclusion that A ∼ l 0. The converse was proved in Lemma 3.1.

Theorem 3.9. Let D be a division ring n ∈ N. Then

diam(M n (D)) = n -1.
Proof. A consequence of the Fitting Lemma is that any matrix A ∈ M n (D) is similar to a block diagonal matrix of the form diag(U, N ) where U is an invertible matrix and N a nilpotent matrix. Lemma 2.2 shows that to compute the distance between two different matrices that are in the same commutative class, we may use similar matrices. Thus we need to compute d(A, B) where A and B are of the form A = diag(U, N ) and B = diag(V, M ). The preceding lemma 3.8 shows that U, V ∈ Gl s (D) and N, M ∈ M n-s (D). Theorem 3.7 and Lemma 1.10 show that we may assume 0 < s < n.

Since the matrices N and M are nilpotent we conclude that their distance is less or equal to n -2. This means that there is a sequence of factorizations of length ≤ n -2 linking M and N . We claim that the matrices U and V are in fact similar. Assume that A ∼ r B, according to Proposition 1.2 we know that there exist matrices X, Y ∈ M n (D) such that AX = XB and Y A = BY , moreover for any l ∈ N, we have that A r+l = XB l Y . Choosing l such that M l = N l = 0, and writing X, Y as blocks matrices with X 1 , Y 1 ∈ M s (D), this last equality shows that

U r+l 0 0 0 = X 1 X 2 X 3 X 4 V l 0 0 0 Y 1 Y 2 Y 3 Y 4 .
Comparing the blocks on the top left corner gives U r+l = X 1 V l Y 1 . Since U is invertible, we conclude that the matrices X 1 and Y 1 are also invertible. Now, comparing again the top left corner blocks of the equality AX = XB, we get U X 1 = X 1 V . This shows that U and V are similar, as claimed. This implies that U ∼ 1 V . Since A = diag(U, N ) and B = diag(V, M ) (with sizes of U and N greater or equal to 1). We conclude, thanks to Theorem 3. Proof. This is a simple consequence of Theorem 3.9 and Proposition 1.8

Definition 3.11. The girth of a graph G, denoted by gr(G), is the length of shortest cycle in G, provided G contains a cycle; otherwise gr(G) = ∞.

Note that if R is a ring, then we define the commutatively closed girth of R as follows:

gr(C(R)) = min{gr C(a) | a ∈ R}.

Theorem 3.12. Let D be a division ring. Then gr Mn(D) C(0) = 3.

Proof. We know the class of {0} in R = M n (D) is the set of nilpotent matrices, where D is a division ring (cf. Proposition 3.3). It is enough, to find three nilpotent matrices that form a cycle. It is easy to see that E 1n , E n1 ∈ {0} 1 (Since E 1n = E 11 (E 1n ), 0 = E 1n (E 11 ), E 1n = E 1n E nn and E nn E 1n = 0) and E 1n ∼ 1 E n1 . Hence E 1,n , E 2,n-1 and 0 form a cycle. Therefore gr C(0) = 3.

As an immediate consequence of Theorem 3.12 and definition of gr(C(R)) , we get the following. 

Theorem 1. 5 . ( 1 )

 51 for a, b ∈ R, we have a ∼ b if and only if b ∈ {a}. (2) The relation ∼ on R is an equivalence relation. (3) If b ∈ C(a) then, for any l ∈ N, b l ∈ C(a l ). (4) For a ∈ R, the graph C(a) is connected. (5) A subset S of R is closed and connected if and only if it is the closure of an element of R. (6) If S is the closure of a subset S ⊆ R then diam(S) = diam(S).

  a, b), and so (c, d) ∈ {(a, b)}. Proposition 1.8. Let R, S be two rings, and let diam(R) = d 1 and diam

Lemma 1 .

 1 10. If R is a Dedekind finite ring and a ∈ U (R), then diam R (C(a)) = 1. Proof. Since R is Dedekind finite and a ∈ U (R), thus {a} = {uau -1 | u ∈ U (R)}, by Proposition 0.2. So for every b, c ∈ {a}, there exist u, v ∈ U (R) such that b = uau -1 and c = vav -1 . Hence b = uv -1 cvu -1 . Thus b and c are adjacent. Therefore diam R (C(a)) = 1. Proposition 1.11. 1) R is commutative if and only if diam(R) = 0. 2) Let R be a division ring. Then diam(R) = 1.

Theorem 1 .

 1 12. If R is not Dedekind-finite, then diam(R) = ∞. Proof. Assume that R is not Dedekind-finite. Thus there exist a, b ∈ R such that ab = 1 but ba = 1. So we have nonzero element e ij = b i (1 -ba)a j . Consider A = e 12 + e 23 + • • • + e n-1,n . One can easily check that A n = 0 and A n-1 = e 1n = 0, since ba = 1. Write A = (e 11 + e 22 + . . . e n-1,n-1 )A ∼ 1 A(e 11 + e 22 + . . . e n-1,n-1 ) = e 12 + e 23 + • • • + e n-2,n-1 . Continuing this process, we conclude A

1 a( 1 +

 1 b) (resp. a ∼ 1 (1 + b)a) for any b ∈ l(a) (resp. b ∈ r(a)).

Example 2 . 1 .

 21 Let R = M 2 (k) and A, B ∈ R. Also let A BA / ∈ {1 + AB} = {I} = {I}, as wanted. Lemma 2.2. Let R be any ring, and let a, b ∈ R and u ∈ U (R) such that b = uau -1 . Then, for any n ≥ 1, {a} n = {b} n .

Example 2 . 3 .

 23 Let R = k x, y, z, t /I, where k is a field and I is the ideal generated by the element xy -zt. Then yx, tz ∈ {xy} 1 and d(yx, tz) = 2.

Example 2 . 5 .

 25 Let R be a ring and I a commutatively closed ideal of R. Also,let diam( R I ) is finite. Then the diameter diam(R) is not necessarily finite. Consider R = k[x 1 , x 2 , . . . , x m , . . . ][x; σ],where k is field and σ is an automorphism on

Proposition 3 . 3 .

 33 Let D be a division ring and n ∈ N, the class of {0} in R = M n (D) is the set of nilpotent matrices.

7 ,

 7 that d(A, B) = d(M, N ) ≤ n -2. Hence the class with the biggest distance is the class of nilpotent matrices, so that Theorem 3.7 implies that Diam(M n (D)) = n -1. Theorem 3.10. Let R be a semisimple ring and R = M n1 (D 1 ) × • • • × M n l (D l ) be its Wedderrburn Artin decomposition where D 1 , . . . , D l are division rings. Then diam(R) = max{n i -1 | 1 ≤ i ≤ l}.

Corollary 3 .

 3 13. Let D be a division ring. Then gr C(M n (D)) = 3. Corollary 3.14. if R is a semisimple ring then gr C(R) = 3.

Theorem 3.7. Let R = M n (D), where D is a division ring. Then, for nilpotent matrices A, B ∈ M n (k), with nilpotent indexes n(A), n(B) respectively. We have d(A, B) ≤ max{n(A), n(B)} -1. In particular, diam R C(0) = n -1.

Proof. We know that the class of zero in M n (D) is exactly the set of nilpotent matrices. Hence the matrices A, B ∈ C(0) and the distance between A to B is the shortest path from A, B in the graph defined by C(0). Let us write l = n(A) and s = n(B), by symmetry we may assume that l ≥ s. Let diag(J n1 , J n2 , . . . , J nr ) be the Jordan form of B, where r ≥ 1 and s = n 1 ≥ n 2 , • • • ≥ n r . We will use induction on r. In the proof, to avoid heavy notations, we will write, (c 1 , c 2 , . . . , c t ) for diag(c 1 , c 2 , . . . , c t ) (where c 1 , c 2 , . . . , c t are square matrices). If r = 1, then B = J s and A = (J l , A ′ ) where A ′ is a nilpotent matrix of index ≤ l. Using repeatedly Corollary 3.5, we can write A = (J l , A ′ ) ∼ l-s (J s , A ′′ ) and (A ′′ ) s = 0, so d(A, (J s , A ′′ )) ≤ l -s and

Suppose now that the formula is proved for matrices B having less than r > 1 Jordan blocks and consider a matrix B = (J n1 , . . . , J nr ) = (J s , B ′ ), with (B ′ ) s = 0. As above we have A = (J l , A ′ ) ∼ l-s (J s , A ′′ ) and the induction hypothesis gives also

In particular, since the maximal index of nilpotency for matrices in

We will now show that the diameter of the matrix ring M n (D), over a division ring D, is itself n -1. The following lemma is far from surprising but needs to be proved.

Lemma 3.8. Suppose that D is a division ring and that A, B ∈ M n (D) are of the form

where U ∈ GL r (D) and V ∈ Gl s (D) are invertible matrices and N, M are nilpotent matrices. If A ∼ B then r = s.

Proof. Let us first remark that there exists l ∈ N such that N l = 0 and M l = 0. Theorem 1.5 implies that we may assume M = 0 and N = 0. Now, Taking powers again, Proposition 1.2 shows that we may assume A ∼ 1 B. So let us write A = XY, B = Y X ∈ M n (R) and decompose X and Y as follows

where X 1 ∈ M r×s (D), Y 1 ∈ M s×r (D). This fixes the size of all the other matrices appearing in X and Y . Since M and N are zero, the two equations AX = XB and Y B = BY quickly imply that X 2 , X 3 , Y 2 , Y 3 are all zero. and we get U = X 1 Y 1 and V = Y 1 X 1 . Since U and V are invertible we easily conclude that r = s.