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Abstract Analyzing the behavior of heavy precipitation, high temperatures, and extremes of other environ-
mental variables has become an important research topic both for hydrologists and climatologists. Extreme
value theory provides a well-developed mathematical foundation to statistically model excesses above a high
threshold. Practitioners often assume that those excesses approximately follow a generalized Pareto distribu-
tion. To infer the two parameters of this distribution, a variety of estimations has been proposed and studied.
Among them, maximum likelihood estimation offers an elegant way to include covariates, but imposing an
explicit form on the parameters dependence. When analyzing large data sets, this procedure can be too slow
and sometimes produce aberrant values due to optimization problems. To overcome these drawbacks, a
method based on probability weighted moments and Kernel regression is proposed, tested, and applied to a
Swiss daily precipitation data set. The method is implemented as a freely available R package.

1. Introduction

Weather and climate extremes affect societies and ecosystems and often induce fatalities and large material
losses. To reduce the impact of those events and to improve risk assessment studies, it is important to obtain
accurate statistical features of extremes such as 50 year return levels [e.g., Toreti et al., 2010; Schindler et al.,
2012; Kharin et al., 2013; Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014]. Extreme value theory
(EVT) [e.g., Embrechts et al., 1997; Beirlant et al., 2004; de Haan and Ferreira, 2006] provides a solid mathematical
framework for studying hydrological and climatological extremes [e.g., Katz et al., 2002]. In the identically and
independently distributed (i.i.d.) setup and under mild conditions [e.g., Coles, 2001], this theory states that the
probability distribution of excesses over a high threshold should follow the generalized Pareto (GP) distribu-
tion. This means that the survival (tail) function of excesses [Pickands, 1975] can be modeled by
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where r > 0 and y � 0 when n � 0, and y 2 ½0;2r=n½ when n < 0. r and n are called the scale and shape
parameters, respectively. The shape parameter plays an important role because it determines the tail-type
(i.e., heavy, exponential, or with a finite upper right bound). To estimate the two GP parameters in the i.i.d.
hypothesis, several methods have been developed and studied during the last 30 years [e.g., Hosking, 1990;
Cooley et al., 2007; Zhang, 2007; Caeiro and Ivette Gomes, 2011] besides the maximum likelihood (ML) [Smith,
1985]. In hydrology, Greenwood et al. [1979] and Landwehr et al. [1979] introduced the so-called probability
weighted moments (PWM). This method has been very popular in hydrology [e.g., Hosking et al., 1985]
because it is conceptually simple, easy to implement, fast to run, and it has good performance for most dis-
tributions encountered in geosciences. To broaden its domain of validity, i.e., allowing heavier tails, Diebolt
et al. [2008] introduced the generalized probability weighted moments (GPWM) for the GP distribution.

However, the main advantage of the ML method over the method-of-moments approaches is its flexibility. It
can be easily modified to handle covariates, e.g., by incorporating time varying GP parameters. This feature
is important, for instance, to investigate the effects of trends on hydro-climate extremes [e.g., Coles, 2001;
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Katz et al., 2002; Kharin et al., 2013]. In practice, numerical problems with the optimization procedure can
arise and it is not unfrequent to obtain inaccurate or even aberrant ML return levels, especially for heavy
tails. Computational time can also become an important issue for large data sets. In addition, the ML proce-
dure requires a parametric form, a strong a priori knowledge, that may be difficult to know or justify for
most applications.

To overcome the aforementioned drawbacks of the ML method and with the aim of providing a fast, sim-
ple, and flexible alternative, we propose and study a nonparametric method that keeps the main GPWM/
PWM approach advantages. In section 2, both the model and the estimation method are described. Section
3 is focused on simulations and an application of the proposed procedure to daily precipitation observed
over Switzerland in the period 2000–2010. Finally, discussion and conclusions are provided in section 4.

2. A Nonstationary Regression for GP Parameters

2.1. Assumptions
Most EVT applications in climatology and hydrology are based on the assumption that the excesses mar-
ginal distributions can be adequately fitted by GP distributions. The shape parameter n and its associated
uncertainty are difficult to estimate and n is often assumed to be constant in space and time within a clima-
tologically homogenous region [e.g., Sang and Gelfand, 2009]. While, the scale parameter r can vary accord-
ing to some well-chosen geographical and/or atmospheric covariates [e.g., Cooley et al., 2007; Blanchet and
Lehning, 2010]. In this paper, we work within the same framework, i.e., r5rðXÞ where X denotes the covari-
ate vector. In contrast to the aforementioned studies, no parametric form is imposed on rðXÞ. Concerning
the dependence structure, we assume that the excesses, conditionally on X, are independent. This assump-
tion may not be satisfied in practice, but it is extremely complex to infer a multivariate GP distribution
[Rootz�en and Tajvidi, 2006; Falk et al., 2010] in high dimensions. Actually, most hydrological studies dealing
with a complex dependence structure assumes that a preprocessing step has been applied to fit the
excesses marginal laws at each weather station. Then, the marginals are transformed into Fr�echet and a
multivariate extreme value density is inferred [e.g., Beirlant et al., 2004; Cooley and Sain, 2010; Cooley et al.,
2012]. With this respect, our approach can be used to perform the preprocessing step and transforming the
marginals into unit Fr�echet. Concerning the analysis of maxima, recent studies have taken advantage of
complex multivariate max-stable procedures [e.g., Ribatet et al., 2009; Gaume et al., 2013]. In particular, Davi-
son et al. [2012] analyzed summer and winter maxima of 51 weather stations in Switzerland from 1962 to
2008. One drawback of working with maxima is that different or similar extreme weather events are indis-
criminately pooled together over the same season.

With regards to the nonparametric EVT approaches used in hydrology, Gardes and Girard [2010] proposed a
nearest neighbor procedure to construct estimates of the tail index. They applied their method to extreme
French rainfall in the C�evennes-Vivarais region. Compared to this work, we do not impose a positive shape
parameter but we just assume GP marginals. Finally, the use of kernel smoothing for extremal quantile
regression was investigating by Daouia et al. [2013].

Before recalling the GPWM/PWM method, we need to introduce a few notations. Let n be the total number
of observed excesses and let X1; :::;Xn denote the covariates associated with those excesses (e.g., time and
space). Z and YðX iÞ are GP distributed random variables with shape parameter n and scale parameters r
and rðX iÞ, respectively.

2.2. The Stationary Case
The PWM estimator emerges from the method-of-moments [Greenwood et al., 1979; Landwehr et al., 1979;
Hosking and Wallis, 1987]. The PWM method for the GPD is based on the estimation of two moments given
by lr5E½Z�Gr

r;nðZÞ�, where �G512G is provided by equation (1) for the GP distribution [for details and a gen-
eral definition see Diebolt et al., 2007]. It can be shown that

lr5r
1

ð11rÞð11r2nÞ ; (2)

for any nonnegative real r. When r 5 0 and r 5 1, Hosking and Wallis [1987] showed, in the i.i.d. case, that
the induced estimators of n and r are asymptotically unbiased for n < 0:5. While using the concept of
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U-statistics, Furrer and Naveau [2007] derived their distributions for finite sample sizes. An approach based
on an adapted U-statistics was also proposed by Hsing and Wu [2004] for dealing with the stationary case.

To relax the restriction n < 0:5, Diebolt et al. [2007] studied the GPWM with r 5 1 and r51:5,

r5
2:5l1:5l1

2l122:5l1:5
and n5

4l12ð2:5Þ2l1:5

2l122:5l1:5
: (3)

In the i.i.d. case, they analyzed a specific class of estimators that are asymptotically unbiased with a normal
distribution and a covariance matrix for any n < 1:5. One characteristic of these inference methods is that
no optimization scheme is needed. Hence, an immediate advantage of the GPWM/PWM approach over the
ML method is its computational simplicity.

2.3. General Case With Covariates
When rðXÞ varies according to a covariate X, lr can be extended by defining

lrðXÞ5E½YðXÞ�Gr
rðXÞ;nðYðXÞÞ�;

where YðXÞ follows GP ðrðXÞ; nÞ distribution. As in (2),

lrðXÞ5rðXÞ 1
ð11rÞð11r2nÞ : (4)

This can rewritten as

lrðXÞ5rðXÞE½Z �Gr
1;nðZÞ�;

where Z follows GP ð1; nÞ distribution. From (4), we can express n and rðXÞ in function of three PWMs, say
l0ðXÞ, lrðXÞ, and lsðXÞ with 0 < r < s

n5
ð11sÞ22ð11rÞ2ars

ð11sÞ2ð11rÞars
and rðXÞ5l0ðXÞð12nÞ; (5)

with

ars5
E½Z �Gr

1;nðZÞ�
E½Z �Gs

1;nðZÞ�
: (6)

It important to emphasize that we have changed the system of equation (3) by a new one described by (5)
and (6). Our new system allows us to express n as a function of ars, the latter does not depend on X. Now
the only variables depending on X are rðXÞ and l0ðXÞ. In other words, by introducing ars we have clearly
decoupled the fact that n and its associated PWMs do not depend on X, but rðXÞ and l0ðXÞ do. This remark
leads to a very simple inference scheme. Suppose that l̂0ðXÞ and â represent any estimators for l0ðXÞ and
ars with r 5 1 and s 5 2, then from (5) n and rðXÞ are inferred with

n̂5
924â
322â

and r̂ðXÞ5l̂0ðXÞð12n̂Þ: (7)

Concerning l̂0ðXÞ, we simply implement a classical kernel regression approach [Nadaraya, 1964; Watson,
1964]. Let K be a weighting Kernel, e.g., a zero-mean Gaussian density function, we set

l̂0ðXÞ5
1P

i KðX2X iÞ
Xn

i51

YðX iÞKðX2X iÞ: (8)

To estimate ars, we face a small hurdle. The realizations of the i.i.d. random variables Zi5YðX iÞ=rðX iÞ
are unobservable because the rðX iÞ’s are unknown. Fortunately, ar;s is a ratio and consequently, divid-
ing Zi by rðXÞ or by l0ðXÞ keeps it unchanged. Having previously estimated l̂0ðXÞ by a Kernel
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smoother, the unobserved Zi’s can
be replaced by their estimated
renormalized version
Z0i5YðX iÞ=l̂0ðX iÞ. At this stage, one
can simply use his/her favorite
inference PWM method to estimate
E½Z0G0 r1;nðZ0Þ� for r51; 2. In this
exercise, they are inferred by
using the U-statistic approach of
Furrer and Naveau [2007] and
applying a triweight kernel [e.g.,
H€ardle, 1991]. Thus, the developed
inference scheme is very similar to
the classical PWM method. The
two new ingredients are the use of
Kernel regression for estimating l̂0

ðXÞ and the new system of equa-
tions to be solved. The proposed
approach (hereafter, Kernel-PWM)
can be summarized by the follow-
ing steps:

1. Compute l̂0ðxÞ, via equation (8);

2. calculate the vectorfz0ig5fyðx iÞ=l̂0ðx iÞg;

3. compute the two PWMs r51; 2 from the sample fz0ig and then set â as the ratio of those PWMs;

4. derive r̂ðxÞ and n̂ from equation (7).

To get confidence intervals, new samples can be generated under the estimated values and the proposed
fast four-step algorithm repeated to explore the sampling variability. From a theoretical point of view, the
statistical properties of l̂0ðXÞ can be directly obtained from the classical Kernel regression literature [Wand
and Jones, 1995]. As for any kernel-based approach, the choice of the bandwidth remains a delicate task.
Still, classical approaches for bandwidth selection can be used in our procedure, but caution is necessary
when the shape parameter is large.

3. Analysis of Nonstationary Excesses

To illustrate the proposed procedure, we simulate one nonstationary sequence ðYðx1Þ; . . . ; YðxmÞÞ of length
m 5 1000 distributed according to GPðrðxÞ; nÞ, where n50:2 and rðxÞ is the combination of a periodic and
an exponential signal, see the solid black line (x axis) in Figure 1. The inferred r̂ðxÞ reproduces reasonably
well the true behavior of rðxÞ and the gray 90% confidence interval contains the true value. Some boundary
effects (especially with higher values of the scale parameter) affect the estimation. The true shape parame-
ter is clearly within the inferred boxplot. To validate this first example, we repeat this experiment 1000
times. Figure 2 displays the shape parameter and the 90% confidence interval for each simulation. The verti-
cal red lines on the x axis correspond to the coverage probability occurrences and, as expected for a 90%
confidence level for a thousand replicas, around 100 (precisely 136) false positive have been detected. To
apply our method to a real data set, we focus on extreme precipitation in Switzerland recorded at 220 sta-
tions from 2001 to 2010 in autumn. Heavy precipitation is defined as being above the 90% quantile at each
location. We assume that these excesses follow a GP distribution with a constant shape parameter. This lat-
ter hypothesis has been checked by fitting individually each station and testing if these values were signifi-
cantly different from a countrywide parameter. The spatially varying scale parameter estimates are
displayed in Figure 3. The top, middle, and bottom rows correspond to the 5%, 50%, and 95% values,
respectively. To assess the influence of the bandwidth, the columns represent three different bandwidths,
0.3, 0.5, and 0.7, respectively. Basically, the results are robust with respect to these three bandwidth choices.
We recognize the classical spatial pattern of heavy rainfall in Switzerland with larger values in Ticino,

Figure 1. For a GPDðrðxÞ; nÞ, the solid black line represents the true scale parameter
rðxÞ in function of x (x axis). The shape parameter is constant and equals to 0.2 (right
axis). From one realization, the boxplot and the gray 90% confidence intervals repre-
sent the estimated shape and scale (left axis) obtained by resampling, respectively.
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especially in the southwestern part of
this area, and lower values over the
northern part. With respect to the
shape parameter, its estimate is
around 0.12 with a 90% confidence
interval of ½2:67; :58�. The confidence
range is large because our database
only covers 10 years. Still, our inferred
shape parameter corresponds to esti-
mates obtained by MeteoSwiss
[Umbricht et al., 2013] for longer time
periods and by Papalexiou and Kout-
soyiannis [2013, see their Figure 13]. In
a sense, we have traded time with
space and, even with a short time
length, our estimates are consistent
with past studies. One advantage of a
Kernel-based approach is the possibil-

ity to extrapolate return levels. For our Swiss example, we first need to infer threshold values at unobserved
locations. This is undertaken by universal kriging [e.g., Wackernagel, 2003] using elevation as external drift.
The 50 year return levels map in Figure 4 emphasizes the complex spatial structure in Ticino and reveals the
dryer belt in the south-west. This feature is not highlighted in Figure 4.10 of the recent MeteoSwiss report
[Umbricht et al., 2013] because of the lack of spatial coverage in this region. This requires further investiga-
tion [see also Huser and Davison, 2014].

Figure 3. Inferred scale parameter obtained from heavy precipitation (i.e., threshold at the 90% quantile of wet days) recorded at 220 sta-
tions in Switzerland from 2001 to 2010 in autumn. The top, middle, and bottom rows correspond to the 5%, median, and 95% values,
respectively. The columns from the left represent three different bandwidths, 0.3, 0.5, and 0.7, respectively.

Figure 2. Estimated shape parameter (y axis) from 1000 replicas (x axis) based on
the setup described in Figure 1. The vertical red lines correspond to the samples
outside of the estimated 90% coverage probability. As expected for 1000 replicas,
around 100 false positive (red lines) occurrences are detected.
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4. Discussion and Conclusions

A fast, simple, and flexible method based on probability weighted moments and kernel regression has
been proposed to model covariate-dependent extremes. It is computationally inexpensive and can be
applied to very large data sets. It does not assume any a priori behavior of the scale parameter, but it
assumes a constant shape parameter. We tested our approach on simulations and heavy precipitation in
Switzerland. The Swiss case study highlights the applicability of the method and its potentiality. Our results
are coherent with recent studies. Finally, the method is freely available as an R package that can be
requested by email.
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