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Abstract

Designing highly efficient multiwavelength metalens has witnessed rapid growth

in the past few years owing to their fascinating and peculiar applications. The con-

ventional modelling technique relies on optimizing the individual nanoresonators in a

periodic array and synthesizing the required phase profile. Generally speaking, the

traditional procedure neglects the near-field coupling between the resonators and leads

to a dramatic reduction of the efficiency, particularly at the visible regime, and no-

tably for high numerical aperture lenses. Another alternative way is to combine a

numerical optimization technique with full-wave simulations to mitigate this problem

and optimize the full lens. Nonetheless, this process has been frequently applied to

gradient-based techniques with/without freeform shapes which generally converge to a

local solution. In this work, we present for the first time a global multiobjective opti-

mization technique based on statistical learning to optimize RGB spherical metalenses

at the visible regime. The optimization procedure is coupled to our high-order full-

wave solver to capture the strong near field coupling between the resonators. The first
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RGB optimized lens has 8µm diameter and NA= 0.47 and yields an average focusing

efficiency of 55%. The second optimized lens has 10µm diameter and NA= 0.56 with

45% average efficiency. Furthermore, we obtained an average focusing error as small as

6% for the RGB colors. The optimized lenses have been fabricated and characterized

experimentally, where a good agreement is attained between the numerical and the ex-

perimental results. The measured average focusing efficiency are approximately, 45%

and 33%, for the first and the second design, respectively. To the best of our knowl-

edge, this is the highest focusing efficiency obtained so far for such spherical metalens

with classical cylindrical pillars with NA > 0.5 at the visible regime.

Introduction

Metasurfaces are attracting widespread interest due to the notable distinctiveness in con-

trolling all the light attributes in very short propagation distances compared to the standard

bulky optical components.1–5 The fundamental design principle of metasurfaces is the ar-

rangement of subwavelength resonators with different geometrical parameters which allow

for a precise control of the incoming wavefront.3–8 The novel development technology along

with the versatility of metasurfaces have led to exceptional and peculiar applications9 in

relation to sub-diffraction optical microscopy ,10 nonlinear optics,11 and quantum optics,12

to cite a few examples.

During the last few years, it has been demonstrated that the precise engineering of sub-

wavelength patterning is compulsory in enhancing the performance of metasurfaces in par-

ticular for highly demanding applications. Consequently, several innovative inverse design

methodologies have been recently exploited to further extend the metasurface capabilities,

especially for devices serving for a single performance goal.13–16 Notwithstanding, the next

decade is likely to witness a noteworthy growth in the field of multifunctional metasur-

faces owing to the increasing demand in designing flat optics devices with a wide variety of

functionalities. This makes the exploitation of rigorous inverse design strategies which are
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capable of optimizing metasurfaces with multiple functionalities a mandatory step for the

next metasurface generation.

Yet, this is not a straightforward task since optimizing multifunctional metasurfaces

necessitates resolving an optimization problem with multiple competing objectives and most

likely includes a large parameter space. Generally speaking, two major approaches have been

put forward to undertake this problem.

The first strategy is essentially based on transforming the multiobjective optimization

problem into a single objective one. This is realized by merging different objectives via a

classical weighted sum technique, through assigning a dedicated coefficient to each target

so that the targets with higher priorities are assigned to higher coefficient values compared

to the less notable objectives.17 The resulting single objective problem is then resolved

by employing a standard single optimization method to converge to an optimized design

based on the predefined weighted coefficients.18,19 Latterly, the weighted sum approach has

been used to optimize various multifunctional metasurfaces devices. In most cases, the

emerging single objective problem has been tackled by utilising classical evolutionary single

objective techniques.20–23 Yet the straightforward attainable implementation of the weighted

sum procedure is often impractical, especially for problems that contain several competing

objectives. This approach aims at satisfying the objectives based on predefined weighted

coefficients, which may not necessarily be the most suited trade-off between them.

The second methodology relies on resolving directly the multiobjective problem by adopt-

ing a dedicated numerical optimization method rather than reducing the problem to a single

objective one. This approach seeks to find the optimal solution for the given set of objec-

tives with an adapted definition of optimality. Indeed, the concept of the optimal solution

in the case of multiobjective optimization is distinct from its equivalent notion in the single

objective case. The latter attempts to reach the set of parameters corresponding to the most

desirable fit to the objective. Nonetheless, the former aims at obtaining the set of solutions

which satisfy the best trade-offs between the specified objectives. In most cases, achieving
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the best fit in one objective degrades the performance of the other objectives. Thus, the

essential purpose of the multiobjective optimization is to attain the set of solutions corre-

sponding to the most suitable compromise between the objectives. This set of solutions are

usually defined as the Pareto front, or the set of non-dominated solutions in the objective

space. In other words, a design x is a Pareto optimal if there is no other design that is at

least as good for all objectives and strictly better for at least one.

One common approach is to rely on on the development of Multiobjective Optimization

Evolutionary Algorithms (MOEAs).24–30 MOEAS are able to produce the global set of op-

timal solutions in the form of the Pareto front thanks to their stochastic nature and their

ability to converge to the global solution rather than focusing in local regions. Besides, they

are intrinsically based on biological evolutionary mechanisms, like mutation, selection, and

crossover. This essentially broadens the search scheme during the optimization and enriches

the possibilities to converge to the global Pareto front.

There exists a wide variety of MOEAs such as Genetic Algorithms (GAs),31–33 Covariance

Matrix Adaptation Evolutionary Strategy (CMA-ES),34 and Particle Swarm Optimization

(PSO).35–38 MOAEs have been extensively employed to optimize multifunctional electromag-

netic problems in various disciplines39–42 owing to their their ability to deal with large param-

eter space and their flexibility in considering both continuous and discrete parametrization.

In the field of metasurfaces, multiobjective GAs have been used to optimize wavelength selec-

tive and absorbing metasurface designs.43 Moreover, advanced MOEAs have been developed

for optimizing colour pixels metasurface44 and multi-resonant nanoridges for metasurface

applications.45 Recently, a MOEA based on BORG library29 has been exploited for gener-

ating a library of optimized freeform shapes,46,47 to synthesize metasurfaces with multiple

targets.

Despite recent developments in MOEAs, there is still considerable concern about their

practical use for realistic applications. Although MOEAs are capable of converging to the

global set of solutions, in addition to their interesting versatility, a major defect of MOEAs
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is that they are computationally demanding and subject to high overheads iterations. This

major limitation makes them impractical when combined with a costly three-dimensional

electromagnetic solver.

The rapid growth of applying deep learning in the field of nanophotonics and metasur-

faces14,16,48–54 has prompted researchers to think about resorting to deep learning to solve

multiobjective electromagnetic problems. The foremost concept behind deep learning is to

substitute the expensive simulations by a trained network capable of predicting the relation-

ship between the set of parameters and the corresponding electromagnetic response. Yet,

similar concerns as for MOEAs have arisen since generally the training process entails a huge

amount of simulations.55,56 Recently, novel approaches like generative models56–58 have been

adopted to accelerate the training process. Such an approach has lately been extended to

optimize multifunctional nanophotonic devices.59–61 Despite this interest, there is no general

agreement on the relation between the number of objectives/parameters and the required

number of simulations to train the network. In particular, when multiple objectives are

considered, training the network might require a considerable amount of resources. Besides,

the fact that the deep network is not inherently an optimization tool, it might suffer from

convergence issues, notably in the case of competing objectives.

In our former work,62 we presented an alternative and efficient methodology based on

statistical learning for optimizing single objective metasurfaces with a moderate budget of

fullwave solver calls. It is known as Efficient Global Optimization (EGO).63–65 This method

is based on surrogate modelling, which replaces the high fidelity electromagnetic evaluation

process with a simpler and cheaper model for the prediction of the new designs during the

optimization process. Despite the fact that EGO converges to the global solution rather than

the local one, it demands fewer iterations compared to a more classical global evolutionary

strategy as we demonstrated earlier.62 This interesting feature makes EGO an attractive

optimization method for complex electromagnetic designs.

In this work, we present for the first time to the community a multiobjective optimization
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based on statistical learning. We demonstrate that this method converges rapidly to the

global set of optimal solutions by using an adequate number of solver calls.

The paper is organized as follows. First, we discuss the main feature of the multiobjective

EGO method, by providing a simple and clear illustration of its development. Second, we

apply the multiobjective EGO in optimizing the deflection efficiency of the Red, Green, and

Blue (RGB) colors in a metasurface design. Despite the sophisticated competition between

the three objectives, our optimization method is able to provide a single design based on

a realistic configuration with more than 75% of average deflection efficiency for the three

wavelengths. These results are depicted in the Supplementary information section.

Third, we extend our analysis towards the optimization of a 3D RGB achromatic metalens

with moderate numerical aperture. Our numerical optimization study yields an average

focusing efficiency of 45% using cylindrical nanopillars for a 3D metalens with a numerical

aperture of 0.56 and diameter≈ 10 µm. In addition, we confirm that the chromatic dispersion

issue is diminished, and that the three wavelengths focus at the same position with a relative

focusing error of 6%. Besides, the optimized designs have been fabricated and characterized

experimentally. Remarkably, we found a qualitative agreement between the numerical and

the experimental results.

Multiobjective EGO

To deal with expensive black-box problems, it is common to resort to a surrogate model of

the function of interest. The surrogate model provides a quick estimation to approximate

the true function, which can be used to select the best candidates to evaluate next, in a

sequential manner. Among other alternatives such as, for instance, support vector machines

or neural networks, Gaussian process (GP) regression, also known as kriging, provides a

probabilistic model. Such a model is able to predict the value at n-evaluated locations while

giving an estimate of the uncertainty about this prediction. It is crucial in optimization to
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balance exploration of poorly known regions of the input space (large predictive variance)

with the exploitation of promising regions (low predictive mean). For more details about

Bayesian optimization, we refer to Refs.66,67 Besides, the readers can also refer to our previous

works15,16 where we describe the EGO steps using simplified problems in the single objective

case. Below, we provide a concrete illustration of the multiobjective EGO method.

In general, the EGO method consists in two phases. The first one is the Design Of Ex-

periment (DOE) phase, which aims at generating an initial database of designs. In essence,

each of these designs is evaluated using an electromagnetic solver where the corresponding

objective value is deduced. In the second phase, using the data obtained from the DOE, a

Gaussian Process (GP) model is constructed for each objective, using an internal optimiza-

tion process to fit the set of GP models to the DOE. The generated GP models for each

objective provide a prediction of the objective values along with the parameter space but

without additional further fullwave simulations. It is worth mentioning that in our case, each

GP model is fitted independently to each objective, as it is commonly used in the literature

for objectives that are not strongly correlated.

Once the GP models (one for each objective) are obtained, one can determine at each

point in the design space the mean and the variance of the GP models. The former gives

the expected values of the objectives at the given point in the design space, while the latter

provides information about the uncertainty on these objective values.

Based on the statistical information afforded by the GP models, a statistical merit func-

tion needs to be established in order to identify which design (set of parameters) should

be tested in the next iteration that would provide a better approximation to the Pareto

front. In our case, we consider the common criterion known as the Expected Hypervolume

Improvement (EHI).68 In Fig. 1, we illustrate the role of the EHI selection criterion in the

multiobjective EGO process (see Ref.69 for more details).

In Fig. 1, we exhibit an engraving for the principle of the multiobjective optimization

based on EGO. We consider here one parameter X to optimize further, we aim at minimizing
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Figure 1: Illustration of the multiobjective optimization context and the expected hyper-
volume improvement (EHI) criterion.68,69 (a-b), two independent metamodels for the first
and the second objective, respectively. The blue points refer to the DOEs. (c): objective
space where the red points represent the existing non-dominated designs (PF). The orange
region illustrates the current hypervolume (region between the current PF and a reference
point). Green and cyan points refer to the predictive mean for two new designs X1 and X2,
respectively. Shadow regions indicate the expected hypervolume improvement from X1 and
X2. See text for more details.
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two distinct and competing objectives. We assume 6 DOEs given by the blue points in

Figs. 1(a-b). At this step, for each objective, the corresponding GP model is fitted based on

the DOEs as illustrated by the black curves in Figs. 1(a-b). Furthermore, the set of non-

dominated solutions (PF) are extracted and displayed in the objective space (see red points

in Fig. 1(c)). Thanks to these GP models, one has information about the mean (value of the

objective) and the uncertainty (variance) at each point in the design/objective space. For

instance, the green and the cyan points indicate the predictive means (predictive values of the

two objectives) for two novel designs X1 and X2, respectively. At this step, we are interested

in knowing which design will be chosen (to simulate) to converge faster to the exact Pareto

front. Thus, we seek at computing the expectation of the hypervolume improvements (with a

closed-form expression70) added to the current Pareto front (red points) from each Gaussian

distribution around X1 and X2. One can see that the design X1 is expected to increase the

current hypervolume compared to the design X2 as illustrated by the green and cyan shadow

regions. In other words, the green point adds more improvement to the current Pareto front

(red points) than the cyan one, and hence X1 will be the next design to evaluate. We refer

to Refs.,69,71 for more details about the EHI selection criterion.

Now, considering our application metasurface context, in the search parameter space

where EHI is maximized, we extract the corresponding parameter values, and the corre-

sponding design will be simulated using a fullwave electromagnetic solver. After that, the

database is updated accounting for this new observation (construction of new GP models

based on the updated database). This process is repeated until a predefined convergence

criterion is reached, or when the EHI is sufficiently small. This specific statistical learning

criterion makes our global optimization solver converges rapidly to the exact set of solutions.

Besides, this feature demonstrates that EGO outperforms all the global evolutionary multi-

objective optimizations and make it an ideal platform for time-consuming multi-functional

nanoscale devices with competing objectives. In practice, we use the GPareto72,73 R package

to conduct multiobjective optimization.
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In the present study, we couple the multiobjective EGO with our in-house high-order

fullwave electromagnetic solver based on the Discontinuous Galerkin Time-Domain (DGTD)

method.74 DGTD can be viewed as a mixture of a classical (continuous) Finite Element

Time-Domain (FETD) and the Finite Volume Time-Domain (FVTD) method. We exploit a

high-order DGTD-based solver that we have recently developed, and which has been specif-

ically designed for the simulation of nanoscale light-matter interaction problems.75 This

DGTD fullwave solver is implemented in the DIOGENeS76 software suite, which is pro-

grammed in Fortran 2008 and is adapted to high performance computing systems. It is

worth mentioning that the use of this high-order DGTD solver is fully justified in this work.

First, throughout this work, we rely on multi-wavelength metasurface designs, accordingly,

it is more practical to work with a time-domain solver where the objective values with regard

to a wavelength range is obtained with a single simulation run. Second, we have illustrated

recently that our solver is crucial and efficient in assessing near field coupling between the

neighbouring elements, which is a fundamental factor in designing high efficient nanopho-

tonic based designs.15,77 Finally, due to the adaptability of our high-order DGTD solver in

handling large-scale problems, the number of mesh cells is considerably reduced compared to

other time-domain methods like the Finite-Difference Time-Domain (FDTD). These attrac-

tive features of our DGTD solver implemented in the DIOGENeS76 software suite unitedly

with the multiobjective EGO method offer an ideal platform methodology for optimizing

multifunctional metasurface based designs.

As proof of concept, we employed the multiobjective EGO in an attempt to optimize a

beam steering metasurface at three different wavelengths simultaneously. The results are

shown in the supplementary information section. However, in what follows, we focus on

presenting our numerical and experimental results for large-scale metalens design at the

visible regime.
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Results and discussion

3D large-scale RGB metalens

In this section, we employ our methodology to the the design of a large-scale 3D achro-

matic metalens with high numerical aperture. In conventional optical lenses, the chromatic

dispersion can be reduced by stacking various lenses together, however, the overall system

becomes bulky and costly to produce. In comparison, metasurfaces offer the opportunity to

alleviate the chromatic dispersion based on much thinner architectures. Yet, this is not a

straightforward task due to the intrinsic dispersion nature of the constituting elements.

The conventional approach in optimizing 3D metalenses is based on synthesizing the

phase. This procedure necessitates tuning the individual elements in order to engineer their

transmission and their phase shift response, more precisely, for ensuring a 2π phase shift

change to control the incoming wavefront. However, in order to deliver the focusing at a

given fixed position F , a varying phase profile (changing in the radial direction) across the

metasurface is required:

φ(ω;x, y) = −ω
c

(√
x2 + y2 + F 2 − F

)
. (1)

Here, ω is the angular frequency, x, y represent the position of each individual element,

and c is the speed of light. Clearly, Eq. 1, is a frequency-dependent equation. In other words,

in order to ensure the broadband focusing for a given fixed focal distance F , one has to devise

the best combination of the elements to decrease the chromatic dispersion and ensure the

broadband focusing at the same position with high performance. Several attempts have

been made to derive rigorous selection criteria to alleviate the chromatic dispersion issue.

The principal shortcoming of the classical synthesizing technique is the ignorance of the near

field coupling, which is the main cause of degradation of the focusing efficiency. Numerous

exciting 3D broadband lenses have been optimized based on this synthesizing procedure,78–82

among others. Yet, the overall efficiency drops dramatically for lenses with NA > 0.5 due
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to the rapid change of the phase required.

Optimizing the full metalens is another alternative manner to enhance the performance.

Nevertheless, this approach requires both a rigorous fullwave solver to account for the near

field coupling and an efficient optimization algorithm. In the 3D case, few works have been

published lately based on optimizing freeform shapes.83–85 Despite the versatility offered

by the aforementioned freeform full optimization methodologies, they yield devices with

sophisticated patterns which are difficult to match by the current fabrication technologies.

Another attractive computational frameworks are proposed in Refs.86–88 based on gradient

based architecture. Yet, gradient-based techniques most likely lead to local solutions rather

than obtaining the global designs.

It is worth mentioning that the optimization of 2D metalenses (cylindrical), where focus-

ing is mainly ensured along two directions solely, is extensively considered in the literature.

In this 2D case, exciting works have been published recently 83,84,88–92 based on different

architectures for various numerical apertures. In the present work, we focus only on 3D

spherical designs where the focusing is maintained along the three spatial dimensions at the

visible regime.

Our work is distinct from what has been recently reported in the literature, where the

metalens is either optimized via the synthesizing procedure or optimized based on freeform

shapes or with gradient-based strategies. First, we consider cylindrical shapes which are

easy to fabricate, and we take into account the fabrication constraints which are usually

hard to satisfy for most freeform optimized lenses. Second, we optimize almost all the meta-

atoms and account for the strong near field coupling (by tuning the distances between them)

that could arise, unlike the classical synthesizing process. Finally, we rely on a rigorous

methodology by combining a global optimization method with a high-order DGTD solver

to converge to the global solution and indeed treat the large-scale problem with a moderate

number of degrees of freedom.

In Tab. 1, we summarize results of recent works dealing with 3D achromatic metalens
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design (including our current work). For more details about the fundamental limitations of

achromatic metalenses, we refer to Refs.93,94

Table 1: Comparison of 3D achromatic spherical metalens designs. Here (a) refers to the
experimental results, while (b) is for the numerical simulation results.

NA Diameter (µm) Building blocks Bandwidth Average focusing efficiency

0.12 20.0 Fishnet 640-1200 61(a)%81

0.2 26.6 Anisotropic unit cell 460-700 30(a)%95

0.25 7.5 Freeform 480,650,850 63(b)%83

0.27 20.0 Hybrid elements 1000-1800 60(a)%82

0.26 6.0 Cylinders 400-700 60(b)%92

0.47 8.056 Cylinders 480,550,640 55(b)% & 43.46(a)% (this work)
0.56 10.22 Cylinders 480,550,640 45(b)% & 33.46(a)% (this work)

In this work, we aim at optimizing a 3D metalens with NA between 0.45 and 0.6 to focus

the RGB colors at the same focal plane with the maximum feasible efficiency as depicted in

Fig. 2(a)). In other words, we seek to achieve the most suitable compromise between the

chromatic dispersion and the efficiency for a given fixed focal distance.

Our 3D metalens is composed of concentric rings of cylindrical nanopillars of GaN as

depicted in Fig. 2(b). The height of the cylinders is fixed as 1000 nm. As a first design, we

consider 12 concentric rings (apart from the central cylinder), in which the number of the

cylinders in each ring (fixed during the optimization) increases when moving towards the

outer rings. In general, we have roughly 407 cylinders in the whole metalens. The distribution

of cylinders in each ring is summarized in Tab. 3 in the supplementary information.

Nevertheless, in order to reduce both the computational cost and the number of opti-

mization parameters, we rely on the symmetry properties of the 3D lens and consider only

one-quarter of the structure as shown in Fig. 2(c) (a 3D view is presented in Fig. 10(a) in

the supplementary information together with some details about the symmetry properties).

Additionally, we assume that the cylinders in each individual ring share the same diameter.

Consequently, we consider only optimizing one row of cylinders along the radial direction

together with the distances between the rings, as indicated in Fig. 2(c) by the yellow cylin-

ders and the black arrows, respectively. Furthermore, in our design, we fix the diameters
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Figure 2: (a): schematic view of the 3D achromatic metalens in the x − z plane. The
metalens aims at focusing the three colors at the same focal distance F. The diameter of
the metasurface is D and the thickness is fixed as h = 1000 nm. (b-c): x − y plane for the
3D metalens under investigation, (b) for the whole metalens, and (c) for one-quarter of the
geometry (shadow region in (b)). The metalens consists of concentric rings of cylindrical
GaN nanopillars (red region) placed on top of semi-infinite Al2O3 of dimension 10 µm ×
10 µm, which is fixed during the optimization. The number of cylinders in each ring is given
in the first two columns in Tab. 3. The 16 optimization parameters are depicted in (c), 10
diameters represented by the yellow cylinders and 6 parameters for the distances between
the outer rings (black arrows).

of the cylinders in the first three rings together with the distances between the first seven

rings. This is an admissible assumption since the central rings are expected to delay the

light in the centre of the lens. Hence, one can arrange the distances between them to the

minimum limit (in our case 100 nm is the minimum feature size for the distance between

rings). Moreover, the centre cylinder has a fixed diameter of 220 nm, and the cylinders in

the three sequential rings are assumed to have fixed diameters as 200 nm. In summary, in

this configuration (Fig. 2(c)), we optimize only 16 parameters: 10 diameters represented by

the yellow cylinders (vary between 90 nm and 200 nm) and 6 distances between the outer

rings indicated by the black arrows (vary between 100 nm and 250 nm).

It is worth mentioning that the near field coupling between all cylinders is taken into

account during each optimization iteration to compute the objective functions rigorously.

Besides, one notice that the diameter of the lens is varying based on the position of the last

ring. Nevertheless, the focal distance F is fixed during all the iterations as 7.5 µm. For this
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Figure 3: (a): optimization results for the first metalens design with 16 optimization pa-
rameters, composed of 12 concentric rings as shown in Fig. 3(d). The blue points refer to
the 90 designs in the DOE database, the black ones indicate the optimization iterations.
The red points represent the Pareto front (see the text for more details). We chose one
of the best designs along the Pareto front (red arrow in (a)), where the three objectives
are maximized simultaneously. The diameter of the chosen lens is 8 µm (the associated
parameters are given in Tab 3). (b): numerical focusing efficiency of the optimized chosen
lens. The efficiency is calculated as the ratio of the power at the focal plane to the power
passing through an aperture of diameter 8.055 µm (diameter of the optimized lens). The
three vertical lines refer to the three wavelengths considered during the optimization. The
numerical convergence is studied in Fig. 10(b). (c): cut along z at the center of the lens for
the RGB colors. The vertical line refer to the target focusing position F. (d): indicate the
x-y profile of the optimized design. (e-g): numerical intensity profiles at the x-z plane. (h):
SEM of the fabricated lens and (i-k) illustrate the experimental focusing intensity at the x-z.
The intensity is measured at λ = 490 nm, λ = 550 nm, and λ = 660 nm for the blue, green,
and red colors, respectively.
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first design, we aim at maximizing the power at the focal plane (z = 7.5 µm) for the blue color

at λ = 480 nm, green color at λ = 550 nm, and for the red color at λ = 640 nm. Without loss

of generality and for normalization purpose, we rescale the power at the focal plane to the

power passing through a circular aperture of diameter 10 µm (fixed during the optimization

process). Once the power at the focal plane is optimized for the three wavelengths, we pick up

the correct diameter (for the optimized design) and we calculate the exact focusing efficiency.

In our case, the focusing efficiency is estimated as the ratio between the power in the focal

plane (circle or radius 800 nm) divided by the power passing through a circular aperture with

diameter D. The diameter is defined after determining the optimized parameters. Then,

the actual numerical aperture is computed. It is worth mentioning that the diameter of the

focal plane is fixed for the three wavelengths and is considered as three times the average

of the theoretical full width at half maximum (FWHM) of the three wavelengths. Indeed,

this might introduce small bias for the focal distance, however, as we shall see below, the

overall bias is minimal. Based on the above procedure and the given fixed focal distance

F = 7.5 µm, the NA is varying roughly between 0.32 and 0.6. As we shall show next, one

might improve the results by adding supplementary rings that ultimately increase the NA

and afford more control over the dispersion, this reducing the chromatic dispersion.

In Fig. 3(a), we present the optimization results for the first lens with 12 concentric rings.

The normalized power is denoted as Pnorm. We are considering a minimization problem, thus

the main objective here is to minimize 1− Pnorm for λ = 480 nm, λ = 550 nm, and λ = 640

nm. In this particular example, we optimize 16 parameters for satisfying 3 objectives, thus,

we consider a DOE database with 90 elements (blue points) for the initial learning process.

These points are then used to construct 3 metamodels (one for each objective). Once the

metamodels are built, the EHI criterion (see our discussion above about the EHI selection

criterion) is used to select the next design to be simulated. The optimization iterations are

outlined by the black points in Fig. 3(a) while the Pareto front is given by the red points.

In the present case, 180 iterations are enough to capture the Pareto front (the convergence
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results are depicted in Fig. 11 in the supplementary information section). We pick one of

the best middle points along the Pareto front where the minimization of the three objectives

is ensured. The corresponding lens is shown in Fig. 3(d). We have found that the optimized

design yields a metalens with diameter D = 8.055 µm, which gives a numerical aperture

of NA = 0.473138. Accordingly, based on this diameter, we computed the power passing

through a circular aperture with this D = 8.055 µm as a reference power to estimate the

actual focusing efficiency of the metalens. The focusing efficiency of the metalens is plotted

in Fig. 3(b) where the associated values are 42%, 49%, and 60% for the blue, green, and red

colors, respectively.

Fig. 3(c) refers to the cut along z direction. Furthermore, the estimated relative focusing

error along z is envisaged. For this first design, the numerical results reveal that a 4%

error is obtained for the green and red colors, however, for the blue one, the relative error

is approximately 13%. This can be inferred from the focusing intensity at the x − z plane

depicted in Figs. 3(e-g). Another alternative approach will be presented below to improve

the performance.

Besides, based on our fabrication facilities, we managed to fabricate the optimized lens

as shown on the SEM image in Fig. 3(h). We remind the reader that the optimization pro-

vides a lens of diameter D = 8.055 µm, further the maximum aspect ratio is approximately

of 10 (ratio between the smallest diameter and the height of the cylinders). Indeed, these

constraints yield a challenging fabrication environment. The fabrication process is given in

the supplementary information section. The fabricated lens has been characterized using

the experimental setup given in Fig. 12 (see Ref.96 for more details). The x-z experimental

intensity maps are depicted in Figs. 3(i-k), where the average relative focusing error is es-

timated as 19% (horizontal white line for the predefined focal length, while the purple line

refers to the actual focal length). The tendency of the focal lengths are in good agreement

with the numerical results, except for the blue light where the tendency is inverted, i.e.,

the calculated focal length is shorter than the expected one (Figs. 3(e)) while it is longer

17



for the measurements (Figs. 3(i)). This can be explained by the fact that the fabrication

imperfections, i.e., deviations from the design diameter of the pillars, have more impact on

the device characteristics for shorter wavelengths. To quantitatively compare the numerical

and experimental results, we estimated the experimental focusing efficiencies of the lens at

the three wavelengths (44, 67% for the blue, 38.65% for the green and 47, 35% for the red

colors, respectively). where the average focusing efficiency is estimated as 43.55%. The

experimental focusing efficiencies have been estimated as the ratio between the power at

the focal plane within an aperture of a diameter defined by the FWHM of the experimental

focusing spot and the in-pinging power within an aperture defined by the diameter of the

lens (see more details in Supplementary Information). The measured and numerical focusing

efficiencies have the same tendency as a function of the wavelength. However, the measured

efficiencies are slightly lower than the numerical ones. This can be attributed to the fabri-

cation imperfections and the losses due to the high diffraction effects from the micro-sized

lens.

It is worth noting that the experimental focal spots are broader than the numerical spots

(see Fig. 13 in the supplementary information section). This is due to the fact that the

experimental and numerical focal spots are determined differently. The numerical focal spot

corresponds to the diffraction limited spot or equivalently point spread function (PSF) of the

lens. It is determined by considering a plane wave (point source at the infinity) as an incident

light beam. However, the experimental focusing spot corresponds to the image of the con-

sidered source in our experiments. Its size is determined by the extent of the diaphragm D2

of the illumination system as depicted in Fig. 12 in the supplementary information section.

In the following, we present an alternative way to enhance the performance of this design

and further diminish the chromatic dispersion and increase the numerical aperture.

In order to further promote the focusing performance of the optimized lens shown in

Fig. 3(d), we propose a supplementary step as illustrated in Fig. 4(a). In this figure, we keep

the first 11 rings obtained from the previous design and append three additional rings to the
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Figure 4: Extended metalens with a larger diameter and a reduced set of parameters. (a):
sketch of the extended diameter lens, where the central part is fixed from previous optimized
design given in Fig. 3(d) as it is represented by the shadow region. We relax the diameter of
the last ring in Fig. 3(d), and add 3 more rings. In total we optimize only 7 parameters; 5
diameters (orange cylinders) and three other parameters for the distances between the outer
rings (black arrows). (b): illustrates the optimization results in the second case. Here we
considered 50 DOEs (blue points) and 150 iterations (black points). The Pareto front is
illustrated by the red points, i.e., the set of non-dominated designs. The red arrow, refers to
the results presented in Fig. 5.
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outer part of the lens. The outermost ring in Fig. 3(d) is relaxed and will be combined with

the additional three rings as shown in Fig. 4(a). The shadow region indicates the optimized

part of the former design. While the diameters of the four highlighted cylinders indicate the

optimization parameters together with the distances between the additional rings symbolized

by the black arrows. Similar to the previous design, all the cylinders in the same ring are

sharing the same diameter. Furthermore, the focal distance is fixed at 7.5 µm as with the

previous design.

The proposed extra rings enlarge the diameter of the lens, hence renders more dispersion

control for the three wavelengths. Accordingly, the numerical aperture increases. Besides,

the computational cost is reduced since only 7 parameters are considered instead of 25 (for

the full lens with the extra rings). The optimization results are given in Fig. 4(b), where

the DOE, optimization iterations, and Pareto front are given in blue, black, and red colors,

respectively.

At this stage, we are interested in obtaining a design where the three objectives are

maximized. Therefore, we chose one of the best middle points along the Pareto front. The

corresponding design yields a lens of diameter D = 10.22µm. This diameter is slightly larger

than the one obtained from the previous design. Moreover, the numerical aperture becomes

0.56 instead of 0.47 for the previous device (the fabricated lens is exhibited in Fig. 5(c)).

Based on this diameter d = 10.22 µm, we numerically estimated the focusing efficiency of

the lens. As illustrated in Fig. 5(a), the computed focusing efficiencies are almost 43%, 41%,

and 47% for the blue, green, and red colors, respectively. To the best of our knowledge, this

is the highest focusing efficiency obtained for RGB colors for a 3D metalens with NA=0.56

(see Tab. 1). Besides, we rely on classical nanopillars that are easy to fabricate instead of

the complex freeform geometries that might bring high efficiency while being more difficult

to fabricate.

Moreover, the cut along z-axis provided in Fig. 5(b) unitedly with the numerical intensity

profiles represented in Figs. 5(d-f) reveal that the chromatic dispersion effect is diminished
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Figure 5: Optimization results for the extended design with 7 optimization parameters,
composed of 15 concentric rings shown in Fig. 4(a). The results corresponds to one of the
best design along the Pareto front (red arrow in Fig. 4(b)), where the three objectives are
maximized simultaneously. The diameter of this lens is 10.22 µm. Moreover, the full set
of parameters are given in Tab. 4 in the supplementary information section. (a): provides
the focusing efficiency of the optimized lens. The efficiency is calculated as the ratio of the
power at the focal plane to the the power passing through an aperture of diameter 10.22 µm.
The three vertical lines refer to the three wavelengths considered during the optimization.
(b): cut along z at the center of the lens for the RGB colors. The vertical line refers to the
target focusing position along z (z = 7.5µm). The fabricated lens is depicted in (c), besides,
the corresponding intensity profiles at the x− z plane is given in (g-i), where the intensity is
measured at λ = 490 nm, λ = 550 nm, and λ = 660 nm for the blue, green, and red colors,
respectively. The numerical focusing intensity for each color are drawn in (d-f).
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compared to the previous lens. In other words, the numerical relative error for the focusing

at a specific position z = 7.5 µm is decreased for the three wavelengths. More precisely, the

relative focusing error for the blue, red colors is 6.1%, while for the green one is 0.5%. This

relative error of 6.1% could be due to the bias introduced from the definition of the output

plane, as we argued above. Interestingly, our experimental results depicted in Figs. 5(g-i)

confirms the decrease of the chromatic dispersion compared to the previous results presented

in Fig. 3 (i-k). The average measured focusing efficiency is approximately 33%. The discrep-

ancy between the measured focusing efficiency and the numerical one could be due to the

fabrication imperfections associated with the challenging fabrication of the 10µm diameter

lens. Generally speaking, the diminishing of the chromatic dispersion, together with the

average focusing efficiency achieved, illustrate the potential of our design based on simple

cylindrical building blocks to maintain high focusing efficiency (relative to the numerical

aperture) and also alleviate the chromatic dispersion issue for the RGB colors.

In Fig. 6, we further demonstrate the versatility of our numerical methodology mutually

with our fabrication abilities. We imitate another design along the PF shown in Fig. 4 (b). In

this special case, we focus solely on optimizing the red color. As it can be seen in Fig. 6 (a),

the focusing efficiency is roughly 67%, while it is dramatically reduced for the other colours.

The enhanced focusing efficiency can be understood from the cut along z-axis drawn in Fig. 6

(b), where only the red colour is focused at the desired focal plane (see also the field maps in

Figs. 6 (d-f)). Thanks to our fabrication platform, the fabricated design presented in Fig. 6

(c), only focuses the red color at the desired focal plane as evidenced in Figs. 6 (g-i) and

the measured focusing efficiency for the red color is ≈ 45% (≈ 26% for the blue and ≈ 22%

for the green as expected from the numerical results). The above results represent another

proof to validate both the numerical and the experimental results obtained.

Indeed, reducing the numerical aperture could increase the focusing efficiency of the lens

as demonstrated in earlier works81 with a numerical aperture below 0.2. However, for a 3D

lens based on cylindrical nanopillars, it is challenging to compensate the chromatic dispersion
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Figure 6: Optimized design for focusing the red color. The diameter of this lens is 10.66 µm
as indicated in. Besides, the full set of parameters are given in Tab. 5. (a): provides the
focusing efficiency of the optimized lens, where it is maximized for λ = 640 (approximately
69%). (b): cut along z at the center of the lens for the RGB colors. The vertical line refers to
the target focusing position along z (z = 7.5 µm), where the red color achieves its maximum
(c): represents the fabricated lens. (d-f): numerical intensity profiles along x − z plane for
the three optimized wavelengths. (g-i): refer to the experiemntal intensity profiles for the
three colors.
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and maintain high power efficiency for a numerical aperture above 0.5. In our future work,

we will extend this work to further increase the numerical aperture by changing either the

material/shape of the building blocks, or even introduce new degrees of freedom to further

control the dispersion.

Conclusion

In this work, we present to the metasurface community a global statistical multiobjective

optimization. In addition to its global feature, this method converges rapidly to the global

set of optimal solutions using an adequate number of iterations, unlike the traditional multi-

objective optimization techniques. The potential of this technique has been demonstrated by

optimizing the RGB beam steering metasurface at the visible regime. Despite the inherent

competing nature of the objectives, our optimization method can provide a single design

based on a realistic configuration with more than 75% of average deflection efficiency with

only 150 iterations (see supplementary information section). These unique features make our

optimization method an ideal candidate for optimizing various multifunctional metasurface

configurations.

We further considered an exciting multiwavelength spherical metalens configuration at

the visible regime. The main objective was to focus the RGB colors at the same focal

plane and maximize the focusing efficiency for the three colors. In this study, we aim at

optimizing spherical metalens with NA > 0.5 using classical cylindrical nanopillars with the

highest possible focusing efficiency.

Unlike the conventional modelling technique, we optimized nearly all the nanoresonators

and considered the strong near field coupling between them. We optimized different lenses

with different numerical apertures. the first design consists of 13 concentric rings that

provide a lens with diameter ≈ 8 µm and a numerical aperture of 0.47 with 55% average

focusing efficiency and 13% focal error. We further increased the performance by adding
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4 supplementary rings. In this particular case, our numerical optimization study yields an

average focusing efficiency of 45% using cylindrical nanopillars with a numerical aperture of

0.56 and diameter ≈ 10 µm. Furthermore, we confirm that the chromatic dispersion issue is

diminished and that the three wavelengths focus at the same position with a relative focusing

error of 6%. We have also benefited from the capabilities of our multiobjective, such that

without additional optimization, one can extract from the Pareto front the designs which

focus only on one of the objectives. In our case, we extracted the best design to focus only

on the red color which yields and focusing efficiency of 60

Furthermore, despite the challenges associated with the fabrication of the micro-diameter

lenses and the high aspect ratio required, we managed to fabricate and characterize ex-

perimentally the three optimized lenses mentioned above. Interestingly, we found a good

agreement between the numerical and the experimental results. First for the RGB designs,

we obtained an average measured focusing efficiency of 43.46% (NA = 0.47) and 33.6%

(NA = 0.56). Besides, we fabricated the design that focuses only on the red color, interest-

ingly, the fabricated lens focuses as well the red color only with 45% (NA = 0.57) focusing

efficiency. The above results validated both the numerical and the experimental findings. To

the best of our knowledge, this is the highest focusing efficiency obtained in such spherical

metalens configuration with NA > 0.5.
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Optimizing of RGB light deflector

As a state of the art illustration, we employ the multiobjective EGO in an attempt to

optimize a beam steering metasurface at three different wavelengths simultaneously. We aim

at designing a highly efficient Red, Green, and Blue (RGB) light deflector based on a realistic

configuration. In order to realize this task, we design a metasurface composed of rectangular

Gallium Nitride (GaN) on top of a semi-infinite Al2O3 substrate (see red and green regions in

Fig. 7(a), respectively). We consider five rectangular nanopillars in a supercell, with a period

corresponding to 1500 nm along y direction, while along x direction, we chose a period of

190 nm to limit the diffraction in the substrate, especially for short wavelengths. The height

of the rectangular pillars is fixed as h = 1000 nm. In this study, a normal incident plane-

wave with electric field polarized along y axis is injected from the substrate. The width of

each rectangular nanopillar along x is kept fixed during the optimization together with the

distance between any two neighboring ridges as 100 nm and 90 nm, respectively. In order to

control the phase dispersion in the y − z plane, we vary the thicknesses of the rectangular

nanopillars along y (represented by the white arrows in Fig. 7(a)). It is worth mentioning

that the minimum width change is considered as 90 nm, which corresponds to minimum

feature size for the GaN fabrication with height= 1000 nm.

The main objective is to maximize the light deflection efficiency for the first order mode

(in the y-z plane) for the RGB colors. We define three different intervals for each color. For

the blue color, we aim at optimizing the average efficiency (ηavg) in the wavelength range

(450−480) nm. For the green color, we consider the wavelength window (520−550) nm, and

finally for the red color, we pick the wavelength interval (620− 650) nm. In other words, in
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Figure 7: Optimization results for the RGB light deflector. (a): geometry under consid-
eration, composed of five rectangular nanopillars (red regions) of GaN placed on top of a
semi-infinite substrate made of Al2O3 (green region). The height of the pillars is fixed as
h = 1000 nm, their widths along x are also fixed as 100 nm. The period of the super-cell
along y is 1500 nm, while along x is associated to 190 nm. The optimization parameters are
represented by the white arrows (widths of the pillars along y direction). (b) indicates the
optimization results, where the blue points refer to the 60 DOEs. The black points are for
the optimization iterations (90 points), while the red circles indicate the Pareto front. A-D
letters refer to 4 designs along the Pareto front that will are considered in Fig. 8.

our optimization framework (minimization problem), we consider five parameters (width of

each pillar along y) and three objectives (1-ηavg(Blue), 1− ηavg(Green), and 1− ηavg(Red)).

As we have explained above, the primary step in the EGO framework is to construct the

design of experiments (DOEs) database. In this particular example, we have considered 60

elements in the DOE database (the corresponding objective function values are depicted as

blue points in Fig. 7(b)). Based on this database, three GP models are generated for each

objective accompanied by an expected hypervolume criterion to identify the next design (see

Fig. 1 and its associated text). The selected design (given by specific values of the set of

parameters) is then simulated with our DGTD fullwave solver. Then, new objective values

are determined and used to enhance the three GP models. These steps are repeated till an

adequately small EHI is reached.
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The performed optimization iterations are represented by the black points in Fig. 7(b))

while the red points identify the set of non-dominated points in the objective space (Pareto

front). The most striking result that emerges from these data is that 90 optimization it-

erations (black points) are enough to capture the Pareto front. The discussion about the

convergence of the three metamodels is elaborated below (see Fig. 9 and its associated text).

This striking peculiarity of the multiobjective EGO method makes it a viable alternative to

the classical heuristic evolutionary algorithms where a considerable number of iterations are

required to approximate the Pareto front.46

463 nm

540 nm

()
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Figure 8: (a-b): results for the best middle point along the Pareto front shown in Fig. 7(b).
(a): the deflection efficiency for the first order mode is represented by the gray curve as a
function of the wavelength. The blue, green, and red parts on the gray curve denote the
optimization interval defined for each color. The vertical color lines, refer to the wavelengths
where the efficiencies attain their maximum in each interval. (b) <e(Ey) at the maximum
efficiency in each interval. (c-e), optimization results for various designs along the Pareto
front shown in Fig. 7(b). (c): refers to the optimized design for the red color, (d), for
the green and red colors, and finally (e) for the blue and green colors. The corresponding
optimization parameters are given in Tab. 2.

It is worth highlighting that the most beneficial attribute of any multiobjective opti-

mization is the construction of the Pareto front, which materializes the trade-off between the
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competing objectives. In Fig. 8, we present different optimized designs. Figs. 8(a-b) refers to

a middle point along the Pareto front (point A in Fig. 7(b)) where all the objectives are op-

timized simultaneously; we refer to this design as the RGB design (the associated optimized

parameters are given in the second column in Tab. 2). In Fig. 8(a), we plot the deflection

efficiency of the first order mode for the RGB design. As it can be seen, the mean deflection

efficiencies for the three regions are enhanced concurrently, and the average efficiency reaches

65.5%, 80.0%, and 66.5% for blue, green, and red colors, respectively. The vertical lines indi-

cate the wavelengths where the maximum efficiency is achieved in each interval, namely 463

nm, 538 nm, and 620 nm, for blue, green, and red colors, respectively. The corresponding

field profiles are plotted in Fig. 8(b) where the light bending is adequately presented for the

three wavelengths with 72%, 82%, and 69% deflection efficiencies, respectively. For the red

color region, one might decide to choose the efficiency at λ = 600 nm that corresponds to

75%, which is still in the red region. The most notable observation that emerges from the

field profile comparison in Fig. 8(b) is the ability of the optimized nanoridges to treat the

different longitudinal modes for the considered wavelengths. This peculiar treatment results

in an average effective mode index profile for each wavelength to maximize the deflection

efficiency for three wavelengths at the same time. Remarkably, this correlation is related to

strong near field interactions between the elements, as it is depicted in Fig. 8(b). Crucially,

these interactions are not identical across the three wavelengths and they depend on the

number of longitudinal modes that propagate in each element for each wavelength. In other

words, the optimization identifies the set of parameters that magnify the three objectives

taking into account the strong near field coupling between the ridges. This appealing re-

sults cannot be achieved using the classical phase synthesizing approach where each ridge is

placed based on its phase and transmission response for a given wavelength. Besides, these

results further strengthened our confidence in our numerical methodology by combining a

high-order fullwave solver with an efficient global optimization method.

In Figs. 8(c-e), we present different optimized designs along the Pareto front (points C-
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Table 2: Optimization parameters for a four designs presented in Fig. 8(a) and Figs. 8(c-
e), for the RGB, Red, Green-Red, and Blue-Green colors, respectively. The height of the
nanoridges is fixed as h = 1000 nm, and the widths along x-direction are fixed as 100 nm.
The distances between ridges are fixed as 90 nm. Besides, the period along x is given as 190
nm, while along y is 1500 nm.

Width (nm) RGB Red Green-Red Blue-Green
w1 127.96 249.51 129.42 236.92
w2 233.19 216.14 246.70 189.76
w3 177.71 169.21 179.26 162.52
w4 158.48 113.48 145.79 148.30
w5 142.72 127.78 142.15 136.52

D in Fig. 7(b), respectively) to further extend the discussion and provide the reader with

more insights about the usefulness of the multiobjective optimization. Figs. 8(c-e), refer to

optimized designs where we focus on the red color, both the green and red colors, and finally

both the blue and green colors, respectively. The corresponding optimization parameters

are given in Tab. 2. These results emphasize the significant trade-off between the three

objectives. We note that more than 80% of deflection efficiency can be achieved if one

focuses only on a single objective as it is the case in Fig. 8(c), while the efficiency drops

when two competing objectives are considered, as expected (see Figs. 8(d-e)). Nevertheless,

thanks to our global multiobjective EGO method, an adequate balance between the three

objectives is obtained as illustrated in Figs. 8(a-b). To the best of our knowledge, these

results demonstrate the highest RGB light deflector efficiency based on realistic metasurface

configuration.

Convergence of the RGB deflector design

In Fig. 9 (a-c), we study the leave-one-out predictions versus true values for each GP models,

one for each objective, respectively. In these figures, each point corresponds to the prediction

values from each metamodels as if the point was removed from the training set, compared

to the exact value. In other words, for all the points along the line (for each sub figure),

the predicted values deduced by the metamodels are equal to the true values. Obviously, we
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are more interested in low values (minimization problem), where the fitting deduced by the

three models are in a good agreement with the exact values. Besides (data not shown), the

EHI for the last 30 iterations remains of the order of 10−2 which is another indication that

90 iterations are enough to approximate the Pareto front as given in Fig. 8(b).
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Figure 9: Illustration of the optimization convergence for RGB light deflector results pre-
sented in Fig. 7(b)

Additional information for the metalens

In this section, we provide additional data to complement our numerical results presented in

the main manuscript. In Fig. 10(a) we provide additional information about the symmetry

properties. Besides, in Fig. 10(a) we demonstrate the convergence of one of the optimized

lenses. In Fig. 11 we discuss the optimization convergence of the first lens presented in

Fig. 3. The associated parameters can be found in Tab. 3. Tab. 4 refers to the optimization

parameters for the results presented in Fig. 5, while, the parameters for the design shown

in Fig. 6 are shown in Tab. 5, where we focus only on the λ = 640 nm. Besides, we discuss

further information for the fabrication procedure and the experimental characterization of

the fabricated lenses.

Fabrication process

The metalenses were made of GaN pillars with 1 µm in height. They have been revealed by

patterning a 1 µm thick GaN layer grown on a c-plan sapphire substrate using a Molecular

Beam Epitaxy. Conventional electron beam lithography (EBL) was used to expose a double

layer of ≈ 200 nm PMMA resist (495A4) spin-coated on the GaN thin-film and then baked

on a hot plate at 125 °C. E-beam resist exposure was then performed at 20 keV (using a
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Figure 10: (a): 3D Schematic view for one quarter of 3D metalens under investigation
(see Fig. 2 for the x − y view). The red cylinders are made of GaN and the substrate is
composed of Al2O3. The optimized cylinders are highlighted in white circles along with the
distance between the outer rings (white arrows). We consider a normally incident plane
wave from the substrate with electric field polarized along x-axis. Therefore, in order to
mimic the full geometry, we consider a perfect electric conducting (PEC) condition on the
right most faces (where the electric field is oscillating) and perfect magnetic conducting
(PMC) along the front face. During the optimization iterations, we consider a mesh of size
corresponding to 5 points per wavelength inside the cylinders. In general, the number of cells
is almost 800,000. In the framework of our DGTD fullwave solver, we consider a third order
polynomial P3 interpolation to approximate the electromagnetic fields, which is enough to
get accurate solutions during all the optimization iterations. The justification is shown in
(b) where the agreement between the results obtained for P3 and P4 interpolations (for the
results presented in Fig. 3) is fully demonstrated. Each iteration takes almost 1 h using
720 cores. The numerical experiments presented in this paper were carried out using the
PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université
de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine.
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Figure 11: Illustration of the optimization convergence for the results presented in Fig. 3.
Here we study the leave-one-out predictions versus true values for each GP models. (a) for
first objective, (b) for the second objective, and (c) for the third objective. In these figures,
each point corresponds to the prediction, if the point was removed from the training set,
compared to the exact value. In other words, for all the points along the line, the predicted
values deduced by the metamodels are equal to the true values. A subtlety is that all values
are still used to estimate the parameters of the GP models and not removed. Hence they do
influence the results in an indirect way. Plateaus around one at the top (especially for the
first two objectives) could indicate that a large part of the design space has this value (see
blue points in Fig. 3(a)). However, flat regions are hard to model for GPs, hence worsening
prediction. Fortunately here we are more interested in low values (maximize the the efficiency
in this minimization problem), that are better fitted for the three models.

Table 3: Optimization parameters for the metalens presented in Fig. 3 with diameter D =
8.055 µm and NA = 0.473138. The first two columns refer to the number of rings (first)
and the associated number of cylinders (second). The third column gives the diameter of
the cylinders in each ring. The fourth column indicates the distances between rings (for
instance, Ring2,1 refers to the distance between the second and the first rings). Their values
are given in the last column.

Ring cylinders Radius (nm) Distance indicators Distance values in nm
Central 1 110.000 - -
1 7 100.000 Ring1,cent 100.000
2 13 100.000 Ring2,1 100.000
3 15 100.000 Ring3,2 100.000
4 21 94.6262 Ring4,3 100.000
5 27 91.3074 Ring5,4 100.000
6 33 85.7489 Ring6,5 100.000
7 37 79.9027 Ring7,6 188.312
8 41 70.8879 Ring8,7 191.255
9 45 62.1650 Ring9,8 216.618
10 49 45.0000 Ring10,9 250.000
11 53 100.000 Ring11,10 120.437
12 65 69.5238 Ring12,11 192.588
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Table 4: Optimization parameters for the extended metalens presented in Fig. 5 with diam-
eter D = 10.22 µm and NA = 0.56. The first 11 rows are identical to the the ones in Tab. 3
(the meaning of the columns remains the same). The green color refers to the optimized
rings in the extended design.

Ring cylinders Radius (nm) Distance indicators Distance values in nm
Central 1 110.000 - -
1 7 100.000 Ring1,cent 100.000
2 13 100.000 Ring2,1 100.000
3 15 100.000 Ring3,2 100.000
4 21 94.6262 Ring4,3 100.000
5 27 91.3074 Ring5,4 100.000
6 33 85.7489 Ring6,5 100.000
7 37 79.9027 Ring7,6 188.312
8 41 70.8879 Ring8,7 191.255
9 45 62.1650 Ring9,8 216.618
10 49 45.0000 Ring10,9 250.000
11 53 100.000 Ring11,10 120.437
12 65 68.0160 Ring12,11 192.588
13 105 51.5016 Ring13,12 250.000
14 105 90.5210 Ring14,13 228.898
15 105 61.0380 Ring15,14 111.765

Table 5: Optimization parameters for the lens given in Fig. 6 with diameter D = 10.66 µm
and NA = 0.5755. The first 11 rows are identical to the the ones in Tab. 3 (the meaning of
the columns remains the same). The green color refers to the optimized rings in the extended
design.

Ring cylinders Radius (nm) Distance indicators Distance values in nm
Central 1 110.000 - -
1 7 100.000 Ring1,cent 100.000
2 13 100.000 Ring2,1 100.000
3 15 100.000 Ring3,2 100.000
4 21 94.6262 Ring4,3 100.000
5 27 91.3074 Ring5,4 100.000
6 33 85.7489 Ring6,5 100.000
7 37 79.9027 Ring7,6 188.312
8 41 70.8879 Ring8,7 191.255
9 45 62.1650 Ring9,8 216.618
10 49 45.0000 Ring10,9 250.000
11 53 100.000 Ring11,10 120.437
12 65 87.209 Ring12,11 192.588
13 105 45.000 Ring13,12 250.000
14 105 100.000 Ring14,13 250.000
15 105 88.443 Ring15,14 202.365
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Raith ElphyPlus, Zeiss Supra 40), followed by PMMA development using a 3:1 IPA:MIBK

solution. After development, a 50 nm layer of Ni was deposited using e-beam evaporation

to perform a metallic film liftoff by immersing the sample into acetone solution for 2 h.

The resulting Ni pattern was utilized as a hard mask during the reactive ion etching (RIE,

Oxford system with a plasma composed of Cl2, CH4, Ar gases, with flows of 13, 2, and

2 sccm, respectively) to transfer the pattern in the GaN layer. Finally, the Ni hard mask

on the top of GaN nanopillars was removed using chemical etching with a 1:2 HCl/HNO3

solution.

Characterization setup

To characterize the fabricated metalenses, we used a home-made inverted optical microscope

as depicted in fig. 12. The illumination part consists of LEDs centred at three different

wavelengths (490, 550 and 660 nm). The LEDs are positioned in Köhler optical scheme

in order to illuminate the sample with controlled spot size (diaphragm D1) and numerical

aperture (Diaphragm D2). The light passing through the metalens sample is collected by a

microscope objective positioned on moving stage to detect different planes along the optical

axis Oz (perform z-scan). It is worth-noting that in this configuration the focal plane of

the metalens is conjugated with the plane of the diaphragm D2. The light is then sent to

the tube lens and finally to the wavefront analyzer. The latter is capable of measuring both

intensity and phase maps of incoming light (see ref [S.Khadir et al. ACS Photonics 2021]

for more information)

Cross section of the focusing spots
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metalens sample is collected by a microscope objective lens and sent to the QLSI wavefront
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light passing through the metalens
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at the focal distance F = 7.5 µm, while the second one for the cut along z axis at the center
of the lens. See the main text for more details.
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