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Lanteri†
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Abstract

Modelling of multi-wavelength metasurfaces relies on adjusting the phase of indi-

vidual nanoresonators at several wavelengths.The traditional procedure neglects the

near-field coupling between the nanoresonators, which dramatically reduces the over-

all diffraction efficiency, bandwidth, numerical aperture and device diameter.Another

alternative design strategy is to combine a numerical optimization technique with full-

wave simulations to mitigate this problem and optimize the entire metasurface at once.

Here, we present a global multiobjective optimization technique that utilizes statistical

learning method to optimize RGB spherical metalenses at the visible wavelengths. The

optimization procedure, coupled to a high-order full-wave solver, accounts for the near

field coupling between the resonators. High numerical aperture RGB lenses(NA= 0.47

and NA= 0.56) of 8µm and 10µm diameters are optimized with numerical average
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focusing efficiencies of 55% and 45%, with an average focusing error smaller than 6%

for the RGB colors. The fabricated and experimentally characterized devices present

44.16% and 31.5% respective efficiencies. The reported performances represent the

highest focusing efficiencies for high NA > 0.5 RGB metalenses obtained so far. The

integration of multi-wavelength metasurfaces in portable and wearable electronic de-

vices requires high performances to offer a variety of applications ranging from classical

imaging to virtual and augmented reality.

Introduction

Metasurfaces, composed of arrangement of subwavelength resonators with different geomet-

rical parameters, are attracting widespread interest notably due to their distinctiveness in

controlling light properties in very short propagation distances .1–8 Their integration in novel

technologies led to exceptional and peculiar applications9 in relation to laser wavefront engi-

neering ,10 sub-diffraction optical microscopy ,11 nonlinear optics,12 and quantum optics,13

to cite a few examples.

Precise engineering of subwavelength patterning is compulsory in enhancing the perfor-

mance of metasurfaces. Several innovative inverse design methodologies have recently been

exploited to address this issue, but only considering one metasurface functionality .14–17 To-

day, we are witnessing a noteworthy demand in designing flat optics devices with a wide

variety of responses to realize multifunctional metasurfaces. This makes the exploitation of

rigorous inverse design strategies for multiple functionalities mandatory for the next meta-

surface generation.

In most cases, achieving the best fit in one objective or functionality degrades the perfor-

mance of the other objectives. Multiobjective optimization capable of optimizing a problem

with multiple competing objectives in a large parameter space is needed, but it is not a

straightforward task. Two major approaches have been proposed to address this problem.

The first strategy essentially relies on transforming the multiobjective optimization prob-
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lem into a single objective one. This is realized by merging different objectives via a classical

weighted sum technique.18–20 In most cases, the single objective problem has been tackled

utilising classical evolutionary techniques.21–24 This straightforward implementation of the

weighted sum procedure is often impractical, especially for problems that contain several

competing objectives requiring trade-off consideration.

The second methodology relies on resolving directly the multiobjective problem by adopt-

ing a dedicated numerical optimization method. This approach finds optimal solution for

the given set of objectives with an adapted definition of optimality. Multiobjective opti-

mization aims at obtaining the set of solutions which satisfy the best trade-offs, or most

suitable compromise, between the specified objectives. This set of optimal solutions define a

surface in the parameter space, known as the Pareto front (PF), or the set of non-dominated

solutions in the objective space. A design x is a Pareto optimal if there is no better design

for the set of objectives. One common approach is to rely on on the development of Multiob-

jective Optimization Evolutionary Algorithms (MOEAs).25–31 MOEAS are able to produce

the global set of optimal solutions in the form of the Pareto front exploring the parameter

space using stochastic search to converge to the global solution. They have been inspired by

biological evolutionary mechanisms, like mutation, selection, and crossover to broaden the

search scheme during the optimization, improving the possibilities to converge to the global

Pareto front.

There exists a wide variety of MOEAs able to deal with large parameter space both

continuous and discrete parametrization. MOEAs include Genetic Algorithms (GAs),32–34

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES),35 and Particle Swarm Op-

timization (PSO).36–39 MOAEs have been extensively employed to optimize multifunctional

electromagnetic problems in various disciplines.40–43 In the field of metasurfaces, multiob-

jective GAs have been used to optimize wavelength selective and absorbing metasurface de-

signs.44 Advanced MOEAs have been developed for optimizing colour pixels metasurface45

and multi-resonant nanoridges for metasurface applications.46 Recently, a MOEA relying on

3



BORG library30 has been exploited for generating a library of optimized freeform shapes to

synthesize metasurfaces with multiple targets.47,48

Despite recent developments in MOEAs, there is still considerable concern about their

practical use for realistic applications. Although MOEAs are capable of converging to the

global set of solutions, MOEAs are computationally demanding and subject to high overheads

iterations. This major limitation makes them impractical when combined with a costly three-

dimensional electromagnetic solver.

Recently, deep learning techniques focusing on multiobjective electromagnetic problems

aare starting to impact on field of nanophotonics and metasurfaces.15,17,49–55 Deep learning

substitutes the expensive simulations by a trained network able to predict the relationship

between the set of parameters and the corresponding electromagnetic response. However,

similarly as MOEAs, deep learning techniques require huge amount of simulations to train

the network reliably.56,57 Novel approaches, known as generative models,57–59 have been

adopted to accelerate the training process and have been utilized to optimize multifunc-

tional nanophotonic devices.60–62 Despite this intense research effort, there is no yet a gen-

eral relation defining the required number of simulations to train the network according to

the number of objectives/parameters, indicating that multiple objective optimizations with

training networks still require a considerable amount of resources. Besides, deep network is

not inherently an optimization tool and suffers from convergence issues, notably in the case

of competing objectives.

We adapted recently an alternative and efficient statistical learning optimization method,

known as Efficient Global Optimization (EGO),63–65 for the design of single objective meta-

surfaces with a moderate budget of full-wave solver calls .66 This method utilizes a surrogate

model to replace the high fidelity electromagnetic evaluation process with a simpler and

cheaper model for the prediction of the new designs during the optimization process. EGO

converges to the global solution with fewer iterations compared to classical global evolution-

ary strategies, making EGO an attractive optimization method for complex electromagnetic
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designs.

Here, we present a multiobjective optimization that relies on statistical learning. We

demonstrate that this method converges rapidly to the global set of optimal solutions, using a

moderate number of solver calls. We first discuss the main feature of the multiobjective EGO

method, by providing a simple and clear illustration of its development. We then apply the

multiobjective EGO to optimize the deflection efficiency of a Red, Green, and Blue (RGB)

colors metasurface beam deflector. We show that despite the sophisticated competition

between the three objectives, our optimization method is able to provide a single design

based on a realistic configuration with more than 75% of average deflection efficiency for the

three wavelengths. These results are depicted in the Supplementary information section.We

then extend our analysis towards the optimization of a 3D RGB achromatic metalenses with

moderate numerical apertures. Our numerical optimization study yields an average focusing

efficiency of 45% using cylindrical nanopillars for a 3D metalens with a numerical aperture

of 0.56 and diameter ≈ 10 µm. In addition, we confirm that the chromatic dispersion issue is

diminished, and that the three wavelengths focus at the same position with a relative focusing

error of 6%. We experimentally confirmed the performances of the optimized designs, yieding

a good agreement between numerical and experimental results.

Multiobjective EGO

To deal with expensive problems, it is common to resort to a surrogate model of the func-

tion of interest. The surrogate model provides a quick estimation to approximate the true

function of interest to select the best candidates for the next simulation. Other alternatives

such as support vector machines or neural networks, Gaussian process (GP) regression, also

known as kriging, provides a probabilistic model. These modeling techniques are able to

predict the value at n-evaluated locations while giving an estimate of the uncertainty about

the prediction. It is crucial in optimization to balance exploration of poorly known regions
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of the input space (large predictive variance) with the exploitation of promising regions

(low predictive mean). For more details about Bayesian optimization, we refer to Refs.67,68

The interested readers can also refer to our previous works16,17 where we describe the sin-

gle objective EGO steps using simplified problems. In the following, we provide a simple

illustration of the multiobjective EGO method which we are utilizing in the manuscript for

multiwavelength metasurface optimization.

EGO method requires two phases: the first one, called the Design Of Experiment (DOE),

aims at generating an initial database of designs which are evaluated using an electromagnetic

solver to calculate all corresponding objective values. In the second phase, using the data

obtained from the DOE, a Gaussian Process (GP) model is constructed for each objective,

using an internal optimization process that fits the set of GP models to the DOE. The

generated GP models for each objective provide a prediction of the objective values along

with the parameter space. After achieving GP models for each objective, we determine its

mean and the variance. The former corresponds to the expected values of the objectives

at the given point in the design space, while the latter provides information about the

uncertainty on these objective values, both providing the statistical information of the GP

models. A statistical merit function is then established to identify which design, i.e. which

set of parameters, should be tested in the next iteration to better approach the Pareto

front. In our case, we consider the common criterion known as the Expected Hypervolume

Improvement (EHI).69

The principle of the multiobjective optimization based on EGO using EHI selection cri-

terion is described in Fig. 1. We consider here one parameter X to optimize, and we aim at

minimizing two distinct objectives. We assume 6 DOEs given by the blue points in Figs. 1(a-

b) together with the associated GP models (black curves). The red points in Fig. 1(c)), refer

to non-dominated solutions (PF). Using GP models, we obtain information about the mean

(value of the objective) and the uncertainty (variance) at each point in the design/objective

space. The green and the cyan points indicate the predictive means (predictive values of the
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Figure 1: Illustration of the multiobjective optimization context and the expected hypervol-
ume improvement (EHI) criterion.69,70 (a-b), two independent metamodels for the first and
the second objective, respectively. The blue points refer to the DOEs and the grey curves
represent the variance of each model. (c): objective space where the red points represent
the existing non-dominated designs on the Pareto front(PF). The orange region illustrates
the current hypervolume (region between the current PF and a reference point). Dark green
and cyan points refer to the predictive mean for two new designs X1 and X2, respectively.
Shadow regions indicate the expected hypervolume improvement from X1 and X2.
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two objectives) for two novel designs X1 and X2, respectively. At this step, we are interested

in choosing the design parameters to simulate next to converge faster to the exact Pareto

front. We seek at computing the expectation of the hypervolume improvements (with a

closed-form expression71) added to the current Pareto front (red points) from each Gaussian

distribution around X1 and X2. One can see that the design X1 is expected to increase the

current hypervolume compared to the design X2 as illustrated by the green and cyan shadow

regions. We refer to Refs.,70,72 for more details about the EHI selection criterion.

Considering our application metasurface context, we extract the parameter values cor-

responding to the maximized EHI in the parameter space. The corresponding design will

be simulated using a fullwave electromagnetic solver. After that, the database is updated

accounting for this new observation (construction of new GP models based on the updated

database). This process is repeated until a predefined convergence criterion is reached, or

when the EHI is sufficiently small. This specific statistical learning criterion makes our

global optimization solver converges rapidly to the exact set of solutions. Besides, this

feature demonstrates that EGO outperforms all the global evolutionary multi-objective op-

timizations and make it an ideal platform for time-consuming multi-functional nanoscale

devices with competing objectives. In practice, we use the GPareto73,74 R package to con-

duct multi-objective optimization.

We perform multiwavelength metasurface global optimization by coupling the above men-

tioned multi-objective EGO with a high-order fullwave electromagnetic solver (Discontinuous

Galerkin Time-Domain, DGTD).75 DGTD can be viewed as a mixture of a classical (contin-

uous) Finite Element Time-Domain (FETD) and the Finite Volume Time-Domain (FVTD)

method, which turns out to be well adapted for the simulation of nanoscale light-matter inter-

action problems.76,77 The choice of time domain solver is fully justified for multi-wavelength

metasurface designs, as all objective values (device performance in a wavelength range) are

obtained with a single simulation run. Accounting for the full metasurface structure or ele-

mentary super cell unit, the solver is assessing near field coupling between the neighbouring
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elements, which is a fundamental factor in designing high efficient metasurfaces .16,78 Finally,

due to the adaptability of our high-order DGTD solver in handling large-scale problems, the

number of mesh cells is considerably reduced compared to other time-domain methods like

the Finite-Difference Time-Domain (FDTD).

To perfect our optimization procedure for real case studies, we start optimizing a RGB

beam steering metasurface. The results are shown in the supplementary information section.

We then focus on large-scale RGB metalenses of pratical interest for imaging, able to focus

light on RGB pixel sensors.

Results and discussion

3D large-scale RGB metalens

In this section, we employ our methodology to the the design of a 3D achromatic metalens

with high numerical aperture. Conventional approach relies on addressing phase profile to

ensure focusing at a given fixed position F , according to:

φ(ω; y, y) = −ω
c

(√
x2 + y2 + F 2 − F

)
. (1)

Here, ω is the angular frequency, x, y represent the position of each individual element,

and c is the speed of light. Clearly, Eq. 1, is a frequency-dependent equation. To ensure

high performance broadband focusing at a given fixed focal distance F , one has to control

properly the chromatic dispersion of each scattering elements. The principal shortcoming of

the classical synthesizing technique is the fact that phase dispersion is very sensitive to near

field coupling, which could seriously degrade the focusing efficiency. Numerous 3D broadband

lenses have been optimized using the phase dispersion compensation procedure,79–83 and it

is noticeable that the overall efficiency drops dramatically for lenses with NA > 0.5, i.e.

in regime for which the required spatial phase distribution change rapidly thus introducing
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strong difference in geometry between neighboring structures.

Optimizing the full metalens is another alternative manner to enhance the performance.

This approach requires both a rigorous fullwave solver to account for the near field coupling

and an efficient optimization algorithm. In the 3D case, few works have been published

lately using freeform shapes optimization,84–86 yielding efficient devices but with sophisti-

cated patterns that are difficult to manufacture. Other computational frameworks relying

on gradient based architecture have been proposed in Refs.87–89 but they often do not reach

the global designs.

It is worth mentioning that due to the simulation cost, optimization of full-metalenses

have mostly been considered for 2D metalenses (cylindrical lens) ,84,85,89–93 considering dif-

ferent optimization architectures and various numerical apertures. In the present work, we

focus only on 3D spherical designs where the focusing is maintained along the three spatial

dimensions at the visible regime.

Our work is distinct from what has been recently reported in the literature, where the

metalens is either optimized via the synthesizing procedure or optimized based on freeform

shapes building-blocks or with gradient-based strategies. First, we consider cylindrical

shaped building-blocks which are easy to fabricate, and we take into account the fabrication

constraints (achievable aspect ratio of the cylinder) which are usually hard to satisfy for

most freeform optimized lenses. Second, we optimize almost all the meta-atoms and account

for the strong near field coupling (optimizing as well the distances between nanostructures).

Finally, we rely on a rigorous methodology by combining a global optimization method with

a high-order DGTD solver to converge to the global solution, treating the large-scale problem

with a moderate number of degrees of freedom.

In Tab. 1, we summarize results of recent works dealing with 3D achromatic metalens

design (including our current work). For more details about the fundamental limitations of

achromatic metalenses, we refer to Refs.94,95

We aim at optimizing a 3D metalens with NA between 0.45 and 0.6 that focus RGB

10



Table 1: Comparison of 3D achromatic spherical metalens designs. Here (a) refers to the
experimental results, while (b) is for the numerical simulation results.

NA Diameter (µm) Building blocks Bandwidth Average focusing efficiency

0.12 20.0 Fishnet 640-1200 61(a)%82

0.2 26.6 Anisotropic unit cell 460-700 30(a)%96

0.25 7.5 Freeform 480,650,850 63(b)%84

0.27 20.0 Hybrid elements 1000-1800 60(a)%83

0.26 6.0 Cylinders 400-700 60(b)%93

0.47 8.056 Cylinders 480,550,640 55(b)% & 44.16(a)% (this work)
0.56 10.22 Cylinders 480,550,640 45(b)% & 31.5(a)% (this work)

colors at the same focal plane with the maximum achievable efficiencies, seeking for the most

suitable compromise between chromatic dispersion and efficiency, as depicted in Fig. 2(a)).

Our 3D metalens is composed of concentric rings of cylindrical nanopillars of GaN as

depicted in Fig. 2(b). The height of the cylinders is fixed as 1000 nm. For the first design,

we consider 12 concentric rings (apart from the central cylinder), in which the number of

the cylinders in each ring (fixed during the optimization) increases when moving towards the

outer rings. In general, we have roughly 407 cylinders in the whole metalens. The distribution

of cylinders in each ring is summarized in Tab. 3 in the supplementary information.

To reduce both the computational cost and the number of optimization parameters, we

rely on the symmetry properties of the 3D lens and consider only one-quarter of the structure

as shown in Fig. 2(c) (a 3D view is presented in Fig. 9(a) in the supplementary information

together with some details about the symmetry properties). Additionally, we assume that

the cylinders in each individual ring share the same diameter to optimize only one row

of cylinders along the radial direction and the distances between the rings, as indicated

in Fig. 2(c) by the yellow cylinders and the black arrows, respectively. We also fixed the

diameters of the cylinders in the first three rings together with the distances between the

first seven rings. This is an admissible assumption since the relative phase profile (see Eg.1))

evolves slowly at the center Hence, one can arrange the distances between them to the

minimum limit (in our case we choose 100 nm is the minimum feature size for the distance

between rings). Moreover, the centre cylinder has a fixed diameter of 220 nm (based on our
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Figure 2: (a): schematic view of the 3D achromatic metalens in the x − z plane. The
metalens aims at focusing the three colors at the same focal distance F . The diameter of
the metasurface is D and the thickness is fixed as h = 1000 nm. (b-c): x − y plane for the
3D metalens under investigation, (b) for the whole metalens, and (c) for one-quarter of the
geometry (due to the symmetry property) as illustrated by the shadow region in (b). The
metalens consists of concentric rings of cylindrical GaN nanopillars (red region) placed on top
of semi-infinite Al2O3 of dimension 10 µm × 10 µm, which is fixed during the optimization.
The number of cylinders in each ring is given in the first two columns in Tab. 3. The 16
optimization parameters are depicted in (c), 10 diameters represented by the yellow cylinders
and 6 parameters for the distances between the outer rings (black arrows).

former phase response calculations,16 this value is enough to give 2π phase). In addition,

the cylinders in the three sequential rings are assumed to have fixed diameters as 200 nm

to ensure slow phase variation. In summary, in this configuration (Fig. 2(c)), we optimize

only 16 parameters: 10 diameters represented by the yellow cylinders (vary between 90 nm

and 200 nm) and 6 distances between the outer rings indicated by the black arrows (vary

between 100 nm and 250 nm accordingly with nanofabrication capabilities).

Note that with our parametrization, the diameter of the lens is slightly varying based

on the position of the last ring, indicating that the NA is different for all 3 wavelengths

during the optimization. For all 3 wavelengths we target a fixed focal distance F during

all the iterations of 7.5 µm. For this first design, we are maximizing the power at the focal

plane (z = 7.5 µm) for the blue color at λ = 480 nm, green color at λ = 550 nm, and

for the red color at λ = 640 nm. For normalization of the focusing efficiency during the

optimization process, we calculate the power at the focal plane to the power passing through
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Figure 3: (a): optimization results for the first metalens design with 16 optimization param-
eters, composed of 12 concentric rings as shown in Fig. 3(d). The blue points refer to the 90
designs in the DOE database, the black ones indicate the optimization iterations. The red
points represent the Pareto front (see the text for more details). The diameter of the chosen
lens is targeting around 8 µm (the associated parameters are given in Tab 3). (b) We chose
one of the best designs along the Pareto front (red arrow in (a)), where the three objectives
are maximized simultaneously and extract the numerical focusing efficiency as a function
of the wavelength. The efficiency is calculated as the ratio of the power at the focal plane
to the power passing through an aperture of diameter 8.055 µm (diameter of the optimized
lens). The three white vertical lines refer to the three wavelengths considered during the
optimization. The numerical convergence is studied in Fig. 9(b). (c): cut along z at the
center of the lens for the RGB colors. The vertical line refers to the target focusing position
F. (d): indicate the x-y profile of the optimized design. (e-g): numerical intensity profiles
at the x-z plane. (h): Scanning electron micrographs (SEM) of the fabricated lens and (i-k)
illustrate the experimental focusing intensity at the x-z. The intensity is measured using
closest available LED sources emitting at λ = 490 nm, λ = 550 nm, and λ = 660 nm for the
blue, green, and red colors, respectively.
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a circular aperture of diameter 10 µm (fixed during the optimization process). In our case,

the focusing efficiency is estimated as the ratio between the power in the focal plane (circle

or radius 800 nm) divided by the power passing through a circular aperture with diameter

D. After optimization, we correct diameter of the optimized design and we calculate the

exact focusing efficiency and compute the actual numerical aperture. It is worth mentioning

that the diameter of the focal plane is fixed for the three wavelengths to be three times the

average of the theoretical full width at half maximum (FWHM) of the three wavelengths.

This might introduce small bias for the focal distance, however, as we shall see below, the

overall bias is minimal. Based on the above procedure and the given fixed focal distance

F = 7.5 µm, the NA is varying roughly between 0.32 and 0.6.

In Fig. 3(a), we present the optimization results for the first lens with 12 concentric rings.

The normalized power is denoted as Pnorm. We are considering a minimization problem,

such that the main objectives are to minimize 1− Pnorm for λ = 480 nm, λ = 550 nm, and

λ = 640 nm. In this particular example, we optimize 16 parameters for satisfying 3 objectives,

considering a DOE database with 90 elements (blue points) for the initial learning process.

These points are then used to construct 3 metamodels (one for each objective) and use the

EHI criterion to select the next design to be simulated. The optimization iterations are

outlined by the black points in Fig. 3(a) and the design along the Pareto front are indicated

by the red points. This figure shows that only 180 iterations are sufficient to capture the

Pareto front (the convergence results are depicted in Fig. 10 in the supplementary information

section). The optimized lens, obtained by electing the best point along the Pareto front, is

shown in Fig. 3(d). We have found that the optimized design yields a metalens with diameter

D = 8.055 µm, with a numerical aperture of NA = 0.473138. Accordingly, we computed

the power passing through a circular aperture with this D = 8.055 µm as a reference power

to estimate the actual focusing efficiency of the metalens, see Fig. 3(b) where the associated

values are 42%, 49%, and 60% for the blue, green, and red colors, respectively.

Fig. 3(c) refers to the cut along z direction. This results is used to estimate a relative
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focusing error along z of about 4% error for the green and red colors, and approximately

13% for the blue, see Figs. 3(e-g).

The optimized metalens design has been fabricated using nanofabrication techniques on

GaN semiconductor grown using metal-organic chemical vapor deposition on sapphire sub-

strate. The final device is shown on the SEM image in Fig. 3(h). The numerical optimized

designs are realized accordingly to nanofabrication limitation with maximum aspect ratio

of 10 (ratio between the smallest diameter and the height of the cylinders). If better de-

signs are achievable numerically, their constraints yield a challenging fabrication and are not

considered further. The fabrication process is provided in the supplementary information

section. The fabricated lens has been characterized using the experimental setup given in

Fig. 12 in supplementary information section (see Ref.97 for more details). The x-z experi-

mental intensity maps are depicted in Figs. 3(i-k), where the average relative focusing error

is estimated as 19% (horizontal white line for the predefined focal length, to be compared to

the actual focal length denoted by the purple line). The tendency of the focal lengths are in

good agreement with the numerical results, except for the blue light for which the calculated

focal length is shorter than the expected one (Figs. 3(e)) while it is longer for the measure-

ments (Figs. 3(i)). This discrepancy is related to fabrication imperfections, i.e., deviations

from the design diameter of the pillars, and have more impact on the device characteristics

for shorter wavelengths. To quantitatively compare the numerical and experimental results,

we estimated the experimental focusing efficiencies of the lens at the three wavelengths as

45, 6%, 39.3% and 47, 6% for blue, green and red colors, respectively, with an average focusing

efficiency estimated as 44.16%. The experimental focusing efficiencies have been estimated

as the ratio between the power at the focal plane within an aperture of a diameter defined

by the FWHM of the experimental focusing spot and the power impinging on an aperture

defined by the diameter of the lens (see more details in Supplementary Information). The

measured and numerical focusing efficiencies have the same tendency as a function of the

wavelength. However, the measured efficiencies are slightly lower than the numerical ones
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which is attributed to the fabrication imperfections. Note that the experimental focal spots

are broader than the numerical spots (see Fig. 13 in the supplementary information section).

This is due to the fact that the experimental and numerical focal spots are determined differ-

ently. The numerical focal spot corresponds to the diffraction limited spot or, equivalently,

point spread function (PSF) of the lens. It is determined by considering a plane wave (point

source at the infinity) as an incident light beam. However, the experimental focusing spot

corresponds to the image of the considered source in our experiments. Its size is determined

by the extent of the diaphragm D2 of the illumination system as depicted in Fig. 12 in the

supplementary information section.

In the following, we present a study to further improve the obtained results by adding

supplementary rings to the optimized design in order to increase the NA and improve the

control over the dispersion to better reduce the chromatic aberrations.

In order to further promote the focusing performance of the optimized lens shown in

Fig. 3(d), we propose a supplementary step as illustrated in Fig. 4(a). The optimization

process is necessary to capture complex near-field coupling between adjacent nanostructures,

but it does not affect the response of far distant elements. It is therefore possible to optimize

the lens section-by-section, keeping the first 11 rings of metastructures optimized from the

previous step, and increasing the size of the component by appending three additional rings

to the outer part. The outermost ring in Fig. 3(d) is relaxed and will be combined with

the additional three rings as shown in Fig. 4(a). The shadow region indicates the optimized

part of the former design. While the diameters of the four highlighted cylinders indicate the

optimization parameters together with the distances between the additional rings symbolized

by the black arrows. Similar to the previous design, all cylinders in the same ring are chosen

to share the same diameter. Obviously to keep coherence with the first optimized lens

section, we consider optimization at a fixed focal distance of 7.5 µm.

Increasing the diameter of the lens increases the phase mismatch between the three
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copy

(a) (b)

Pareto frontIterations

DOEs

Figure 4: Extended metalens with a larger diameter and a reduced set of parameters. (a):
sketch of the extended diameter lens, where the central part is fixed from previous optimized
design given in Fig. 3(d) as it is represented by the shadow region. We relax the diameter of
the last ring in Fig. 3(d), and add 3 more rings. In total we optimize only 7 parameters; 5
diameters (orange cylinders) and three other parameters for the distances between the outer
rings (black arrows). (b): illustrates the optimization results in the second case. Here we
considered 50 DOEs (blue points) and 150 iterations (black points). The Pareto front is
illustrated by the red points, i.e., the set of non-dominated designs. The red arrow, refers to
the results presented in Fig. 5.

17



wavelengths, and thus imposing constrains with higher dispersion compensation. It also

increases the numerical aperture. However, this method of optimization by sections reduces

the computational cost to 7 parameters only instead of 25 for the full lens with the extra rings.

The optimization results are given in Fig. 4(b), where the DOE, optimization iterations, and

Pareto front are given in blue, black, and red colors, respectively.

As previously, we chose one of the best middle points along the Pareto front. The

corresponding design yields a lens of diameter D = 10.22µm. This diameter is slightly larger

than the one obtained from the previous design. Moreover, the numerical aperture becomes

0.56 instead of 0.47 for the previous device (the fabricated lens is exhibited in Fig. 5(c)).

Based on this diameter d = 10.22 µm, we numerically estimated the focusing efficiency of

the lens. As illustrated in Fig. 5(a), the computed focusing efficiencies are almost 43%, 41%,

and 47% for the blue, green, and red colors, respectively. To the best of our knowledge, this

is the highest focusing efficiency obtained for RGB colors for a 3D metalens with NA=0.56

(see Tab. 1), especially designed using classical nanopillars that are considerably easier to

fabricate with respect to complex freeform geometries. We would like to mention that

increasing the NA increases the phase dispersion needed to achieve multiwavelength behavior,

which thus slightly decreases the overall average focusing efficiency of the device.

Moreover, the cut along z-axis provided in Fig. 5(b) unitedly with the numerical intensity

profiles represented in Figs. 5(d-f) reveal that the chromatic dispersion effect is diminished

compared to the previous lens with relative focusing error for the blue, red colors is 6.1%,

and 0.5% for the green. This relative error of 6.1% could be due to the bias introduced

from the definition of the output plane, as we argued above. Interestingly, our experimental

results depicted in Figs. 5(g-i) confirms the decrease of the chromatic dispersion compared

to the previous results presented in Fig. 3 (i-k). The average measured focusing efficiency is

approximately 31.5% (28%, 27.3%, 39.1% for blue, green and red respectively).

It has been demonstrated that by reducing the numerical aperture, it is possible to

increase the focusing efficiency with a numerical aperture below 0.2 .82 However, for a 3D
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Figure 5: Optimization results for the extended design with 7 optimization parameters,
composed of 15 concentric rings shown in Fig. 4(a). The results corresponds to one of the
best design along the Pareto front (red arrow in Fig. 4(b)), where the three objectives are
maximized simultaneously. The diameter of this lens is 10.22 µm. The full set of parameters
are given in Tab. 4 in the supplementary information section. (a): provides the focusing
efficiency of the optimized lens calculated as the ratio of the power at the focal plane to the
the power passing through an aperture of diameter 10.22 µm. The three vertical lines refer
to the three wavelengths considered during the optimization. (b): cut along z at the center
of the lens for the RGB colors. The vertical line refers to the target focusing position along
z (z = 7.5µm). The fabricated lens is depicted in (c), besides, the corresponding intensity
profiles at the x− z plane is given in (g-i), where the intensity is measured at λ = 490 nm,
λ = 550 nm, and λ = 660 nm for the blue, green, and red colors, respectively. The numerical
focusing intensity for each color are drawn in (d-f).
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lens fabricated using cylindrical nanopillars, it is challenging to compensate the chromatic

dispersion and maintain high power efficiency for a numerical aperture above 0.5. One

can extend this work to further increase the numerical aperture by changing either the

material/shape of the building blocks, or even introduce new degrees of freedom to further

control the dispersion.

Conclusion

In this work, we apply a global statistical multiobjective optimization to the design of mul-

tiwavelength metasurfaces. In addition to achieving global optimal design, this method

converges using an adequate number of iterations, unlike the traditional multiobjective op-

timization techniques. Despite the inherent competing nature of the objectives, our opti-

mization method can provide a single design based on a realistic configuration with more

than 75% of average deflection efficiency with only 150 iterations (see supplementary infor-

mation section). These unique features make our optimization method an ideal candidate

for optimizing various multifunctional metasurface configurations.

We extend our optmization to the design of multiwavelength spherical metalens that

operate at the visible regime. The main objective was to focus the RGB colors at the same

focal plane and maximize the focusing efficiency for the three colors. In this study, we aim

at optimizing spherical metalens with NA > 0.5 using classical cylindrical nanopillars with

the highest possible focusing efficiency.

Unlike the conventional modelling technique, we optimized nearly all the nanoresonators,

considering relatively long range near field coupling. We optimized different lenses with

different numerical apertures. The first design consists of 13 concentric rings leading to a

lens with diameter ≈ 8 µm and a numerical aperture of 0.47 with 55% average numerical

focusing efficiency and 13% focal error. We then extended our method of optimization,

enlarging the devices with sequentially optimized sections by adding 4 supplementary rings
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to the initial optimized design. Our enlarged numerical optimization study yields an average

numerical focusing efficiency of 45% using cylindrical nanopillars with a numerical aperture

of 0.56 (diameter ≈ 10 µm) and confirmed that the chromatic dispersion issue is diminished

with a relative focusing error of 6% for the three wavelengths.

Furthermore, we fabricated and characterized experimentally the optimized lenses and

found a good agreement between the numerical and the experimental results with an average

measured focusing efficiency of 44.16% (NA = 0.47) and 31.5% (NA = 0.56). To the best

of our knowledge, this is the highest focusing efficiency obtained in such spherical metalens

configuration with NA > 0.5.

This combination of full-wave numerical solver with the multiobjective EGO method of-

fers an ideal platform for optimizing multifunctional metasurfaces. Various device of practi-

cal interest, including RGB lenses, color holograms, multifunctional polarization-dependent

metasurfaces and other multi-wavelength optical components could benefit from this ap-

proach. Realizing multiobjective optimal design is certainly the key to promote metasurface

technology to real-life applications.
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Optimizing of RGB light deflector

As a state of the art illustration, we employ the multiobjective EGO in an attempt to

optimize a beam steering metasurface at three different wavelengths simultaneously. We aim

at designing a highly efficient Red, Green, and Blue (RGB) light deflector based on a realistic

configuration. In order to realize this task, we design a metasurface composed of rectangular

Gallium Nitride (GaN) on top of a semi-infinite Al2O3 substrate (see red and green regions in

Fig. 6(a), respectively). We consider five rectangular nanopillars in a supercell, with a period

corresponding to 1500 nm along y direction, while along x direction, we chose a period of 190

nm to limit the diffraction in the substrate, especially for short wavelengths. The height of

the rectangular pillars is fixed as h = 1000 nm. In this study, a normal incident plane-wave

with electric field polarized along y axis is injected from the substrate. The width of each

rectangular nanopillar along x and the distance between the neighboring ridges are kept

fixed during the optimization as 100 nm and 90 nm, respectively. In order to control the

phase dispersion in the y − z plane, we vary the length of the rectangular nanopillars along

y (represented by the white arrows in Fig. 6(a)). It is worth mentioning that the minimum

length of the ridges is considered as 90 nm, which corresponds to minimum feature size

achievable by nanofabrication of GaN with height= 1000 nm.

The main objective is to maximize the light deflection efficiency for the first order mode

(in the y-z plane) for the RGB colors. We define three different wavelength intervals for each

color in which we aim at optimizing the average efficiency (ηavg). The intervals for blue, green

and red colors are, respectively, (450−480) nm, (520−550) nm and (620−650) nm. Thus, in

our optimization framework (minimization problem), we consider five parameters (width of

each pillar along y) and three objectives (1-ηavg(Blue), 1− ηavg(Green), and 1− ηavg(Red)).

As we have explained in the main text, the primary step in the EGO method is to

construct the design of experiments (DOEs) database. In this particular example, we have
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Figure 6: Optimization results for the RGB light deflector. (a): geometry under consid-
eration, composed of five rectangular nanopillars (red regions) of GaN placed on top of a
semi-infinite substrate made of Al2O3 (green region). The height of the pillars is fixed as
h = 1000 nm, their widths along x are also fixed as 100 nm. The period of the super-cell
along y is 1500 nm, while along x is associated to 190 nm. The optimization parameters are
represented by the white arrows (widths of the pillars along y direction). (b) indicates the
optimization results, where the blue points refer to the 60 DOEs. The black points are for
the optimization iterations (90 points), while the red circles indicate the Pareto front. A-D
letters refer to 4 designs along the Pareto front that will are considered in Fig. 7.

considered 60 elements in the DOE database (the corresponding objective function values are

depicted as blue points in Fig. 6(b)). Based on this database, three GP models are generated

for each objective accompanied by an expected hypervolume improvement (EHI) criterion

to identify the next design for each iteration (see Fig. 1 in the main text manuscript and its

associated text). The selected design (given by specific values of the set of parameters) is

then simulated with our DGTD fullwave solver.

The performed optimization iterations are represented by the black points in Fig. 6(b))

while the red points identify the set of non-dominated points in the objective space (Pareto

front). The most striking result that emerges from these data is that 90 optimization it-

erations (black points) are enough to capture the Pareto front. This peculiarity of the

multiobjective EGO method makes it a viable alternative to the classical heuristic evolu-
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tionary algorithms where a considerable number of iterations are required to approximate

the Pareto front.47 The discussion about the convergence of the considered metamodels is

elaborated in the next section of this document (see Fig. 8 and its associated text)

463 nm

540 nm

()

(b)600 nm (b)550 nm463 nm 620 nm (b)538 nm463 nm

463 nm

(a)

(c) (d) (e)

Figure 7: (a-b): results for the best middle point along the Pareto front shown in Fig. 6(b).
(a): the deflection efficiency for the first order mode is represented by the gray curve as a
function of the wavelength. The blue, green, and red parts on the gray curve denote the
optimization interval defined for each color. The vertical color lines, refer to the wavelengths
where the efficiencies attain their maximum in each interval. (b) <e(Ey) at the maximum
efficiency in each interval. (c-e), optimization results for various designs along the Pareto
front shown in Fig. 6(b). (c): refers to the optimized design for the red color, (d), for
the green and red colors, and finally (e) for the blue and green colors. The corresponding
optimization parameters are given in Tab. 2.

It is worth highlighting that the most beneficial attribute of any multiobjective opti-

mization is the construction of the Pareto front, which materializes the trade-off between

the competing objectives. In Fig. 7, we present different optimized designs. Figs. 7(a-b)

refers to a middle point along the Pareto front (point A in Fig. 6(b)) where all the objectives

are optimized simultaneously; we refer to this design as the RGB design (the associated

optimized parameters are given in the second column in Tab. 2). In Fig. 7(a), we plot the

deflection efficiency of the first order mode for the RGB design. As it can be seen, the
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mean deflection efficiencies for the three regions are enhanced concurrently, and the average

efficiency reaches 65.5%, 80.0%, and 66.5% for blue, green, and red intervals, respectively.

The vertical lines indicate the wavelengths where the maximum efficiency is achieved in each

interval (72%, 82%, and 69% deflection efficiencies at wavelengths of 463 nm, 538 nm, and

620 nm, respectively). The corresponding field profiles are plotted in Fig. 7(b) where the

light bending is adequately presented for the three wavelengths.

The most notable observation that emerges from the field profile comparison in Fig. 7(b)

is the ability of the optimized nanoridges to treat the different longitudinal modes for the

considered wavelengths. This peculiar treatment results in an average effective mode index

profile for each wavelength to maximize the deflection efficiency for three wavelengths at the

same time. Remarkably, this correlation is related to strong near field interactions between

the elements, as it is depicted in Fig. 7(b). As can be appreciated, these interactions are

different for the three wavelengths and they depend on the number of longitudinal modes

that propagate in each element for each wavelength. This confirms that our optimization

method identifies the set of parameters that satisfy the three objectives taking into account

the strong near field coupling between the ridges. This appealing results cannot be achieved

using the classical phase synthesizing approach where each ridge is placed based on its phase

and transmission response for a given wavelength. Besides, these results further strengthened

the viability of our numerical methodology by combining a high-order fullwave solver with

an efficient global optimization method.

In Figs. 7(c-e), we present different optimized designs along the Pareto front (points C-

D in Fig. 6(b), respectively) to further extend the discussion and provide the reader with

more insights about the usefulness of the multiobjective optimization. Figs. 7(c-e), refer to

optimized designs where we focus on the red color, both the green and red colors, and finally

both the blue and green colors, respectively. The corresponding optimization parameters

are given in Tab. 2. These results emphasize the significant trade-off between the three

objectives. We note that more than 80% of deflection efficiency can be achieved if one focuses
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Table 2: Optimization parameters for a four designs presented in Fig. 7(a) and Figs. 7(c-
e), for the RGB, Red, Green-Red, and Blue-Green colors, respectively. The height of the
nanoridges is fixed as h = 1000 nm, and the widths along x-direction are fixed as 100 nm.
The distances between ridges are fixed as 90 nm. Besides, the period along x is given as 190
nm, while along y is 1500 nm.

Width (nm) RGB Red Green-Red Blue-Green
w1 127.96 249.51 129.42 236.92
w2 233.19 216.14 246.70 189.76
w3 177.71 169.21 179.26 162.52
w4 158.48 113.48 145.79 148.30
w5 142.72 127.78 142.15 136.52

only on a single objective as it is the case in Fig. 7(c), while the efficiency drops when two

competing objectives are considered, as expected (see Figs. 7(d-e)). Nevertheless, thanks to

our global multiobjective EGO method, an adequate balance between the three objectives

is obtained as discussed previously (Figs. 7(a-b)). To the best of our knowledge, these

results demonstrate the highest RGB light deflector efficiency based on realistic metasurface

configuration.

Convergence of the RGB deflector design

In Fig. 8 (a-c), we study the leave-one-out predictions versus true values for each GP models,

one for each objective, respectively. In these figures, each point corresponds to the prediction

values from each metamodels as if the point was removed from the training set, compared

to the exact value. In other words, for all the points along the line (for each sub figure),

the predicted values deduced by the metamodels are equal to the true values. Obviously, we

are more interested in low values (minimization problem), where the fitting deduced by the

three models are in a good agreement with the exact values. Besides (data not shown), the

EHI for the last 30 iterations remains of the order of 10−2 which is another indication that

90 iterations are enough to approximate the Pareto front as given in Fig. 7(b).
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Figure 8: Illustration of the optimization convergence for RGB light deflector results pre-
sented in Fig. 6(b)

Additional information for the metalens

In this section, we provide additional data to complement our numerical results presented

in the main manuscript.

In Fig. 9(a) we provide additional information about the symmetry properties. Besides,

in Fig. 9(b) we demonstrate the convergence of one of the optimized lenses.

In Fig. 10 we discuss the optimization convergence of the first lens presented in Fig. 3 in

the main manuscript. The associated parameters can be found in Tab. 3. Tab. 4 refers to

the optimization parameters for the results presented in Fig. 5 in main manuscript.

In Fig. 11, we further demonstrate the versatility of our numerical methodology mutually

with our fabrication abilities. We imitate another design along the PF shown in Fig. 4 (b). In

this special case, we focus solely on optimizing the red color. As it can be seen in Fig. 11 (a),

the focusing efficiency is roughly 67%, while it is dramatically reduced for the other colours.

The enhanced focusing efficiency can be understood from the cut along z-axis drawn in

Fig. 11 (b), where only the red colour is focused at the desired focal plane (see also the field

maps in Figs. 11 (d-f)). Thanks to our fabrication platform, the fabricated design presented

in Fig. 11 (c), only focuses the red color at the desired focal plane as evidenced in Figs. 11

(g-i) and the measured focusing efficiency for the red color is ≈ 44% (≈ 25% for the blue and

≈ 22% for the green as expected from the numerical results). The above results represent

another proof to validate both the numerical and the experimental results obtained.

Finally, we discuss, in the folowing paragraphs, further information for the fabrication

procedure and the experimental characterization setup Fig. 12 and results Fig. 13 of the

fabricated lenses.
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Figure 9: (a): 3D Schematic view for one quarter of 3D metalens under investigation (see
Fig. 2 for the x−y view). The red cylinders are made of GaN and the substrate is composed
of Al2O3. The optimized cylinders are highlighted in white circles along with the distance
between the outer rings (white arrows). We consider a normally incident plane wave from
the substrate with electric field polarized along x-axis. Therefore, in order to mimic the full
geometry, we consider a perfect electric conducting (PEC) condition on the right most faces
(where the electric field is oscillating) and perfect magnetic conducting (PMC) along the
front face. During the optimization iterations, we consider a mesh of size corresponding to 5
points per wavelength inside the cylinders. In general, the number of cells is almost 800,000.
In the framework of our DGTD fullwave solver, we consider a third order polynomial P3

interpolation to approximate the electromagnetic fields, which is enough to get accurate
solutions during all the optimization iterations. The justification is shown in (b) where
the agreement between the results obtained for P3 and P4 interpolations (for the results
presented in Fig. 3) is fully demonstrated. Each iteration takes almost 1 h using 720 cores.
The numerical experiments presented in this paper were carried out using the PlaFRIM
experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux,
Bordeaux INP and Conseil Régional d’Aquitaine.
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Figure 10: Illustration of the optimization convergence for the results presented in Fig. 3.
Here we study the leave-one-out predictions versus true values for each GP models. (a) for
first objective, (b) for the second objective, and (c) for the third objective. In these figures,
each point corresponds to the prediction, if the point was removed from the training set,
compared to the exact value. In other words, for all the points along the line, the predicted
values deduced by the metamodels are equal to the true values. A subtlety is that all values
are still used to estimate the parameters of the GP models and not removed. Hence they do
influence the results in an indirect way. Plateaus around one at the top (especially for the
first two objectives) could indicate that a large part of the design space has this value (see
blue points in Fig. 3(a)). However, flat regions are hard to model for GPs, hence worsening
prediction. Fortunately here we are more interested in low values (maximize the the efficiency
in this minimization problem), that are better fitted for the three models.

Table 3: Optimization parameters for the metalens presented in Fig. 3 with diameter D =
8.055 µm and NA = 0.473138. The first two columns refer to the number of rings (first)
and the associated number of cylinders (second). The third column gives the diameter of
the cylinders in each ring. The fourth column indicates the distances between rings (for
instance, Ring2,1 refers to the distance between the second and the first rings). Their values
are given in the last column.

Ring cylinders Radius (nm) Distance indicators Distance values in nm
Central 1 110.000 - -
1 7 100.000 Ring1,cent 100.000
2 13 100.000 Ring2,1 100.000
3 15 100.000 Ring3,2 100.000
4 21 94.6262 Ring4,3 100.000
5 27 91.3074 Ring5,4 100.000
6 33 85.7489 Ring6,5 100.000
7 37 79.9027 Ring7,6 188.312
8 41 70.8879 Ring8,7 191.255
9 45 62.1650 Ring9,8 216.618
10 49 45.0000 Ring10,9 250.000
11 53 100.000 Ring11,10 120.437
12 65 69.5238 Ring12,11 192.588
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Table 4: Optimization parameters for the extended metalens presented in Fig. 5 with diam-
eter D = 10.22 µm and NA = 0.56. The first 11 rows are identical to the the ones in Tab. 3
(the meaning of the columns remains the same). The green color refers to the optimized
rings in the extended design.

Ring cylinders Radius (nm) Distance indicators Distance values in nm
Central 1 110.000 - -
1 7 100.000 Ring1,cent 100.000
2 13 100.000 Ring2,1 100.000
3 15 100.000 Ring3,2 100.000
4 21 94.6262 Ring4,3 100.000
5 27 91.3074 Ring5,4 100.000
6 33 85.7489 Ring6,5 100.000
7 37 79.9027 Ring7,6 188.312
8 41 70.8879 Ring8,7 191.255
9 45 62.1650 Ring9,8 216.618
10 49 45.0000 Ring10,9 250.000
11 53 100.000 Ring11,10 120.437
12 65 68.0160 Ring12,11 192.588
13 105 51.5016 Ring13,12 250.000
14 105 90.5210 Ring14,13 228.898
15 105 61.0380 Ring15,14 111.765

Table 5: Optimization parameters for the lens given in Fig. 11 with diameter D = 10.66 µm
and NA = 0.5755. The first 11 rows are identical to the the ones in Tab. 3 (the meaning of
the columns remains the same). The green color refers to the optimized rings in the extended
design.

Ring cylinders Radius (nm) Distance indicators Distance values in nm
Central 1 110.000 - -
1 7 100.000 Ring1,cent 100.000
2 13 100.000 Ring2,1 100.000
3 15 100.000 Ring3,2 100.000
4 21 94.6262 Ring4,3 100.000
5 27 91.3074 Ring5,4 100.000
6 33 85.7489 Ring6,5 100.000
7 37 79.9027 Ring7,6 188.312
8 41 70.8879 Ring8,7 191.255
9 45 62.1650 Ring9,8 216.618
10 49 45.0000 Ring10,9 250.000
11 53 100.000 Ring11,10 120.437
12 65 87.209 Ring12,11 192.588
13 105 45.000 Ring13,12 250.000
14 105 100.000 Ring14,13 250.000
15 105 88.443 Ring15,14 202.365
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h

Figure 11: Optimized design for focusing the red color. The diameter of this lens is 10.66 µm
as indicated in. Besides, the full set of parameters are given in Tab. 5. (a): provides the
focusing efficiency of the optimized lens, where it is maximized for λ = 640 (approximately
69%). (b): cut along z at the center of the lens for the RGB colors. The vertical line refers to
the target focusing position along z (z = 7.5 µm), where the red color achieves its maximum
(c): represents the fabricated lens. (d-f): numerical intensity profiles along x − z plane for
the three optimized wavelengths. (g-i): refer to the experimental intensity profiles for the
three colors.
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Fabrication process

The metalenses were made of GaN pillars with 1 µm in height. They have been revealed

by patterning a 1 µm thick GaN layer grown on a c-plan sapphire substrate using a metal-

organic chemical vapor deposition. Conventional electron beam lithography (EBL) was used

to expose a double layer of ≈ 200 nm PMMA resist (495A4) spin-coated on the GaN thin-

film and then baked on a hot plate at 125 °C. E-beam resist exposure was then performed at

20 keV (using a Raith ElphyPlus, Zeiss Supra 40), followed by PMMA development using a

3:1 IPA:MIBK solution. After development, a 50 nm layer of Ni was deposited using e-beam

evaporation to perform a metallic film liftoff by immersing the sample into acetone solution

for 2 h. The resulting Ni pattern was utilized as a hard mask during the reactive ion etching

(RIE, Oxford system with a plasma composed of Cl2, CH4, Ar gases, with flows of 13, 2,

and 2 sccm, respectively) to transfer the pattern in the GaN layer. Finally, the Ni hard mask

on the top of GaN nanopillars was removed using chemical etching with a 1:2 HCl/HNO3

solution.

Characterization setup

To characterize the fabricated metalenses, we used a home-made inverted optical microscope

as depicted in Fig. 12. The illumination part consists of LEDs centred at three different

wavelengths (490, 550 and 660 nm). The LEDs are positioned in Köhler optical scheme

in order to illuminate the sample with controlled spot size (diaphragm D1) and numerical

aperture (Diaphragm D2). The light passing through the metalens sample is collected by a

microscope objective positioned on moving stage to detect different planes along the optical

axis Oz (perform z-scan). It is worth-noting that in this configuration the focal plane of the

metalens is conjugated with the plane of the diaphragm D2. The light is then sent to the

tube lens and finally to the camera detector (see ref [S.Khadir et al. ACS Photonics 2021]

for more information).

32



Condenser

K
öh

le
r i

llu
m

in
at

io
n

Lens

D1

D2

Metalens sample

Microscope 
objective

Tube lens

Wavefront
analyzer

LEDs
550 nm490 nm 660 nm

Moving 
stage

x
y

z

Figure 12: Scheme of the optical setup used to characterize the metalenses. LEDs with
different wavelengths combined to a Köhler configuration illuminates the sample with a light
beam controlled in wavelength, size, and numerical aperture. The light passing through
the metalens sample is collected by a microscope objective lens and sent to the detector.
The microscope objective is mounted on moving stage to perform z-scan of the light passing
through the metalens

Figure 13: Comparison of the experimental and numerical intensity profile cuts for the
first metalens design (Fig. 3 of the main text) (right side) and the second design (Fig. 5
of the main text) (left side). The first row corresponds to the 1D cut along x axis at the
focal distance F = 7.5 µm. One can see the broadning of the experimental focal spots in
comparison with numerical ones as discussed in the main text. The second row corresponds
to the cut along z axis at the center of the lens showing a quite good agreement of the
focusing distance between experiments and simulations. See the main text manuscript for
further explanations.
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