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Abstract. The cutting processes include different manufacturing procedures as milling, turning
and drilling. In all of these, the machine tool vibration plays an important role concerning the
cutting characteristics. Therefore, its correct understanding is essential in order to improve the
workpiece surface quality and avoid tool breakage. Chatter and squeal are some undesirable
phenomena related to an improper functioning. This article discusses the nonlinear dynamics
associated with the machine tool vibration relative to the workpiece considering a nonsmooth
single-degree of freedom system. Milling process is of concern assuming different machining
characteristics. The cutting force depends not only on the current position of the tool and
the workpiece but also on a delayed value of the displacement as it is a function of the chip
thickness. Therefore, the equation of motion is represented by a delay-differential equation
that is solved employing the Runge-Kutta method together with a Taylor’s series approximation
employed to estimate the difference terms. Numerical simulations are carried out showing some
situations related to proper and improper functioning during the cutting process.
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1. Introduction

Machining is one of the oldest process for shaping components and due to its versatility
and precision achieved through continual innovation, research and development, has become an
indispensable process used in manufacturing industry.

The machine tool vibration during the cutting process plays an important role concerning
the workpiece surface quality and also the tool durability. Chatter and squeal are some unde-
sirable phenomena related to an improper functioning. During certain cutting conditions, the
motions of the workpiece-tool system are characterized by large amplitudes, which are not de-
sirable for obtaining a good surface finish. The undesirable motions, which are often referred to
as chatter, can result in wavy surfaces on the workpiece, inaccurate dimensions, and excessive
tool wear.

Machining has been modeled by dynamical approach in order to help a proper compre-
hension of the process (Moon, 1998). For turning operations, Chandiramani & Pothala (2006)
analyzed the dynamics of cutting considering a two-degree of freedom (2-dof) and orthogonal
cutting modeling to predict chatter. Pratt & Nayfeh (1999) studied the boring bars for turning,
which commonly presents chatter problems and experimentally determined modal properties
of the tool. Also dedicated to turning, Kalmar-Nagy et al. (2001) showed the existence of a
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subcritical Hopf bifurcation in the delay-differential equation used to describe the machining
equations of motion. Zhao & Balachandran (2001), Insperger et al. (2003), Gradisek et al.
(2005) and Mann et al. (2005) investigated the stability of milling process with single and two-
dof systems for different experimental conditions. The mathematical model is represented by
delay-differential equations.

Milling process has the peculiarity to have a contact/non-contact behavior due to its ge-
ometry and due to tool vibration. This kind of behavior is related to nonsmooth systems that
are usually associated with either the friction phenomenon or the discontinuous characteris-
tics as intermittent contacts (Savi et al., 2007). This article represents the milling process by
a nonsmooth one-degree of freedom oscillator that is related to cutting and non-cutting behav-
iors, respectively related to contact and non-contact situations. The force description is done
by mechanical approach and is used as an excitation to the system dynamics. Under these as-
sumptions, the equation of motion is represented by a delay-differential equation that is solved
employing the Runge-Kutta method together with a Taylor’s series approximation employed to
estimate the difference terms. Numerical simulations are carried out showing some situations
related to proper and improper functioning during the cutting process.

2. Machining Model

Machining process is very complex because it involves different related phenomena. Dur-
ing cutting processes, for example, it is common to have temperature variations that induce
dramatic changes in expected behaviors. Although all these complexity, some simple models
may be used in order to obtain useful information concerning tool and workpiece behaviors as
dynamic tool prediction.

The milling process is of concern in this article and its modeling is done by considering
that it is a full immersed milling in the y direction and, therefore, the tool vibration is neglected
in this direction. Hence, a single-degree of freedom system is assumed as shown in Figure 1,
a schematic picture of the cutting process presenting the tool and the workpiece. Basically,
the model considers a mass-spring-dashpot system representing the tool. Linear behavior is
assumed for these elements and, therefore, they are respectively represented by parameters m,
k and c. The workpiece, on the other hand, is represented by a spring-dashpot, represented
by parameters ks and cs. The distance between the tool and the workpiece is represented by a
negative gap g as the tool is engaged into the workpiece.
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Figure 1: Dynamic of an End Milling Tool



This oscillator represents the end milling tool and its center has a displacement x that is
associated with the sum of the predicted position plus the distance around the center due to the
tool vibration (Moon, 1998). Under these assumptions, the milling process can be represented
by the following equation:

mẍ + cẋ + kx = 0, without contact (1)

mẍ + (c + cs)ẋ + (k + ks)x = −Fx, with contact (2)

where Fx represents the cutting force that may be properly described, as discussed in the next
section.

2.1 Cutting Force Prediction

The prediction of the cutting force in machining has attracted the attention of many re-
searchers that proposed different forms of modeling: analytical, numerical, experimental and
hybrid approaches (Ehmann et al., 1997). Mechanical (Kline et al., 1982) and empirical ap-
proaches are certainly the most usual modeling employed in order to estimate cutting forces
during milling. In this paper, we consider the prediction of forces in the end milling that in-
volves instantaneous cutting forces modeled by mechanical approach with a dynamical deflec-
tion included in the force model.

The instantaneous differential cutting force for a single tooth fi with no helix angle is writ-
ten based on Martelotti equation (Tlusty & MacNeil, 1975):

fi(t) = Kc tc b (3)

where tc is the uncut chip thickness, b is the depth of cut and Kc is a vector with the specific
cutting force coefficients.

The uncut chip thickness tc for the end milling can be written as a function of the angle
φi(t), the angle of each cutting flute i with respect to the normal direction of the feed per tooth
st[mm/rev] (Kline et al., 1982) as:

tci(t) = st sin φi(t) (4)

The feed per tooth is related to the feed vf [mm/min], the spindle speed ω[rpm] and the
number of teeth Nt by:

st =
vf

ω Nt

(5)

By considering φ1(t) the angle for a first flute, defined as the first flute that touches the
piece and ξ the angle between the teeth:

φi(t) = φ1(t) + ξ(i− 1) =
2πω

60
t + ξ(i− 1) (6)

If the flute is in contact with the piece, φi(t) is inside an angle range defined by the initial
and final angles of the contact, θi and θf , and there is a contribution of this flute for computing
the total force. If φi(t) is not inside that range, the flute force is zero as there is no material to
cut (Araujo et al., 2004).

θi <
2πω

60
t + ξ(i− 1) < θf =⇒ fi(t) 6= 0 (7)



By assuming a full immersed milling, where the initial and the final angles are, respectively,
θi = 0 and θf = π, the force are given by:

fi(t) = Kc b st sin φi(t) if sin φi(t) ≥ 0
fi(t) = 0 if sin φi(t) < 0

(8)

The total force is calculated by the sum:

F(t) =
Nt∑
i=1

fi(t) = b st

Nt∑
i=1

Kc(t) sin φi(t) whenever sin φi(t) ≥ 0 (9)

The specific cutting force coefficients can be written in tangential and radial components,
Kt and Kr. These components, for mechanistic models, are supposed to be constant for each
tool-workpiece pair (Araujo et al., 2006).

Kc(t) =
Kx(t)
Ky(t)

=
cos φi(t) sin φi(t)
sin φi(t) − cos φi(t)

Kt

Kr
(10)

The total force F(t) can be written as a function of Fx(t) and Fy(t) components:

Fx(t) = b st

Nt∑
i=1

(
Kr sin2 φi(t) + Kt sin φi(t) cos φt(t)

)
whenever sin φi(t) ≥ 0 (11)

Fy(t) = b st

Nt∑
i=1

st

(
Kt sin2 φi(t)−Kr sin φi(t) cos φt(t)

)
whenever sin φi(t) ≥ 0 (12)

Notice that this approach does not considers that the vibration changes the cutting force. At
this point, a dynamical approach is of concern in order to introduce these forces as excitations
of the dynamical system that represents the milling process.

2.2 Equations of Motion

The end milling tool position x = x(t) of the center is represented by the sum of the
predicted position plus the distance around the center due to the tool vibration (Moon, 1998).

xc = xo + x =
stωt

60
+ x (13)

By considering a dynamical point of view, a new parcel should be added (or removed) from
the cutting force from Equation 11 as the tool position is changing and there is more (or less)
material to cut. Since the tool is vibrating from the beginning of the cutting process, the material
machined over (or below) the predicted trajectory changes the instantaneous cutting area for the
acting flute. The additional material is computed as ∆x = x(t)− x(t− τ), where τ is the time
between the passage of two flutes.

τ =
60 ξ

2πω
(14)

Under this assumption, the force can be rewritten adding the terms x = x(t) and xτ =
x(t− τ) to the feed per tooth parcel:

Fx(t) = b

Nt∑
i=1

(
st + ∆x

)(
Kr sin φi(t) + Kt cos φi(t)

)
(15)



Moreover, by considering the idea of the nonsmooth oscillator, the force is zero when there
is no flute in contact with the workpiece and also, while in vibration, when the tool position is
less then feed per tooth, the negative gap between the piece and the workpiece.

Fx(t) = b
∑Nt

i=1(st + ∆x)(Kr sin φi(t) + Kt cos φi(t)) if x ≥ −st

Fx(t) = 0 if x < −st
(16)

It should be highlighted that the cutting process is related to a maximum force, Fmax, and
if this level is achieved its value is suddenly reduced and instantaneously released.

Therefore, employing this forces as the excitation of the nonsmooth oscillator that repre-
sents the cutting process, the system dynamics may be represented as follows:

mẍ + cẋ + kx = 0 if x < −st (17)

mẍ + (c + cs)ẋ + (k + ks)x = −Fx = −K(st + ∆x) if x > −st (18)

These equations represents different behavior for the system with and without contact.
When the tool has contact with the workpiece, the damping and the stiffness are a sum of
the workpiece and tool. On the other hand, when the tool lost the contact with the workpiece,
the damping and stiffness are only calculated by considering the tool vibration as a bending
beam.

Note that K is a constant for this rotation angle φi, and it is not dependent from x:

K =
n∑

i=1

(Ktb sin2(φi) + Krb sin(φi) cos(φi)) whenever sin(φi) ≥ 0 (19)

2.3 Numerical Procedure

Numerical simulations are carried out considering the fourth order Runge-Kutta method,
however, in order to deal with the difference term in the right hand side, it is considered two
different situations. The first one is when t > τ and therefore, the xτ = x(t − τ) has been
already computed and the equation of motion may be rewritten as follows:

ẍ +
(c + cs)

m
ẋ +

(k + ks + K)

m
x = −K(st − xτ )

m
(20)

This system may be written in terms of a first order system as follows,
(

ẋ
v̇

)
=

(
0 1
−p1 −p2

)(
x
v

)
+

(
0
p3

)
(21)

where:

p1 =
(c + cs)

m
; p2 =

(k + ks + K)

m
; p3 =

−K(st − xτ )

m
; (22)

For time instants where t < τ , it is necessary to estimate the values of xτ that is done by
employing a Taylors series expansion Cunningham (1954):

x− xτ = τ ẋ− τ 2

2
ẍ (23)

Under this assumption, the equation of motion become:

mẍ + (c + cs)ẋ + (k + ks)x = −K(st + τ ẋ− τ 2

2
ẍ) (24)



And this equation can be written as a first order system as:(
ẋ
v̇

)
=

(
0 1

−p5/p4 −p6/p4

)(
x
v

)
+

(
0

p7/p4

)
(25)

where

p4 = 1− Kτ 2

2m
; p5 =

(c + cs + Kτ)

m
; p6 =

(k + ks)

m
; p7 =

−Kst

m
(26)

3. Numerical Simulations

In order to show the capabilities of the proposed model, numerical simulations are carried
out considering an end milling tool with diameter d = 19.05mm, four flutes and no helix angle.
The tool characteristics are represented by the mass, the stiffness and the damping coefficients:
m = 0.6kg, k = 2000N/mm and c = 0.004Ns/mm, respectively. The workpiece properties are
represented by the stiffness (ks = 2 · 107 N/mm) and the damping (cs = 0.005Ns/mm), values
taken from Mann et al. (2005). The maximum force that the chip does not brake is taken as
Fmax = 2000N.

Our analysis starts by considering the influence of depth of cut b on the system dynamics.
Therefore, it is assumed different values of this parameter while the others are fixed. Besides
the other presented parameters, it is assumed that st = 0.15mm and ω = 200rpm.

Figure 2 shows the maximum displacement in situation with and without contact. No-
tice that, for small values of st, system is always in contact, presenting a proper functioning.
Nevertheless, the increase in this value tend to produce situations where the system starts to
work presenting both behaviors. This curve may be useful to identify regions of stable, regular
motions, associated with desirable functioning.
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Figure 2: Maximum tool displacement in steady-state when st = 0.15mm, ω = 200rpm and b ∈ [0.01,
0.30] mm

Different system responses are now in focus, considering what can be considered as proper
and improper functioning. Figure 3 shows steady-state displacement time history and phase
space plots for st = 0.15mm, b = 0.01mm and ω = 200 rpm. Notice that non-contact behavior
is always related to large displacements and therefore, are undesirable for machining purposes.

At this point, the same analysis is done considering b = 0.5 mm and ω = 200 rpm fixed,
varying the feed per tooth st. As expected, the same qualitative results are obtained and, the
increase in feed values tends to cause improper functioning.

Figure 4 shows the maximum displacement in situation with and without contact. Once
again, this curve may be useful to identify regions of stable, regular motions, associated with
desirable functioning.
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Figure 3: Numerical response for st = 0.15mm, b = 0.01mm and ω = 200 rpm
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Figure 4: Maximum displacement in steady-state when ω = 200rpm, b = 0.5mm and st ∈
[0.001, 0.030] mm



Figure 5 shows steady-state displacement time history, phase space and force Fx when
st = 0.016mm, b = 0.5mm and ω = 200 rpm. Notice that non-contact behavior is always
related to large displacements and therefore, are undesirable for machining purposes.
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Figure 5: Numerical response for st = 0.016mm, b = 0.5mm and ω = 200 rpm

In order to observe a critical machining situation, it is considered a simulation with st =
0.05mm, b = 0.15mm and ω = 1500 rpm (Figure 5). This Figure presents the steady-state tool
displacement, phase space plots and force Fx, showing a contact/non-contact response with
great amplitudes variations.

4. Conclusions

The analysis of milling process is proposed by a dynamical approach. A nonsmooth single-
degree of freedom oscillator is proposed in order to model this cutting process. The forces
involved during cutting is modeled by considering a mechanical approach and are used as an
excitation of the dynamical system. The mathematical model is represented by a nonsmooth
delay-differential equations that is numerically solved by the Runge-Kutta method together
with a method based in Taylors series in order to estimated delayed displacements. Numerical
simulations are carried out considering the influence of depth of cut and feed per tooth in the
system dynamics. Results show that non-contact vibrations are related to improper functioning
and can be used as a criterion to define functioning conditions.
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