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Abstract.An analysis of specific cutting pressure in end milling process is presented. To model
analytically milling forces it is necessary to compute the chip volume and the specific cutting
pressure. The problem is concerned on the exact geometrical formulation of the process and
especially on the last parameter. Considering only the influence of shearing and friction on the
rake face and not taking into consideration the effects on cutting of the flank face i.e. the edge
effects, the results obtained shown an error proportional to the contribution of the tool contact
with the finished surface. This work aims taking the value, or the variation, of specific pressure
from experimental data considering both effects, cutting force and edge force. This procedure
analyzes the influence of the specific force modelling on the cutting process.
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1. INTRODUCTION

In the end milling process there is a periodically varying chip cross section during the
material removal and due to this the cutting force also varies. Accurate modelling of the cut-
ting forces is required to predict the cutting forces, vibration, surface quality, and stability of
machining processes.

A number of different methods to predict cutting forces have been developed over the last
years. These models can be classified into three major categories: analytical, empirical, and
mechanistic methods.

Analytical approaches, (Armarego & Brown, 1969), (Altintas, 2000), model the physical
mechanisms that occur during cutting. This includes complex mechanisms such as high strain
rates, high temperature gradients and combined elastic and plastic deformations and it’s not yet
completely solved. (Moufki et al, 2000)

In the empirical methods, a number of machining experiments are performed and perfor-
mance measures such as cutting forces, tool life, and tool wear are measured (Armarego &
Brown, 1969).

Mechanistic models, (Tlusty & MacNeil, 1975), (Kline, DeVor and Lindberg, 1982), (Altintas
& Spence, 1991), (Yun & Cho, 2001) and (Jayaram, Kapoor and DeVor, 2001), predict the cut-
ting forces based on a method that assumed cutting force to be proportional to the chip cross-
sectional area.

The constants of proportionality are called the specific cutting pressures and depend on
the cutter geometry, cutting conditions, insert grade and work piece material properties. This
paper questions the behavior in time of specific cutting pressures for cutting force models for
end milling process, estimating the specific cutting pressures directly from experimental cutting
force data.

2. CUTTING FORCE MODELLING OF END MILLING OPERATIONS

Instantaneous differential cutting force for one single flute was written by Martelotti (Tlusty
& MacNeil, 1975):

d~Fcutting = ~Kcutting t db (1)

wheret is the uncut chip thickness anddb is a differential piece of the depth of cut.
And was rewritten by (Armarego, 1989) adding the edge parcel:

d~F = d~Fedge + d~Fcutting

d~F = ~Kedge db + ~Kcutting t db
(2)

where ~Kedge and ~Kcutting are vectors called specific edge force and specific cutting force, re-
spectively.

The uncut chip thicknesst for end milling is written as:

t = st sin φ (3)



whereφ is the angle of the cutting piece measured in relation of the normal direction of the feed
per toothst,

st =
v

ω Nf

(4)

from knownv, ω andNf as the feed velocity, rotation velocity and the number of flutes.
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Figure 1: Milling geometry

The cutting tool pieces can be calculated by

db =
d

2 tanλ
dφ (5)

whered is the tool diameter andλ is the helix angle, as shown in Fig. 1.
The angleδ is calculated by

δ =
2 b tanλ

d
(6)

whereb is the the depth of cut.
The angleδ is used to classify the cutting geometry asType Ior Type II,

Type I −→ δ ≤ ϕ2 − ϕ1

Type II −→ δ > ϕ2 − ϕ1
(7)

whereϕ1 andϕ2 are the entry and exit angles, respectively (Fig. 1), enlightened on (Tlusty &
MacNeil, 1975) and (Araujo & Silveira, 1999).

The force become:

~F =

∫
~Kedgedb +

∫
~Kcutting t db =

∫ (
~Kedge + ~Kcutting st sin φ

) d

2 tan λ
dφ (8)



So, the total force of cut, considering theNf flutes of the mill, are calculated by the sum:

~F =

Nf∑
i=1

~Fi (9)

In this approach, all force contributions are calculated at the same time because all differ-
ential parts of the force are calculated for each cutting piece.

The time variation of the milling force vector (~F(t)) is written as the multiplication of
functions in time.

~F(t) = ~Kedge(t)h(t) + ~Kcutting(t)A(t) (10)

The specific forces, written as a vector function, (~Kedge(t) and ~Kcutting(t)), are multiplied
by a scalar function relative to the height cutting (h(t)) and other relative to the cutting area, the
scalar function (A(t)). This form is called from now on byFunctional approach.
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Figure 2: Milling Tool Referential

The time variablet can be substituted by the angle of rotationθ of a fixed pointP in a
peripheral tool and the tool velocity rotationω as shown in Fig. 2.

~F(t) = F̃
( θ

ω

)
= ~F (θ) (11a)

~F (θ) = ~Kedge(θ)h(θ) + ~Kcutting(θ)A(θ) (11b)

The functionsh(θ) andA(θ) will be calculated separately in the following sections.
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Figure 3: Height of cutting

Table 1: Integration limits for each phase.

Type I Type II
Phase L1(θ) L2(θ) L1(θ) L2(θ)

For e1 < θ ≤ e2 - Phase A ϕ1 θ ϕ1 θ
For e2 < θ ≤ e3 - Phase B θ − δ θ ϕ1 ϕ2

For e3 < θ ≤ e4 - Phase C θ − δ ϕ2 θ − δ ϕ2

3. THE HEIGHT FUNCTION

In Fig. 3. can be observed the height of cutting of the first flute (h1) at the milling angleθ,
for a cutting geometry.

The height function of cutting of the first fluteh1(θ) can be calculated by:

h1(θ) =

∫ L2(θ)

L1(θ)

d

2 sin λ
dε (12)

where the limitsL1 andL2 are functions ofθ and are calculated differently for each cutting
phase ofθ as can be observed on Table 1 and the values ofe1, e2, e3 ande4 can be extracted
from Table 2.

In order to add the contributions of all flutes, the height of cutting for any flute (n) is written
by:

hn(θ) =

∫ L2(θ+ξ(n−1))

L1(θ+ξ(n−1))

d

2 sin λ
dε (13)

Note that the functionsL1 andL2 are now not only a function ofθ but also a function ofn,
whereξ is the angle between the flutes.



Table 2: Variables values

Type I Type II
e1 ϕ1 ϕ1

e2 ϕ1 + δ ϕ2

e3 ϕ2 ϕ1 + δ
e4 ϕ2 + δ ϕ2 + δ

The total length is calculated by:

h(θ) =

Nf∑
n=1

hn(θ) (14)

A height function of each flute, for a four flute tool, is presented in Fig. 4.
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Figure 4: Function of height of cutting

4. THE CROSS-SECTIONAL AREA VARIATION

In Fig. 5 can be observed the chip cross-sectional area (A1) of the first flute at milling angle
θ, for a cutting geometry havingϕ1 = 30o andϕ2 = π/2.

The chip area can be calculated by:

A1(θ) =

∫ L2(θ)

L1(θ)

st d

2 sin λ
sin φ dφ (15)

where the limitsL1 andL2 are functions ofθ and are calculated differently for each cutting
phase ofθ as can be observed on Table 1.
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Figure 5: Chip Cross-sectional Area

For a single flute andType I cutting geometry, the chip cross-sectional area function is
presented on Fig. 6. In order to add the contributions of all flutes, the chip cross-sectional area
function for any flute (n) is written by:

An(θ) =

∫ L2(θ+ξ(n−1))

L1(θ+ξ(n−1))

st d

2 sin λ
sin ε dε (16)

Note that the functionsL1 andL2 are now not only a function ofθ but also a function ofn,
whereξ is the angle between the flutes.

The total area is calculated by:

A(θ) =

Nf∑
n=1

An(θ) (17)

and the figure 7 shows the chip cross-sectional area functionA(θ) for a milling with four flutes
(ξ = 90o) and in bold the function of the first fluteA1(θ), of a cut havingType Igeometry.

5. FORCE COMPUTATION

In order to compare the present model with experimental data, the force components should
be decomposed in x, y and z directions as they are usually recorded in machining tests.

~F (θ) =


 Fx(θ)

Fy(θ)
Fz(θ)


 = A(θ)


 Kcx(θ)

Kcy(θ)
Kcz(θ)


 + h(θ)


 Kex(θ)

Key(θ)
Kez(θ)


 (18)

But it’s not convenient to write the specific cutting force in the fixed referentialx, y, z. To
rewrite it on the more appropriate tool referentialt, r, z (tangential, radial and axial directions),
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Figure 6: Area Function for one Single Flute

another functionsAR(θ) andhR(θ) has to be introduced:

 Fx(θ)

Fy(θ)
Fz(θ)


 = AR(θ)


 Kct(θ)

Kcr(θ)
Kcz(θ)


 + hR(θ)


 Ket(θ)

Ker(θ)
Kez(θ)


 (19)

In fact, the functionAR(θ) andhR(θ) are the rotation matrixR(θ) multiplied by the area
and the height, respectively.

R(θ) =


cos(θ) sin(θ) 0

sin(θ) − cos(θ) 0
0 0 1


 (20)

The rotation matrixRn(θ) have to be written for each flute:

Rn(θ) =


cos(θ + ξ (n − 1)) sin(θ + ξ (n − 1)) 0

sin(θ + ξ (n − 1)) − cos(θ + ξ (n − 1)) 0
0 0 1


 (21)

Then, for all flutes, the rotated area function becomes:

AR(θ) =

Nf∑
n=1

Rn(θ) An(θ) (22)

and the rotated length function is:

hR(θ) =

Nf∑
n=1

Rn(θ) hn(θ) (23)
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Figure 7: End Milling Area Function

To simplify the following calculations,S1(θ), S2(θ), S3(θ) andS4(θ)are defined:

S1(θ) =

Nf∑
n=1

An(θ) cos(θ + ξ (n − 1)) (24a)

S2(θ) =

Nf∑
n=1

An(θ) sin(θ + ξ (n − 1)) (24b)

S3(θ) =

Nf∑
n=1

hn(θ) cos(θ + ξ (n − 1)) (24c)

S4(θ) =

Nf∑
n=1

hn(θ) sin(θ + ξ (n − 1)) (24d)

Rewriting the Eq. (19), the force can be expressed by:

 Fx(θ)

Fy(θ)
Fz(θ)


 = AR(θ)


 Kct(θ)

Kcr(θ)
Kcz(θ)


 + hR(θ)


 Ket(θ)

Ker(θ)
Kez(θ)


 (25a)


 Fx(θ)

Fy(θ)
Fz(θ)


 =


S1(θ) S2(θ) 0 S3(θ) S4(θ) 0
S2(θ) −S1(θ) 0 S4(θ) −S3(θ) 0

0 0 A(θ) 0 0 h(θ)







Kct(θ)
Kcr(θ)
Kcz(θ)
Ket(θ)
Ker(θ)
Kez(θ)




(25b)



Note that the matrixJ(θ) is the Jacobian of theF components in relation to the specific
cutting force coefficients.

J(θ) =


S1(θ) S2(θ) 0 S3(θ) S4(θ) 0
S2(θ) −S1(θ) 0 S4(θ) −S4(θ) 0

0 0 A(θ) 0 0 h(θ)




=




∂Fx

∂Kct

∂Fx

∂Kcr

∂Fx

∂Kcz

∂Fx

∂Ket

∂Fx

∂Ker

∂Fx

∂Kez

∂Fy

∂Kct

∂Fy

∂Kcr

∂Fy

∂Kcz

∂Fy

∂Ket

∂Fy

∂Ker

∂Fy

∂Kez

∂Fz

∂Kct

∂Fz

∂Kcr

∂Fz

∂Kcz

∂Fz

∂Ket

∂Fz

∂Ker

∂Fz

∂Kez




(26)

6. SPECIFIC FORCE ANALYSIS

The problem is concentrated on the specific force analysis. The Eq. (25) can be easily
calculated if the specific pressures are constant inθ.

Empirical works, (Tlusty & MacNeil, 1975) and (Ber, Rotberg and Zombach, 1988), con-
sidered the specific force as one single value for each pair of tool-workpiece and relate the com-
ponents by coefficients of proportionality; these researchers considers that the specific force is
time constant.

Analytical approaches (Altintas, 2000) calculate the specific cutting forces as a function of
cutting parameters.

Orthogonal and Oblique are the most well known models and these specific cutting forces
are shown on Table 3, whereφ is the shear angle,α the rake angle,β the friction angle,η the
chip flow angle, and the lower indexn means the normal component of the angles.

If these parameters are time constant, the specific cutting force do not change in time. To
analyze this behavior, for each point ofθ, the equation:

K(θ) = J−1(θ)F(θ) (27)

can be applied to any experimental data from milling process, then if the specific cutting force
is constant, the result must has the same value.

The graphic from Fig. 8 was taken from (Altintas & Lee, 1996). This experiment used the
following parameters:

d = 18.1mm, λ = 30.0, Nf = 4, b = 5.08, ϕ1 = 0, ϕ2 =
π

2
, v = 30

m

min
, st = 0.05.

But, when calculating the Eq. 27, appears a singularity because there are three parameters



Table 3: Analytical Specific Force

Orthogonal Model Oblique Model

Kt
τs cos(β−α)

sin φ cos(φ+β−α)
τs

sinφn

(cos(βn−αn)+tan λ tan η sinβn)√
cos2(φn+βn−αn)+tan2 η sin2 βn

Kr
τs sin(β−α)

sin φ cos(φ+β−α)
τs

sinφn

(cos(βn−αn) tan λ−tan η sin βn)√
cos2(φn+βn−αn)+tan2 η sin2 βn

Kz 0 τs

sin φn cos λ
(sin(βn−αn))√

cos2(φn+βn−αn)+tan2 η sin2 βn
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Figure 8: Experimental data from (Altintas & Lee, 1996)

and six unknown variables.


 Fx(θ)

Fy(θ)
Fz(θ)


 =


S1(θ) S2(θ) 0 S3(θ) S4(θ) 0
S2(θ) −S1(θ) 0 S4(θ) −S3(θ) 0

0 0 A(θ) 0 0 h(θ)







Kct(θ)
Kcr(θ)
Kcz(θ)
Ket(θ)
Ker(θ)
Kez(θ)




(28)

To solve this problem, we suppose that two consecutive points have the same specific force,



calculating the specific force for each interval:



Fx(θ)
Fy(θ)
Fz(θ)

Fx(θ + dθ)
Fy(θ + dθ)
Fz(θ + dθ)




= JA(θ)




Kct(θ)
Kcr(θ)
Kcz(θ)
Ket(θ)
Ker(θ)
Kez(θ)




(29)

The matrixJ amplified became a square matrixJA:

JA(θ) =




S1(θ) S2(θ) 0 S3(θ) S4(θ) 0
S2(θ) −S1(θ) 0 S4(θ) −S3(θ) 0

0 0 A(θ) 0 0 h(θ)
S1(θ + dθ) S2(θ + dθ) 0 S3(θ + dθ) S4(θ + dθ) 0
S2(θ + dθ) −S1(θ + dθ) 0 S4(θ + dθ) −S3(θ + dθ) 0

0 0 A(θ + dθ) 0 0 h(θ + dθ)




(30)

and the problem has only one solution:



Kct(θ)
Kcr(θ)
Kcz(θ)
Ket(θ)
Ker(θ)
Kez(θ)




= [JA(θ)]−1




Fx(θ)
Fy(θ)
Fz(θ)

Fx(θ + dθ)
Fy(θ + dθ)
Fz(θ + dθ)




(31)

The Fig. 9 shows the result for specific pressures using the data from Fig. 8. Figures 9a, 9b
and 9c, respectively tangential, radial and vertical specific cutting forces and 9g, 9h and 9i, are
tangential, radial and vertical specific edge forces). Figures 9d, 9e, 9f, 9j , 9k and 9l are them
distributions.

Calculating the average value of the specific values obtained for the hole rotationK, and
applying on Eq. 25 results:


 Fx(θ)

Fy(θ)
Fz(θ)


 = J(θ)




Kct

Kcr

Kcz

Ket

Ker

Kez




(32)

as shown in Table 4.



Table 4: Average Specific Pressure Values -N/mm2

Kct Kcr Kcz Ket Ker Kez

1150.5 341.0 436.7 24.1 42.2 0.4

Using these values to recalculate the forces, Fig. 10 shows the comparison between exper-
imental force and semi-empirical force. This procedure aims to confirm if the behavior of the
specific pressure considered is correct.

A general code of an end milling process is given on Table 5. The input variables set by the
user are cutter radius, helix angle, entry and exit angles, axial depth of cut, the number of teeth,
feed per tooth and the experimental cutting force.



Table 5: Algorithm to specific force analysis
.

1 Input experimental cutting force (Np points) .
Fxexp(j),
Fyexp(j), j ∈ [1, Np]
Fzexp(j).

2 Inputs:r, λ, Nn, b, ϕ1, ϕ2, v, st

3 Computeδ andζ

4 Check forType Ior Type II

5 Computee1, e2, e3 ande4

6 ComputeA(θ) = 0 0 ≤ θ < e1∫ θ
e1

r
sin λ st sinφ dφ e1 ≤ θ < e2∫ θ

θ−δ
r

sin λ st sinφ dφ e2 ≤ θ < e3∫ e3

θ−δ
r

sin λ st sin φ dφ e3 ≤ θ < e4 if Type I
0 e4 ≤ θ < 2π

or A(θ) = 0 0 ≤ θ < e1∫ θ
e1

r
sinλ st sin φ dφ e1 ≤ θ < e2∫ e2

e1

r
sinλ st sin φ dφ e2 ≤ θ < e3 if Type II∫ e2

θ−δ
r

sinλ st sin φ dφ e3 ≤ θ < e4

0 e4 ≤ θ < 2π

7 Computeh(θ) = 0 0 ≤ θ < e1∫ θ

e1

r
sinλ

dφ e1 ≤ θ < e2∫ θ

θ−δ
r

sin λ
dφ e2 ≤ θ < e3 if Type I∫ e3

θ−δ
r

sin λ
dφ e3 ≤ θ < e4

0 e4 ≤ θ < 2π

or h(θ) = 0 0 ≤ θ < e1∫ θ

e1

r
sin λ

dφ e1 ≤ θ < e2∫ e2

e1

r
sinλ

dφ e2 ≤ θ < e3 if Type II∫ e2

θ−δ
r

sin λ
dφ e3 ≤ θ < e4

0 e4 ≤ θ < 2π

8 Compute
S1(θ) =

∑Nf

n=1 A(θ + ξ(n − 1)) cos(θ + ξ(n − 1))

S2(θ) =
∑Nf

n=1 A(θ + ξ(n − 1)) sin(θ + ξ(n − 1))

At(θ) =
∑Nf

n=1 A(θ + ξ(n − 1))



S3(θ) =
∑Nf

n=1 h(θ + ξ(n − 1)) cos(θ + ξ(n − 1))

S4(θ) =
∑Nf

n=1 h(θ + ξ(n − 1)) sin(θ + ξ(n − 1))

ht(θ) =
∑Nf

n=1 h(θ + ξ(n − 1))

9 Discretize all functions
Sd1(j) = S1(θ = 2π (j−1)

Np−1
)

10 ComputeJA(j)

JA(j) =




Sd1(j) Sd2(j) 0 Sd3(j) Sd4(j) 0
Sd2(j) −Sd1(j) 0 Sd4(j) −Sd3(j) 0

0 0 Adt(j) 0 0 hdt(j)
Sd1(j + 1) Sd2(j + 1) 0 Sd3(j + 1) Sd4(j + 1) 0
Sd2(j + 1) −Sd1(j + 1) 0 Sd4(j + 1) −Sd3(j + 1) 0

0 0 Adt(j + 1) 0 0 hdt(j + 1)




11 Compute the matrixKG(j) with all specific pressures

KG(j) = JA(j)−1 .




Fxexp(j)
Fxexp(j)
Fxexp(j)

Fxexp(j + 1)
Fxexp(j + 1)
Fxexp(j + 1)




12 Compute each specific pressure
Kct(j) = KG(j)1

Kcr(j) = KG(j)2

Kcz(j) = KG(j)3

Ket(j) = KG(j)4

Ker(j) = KG(j)5

Kez(j) = KG(j)6

13 Compute average specific pressures
Kct =

∑Np
j=1 Kct(j)

Kcr =
∑Np

j=1 Kcr(j)

Kcz =
∑Np

j=1 Kcz(j)

Ket =
∑Np

j=1 Ket(j)

Ker =
∑Np

j=1 Ker(j)

Kez =
∑Np

j=1 Kez(j)

14 Use this values to calculate semi-empirical force
Fx(j) = KctSd1(j) + KcrSd2(j) + KetSd3(j) + KerSd4(j)
Fy(j) = KctSd2(j) − KcrSd1(j) + KetSd4(j) − KerSd3(j)
Fz(j) = KctSd1(j) + KcrSd2(j) + KczAdt(j) + Kezhdt(j)



7. CONCLUSIONS

This paper analyzes the behavior of the specific cutting pressures from experimental cutting
force data. A procedure to estimate the specific cutting forces from data is developed using
the function approach including the edge parcel in the model. The method is validated by
recalculation of the cutting force and compared with the experiment published by (Altintas &
Lee, 1996). The contribution of the edge force is important to the model but there is no visual
variation on time for them. The difference from results with and without the edge forces can be
observed comparing with (Araujo & Silveira, 2001).
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Figure 9: Experimental Specific Pressures and distribution
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