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Abstract. An analysis of specific cutting pressure in end milling process is presented. To model
analytically milling forces it is necessary to compute the chip volume and the specific cutting
pressure. The problem is concerned on the exact geometrical formulation of the process and
especially on the last parameter. Considering only the influence of shearing and friction on the
rake face and not taking into consideration the effects on cutting of the flank face i.e. the edge
effects, the results obtained shown an error proportional to the contribution of the tool contact
with the finished surface. This work aims taking the value, or the variation, of specific pressure
from experimental data considering both effects, cutting force and edge force. This procedure
analyzes the influence of the specific force modelling on the cutting process.
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1. INTRODUCTION

In the end milling process there is a periodically varying chip cross section during the
material removal and due to this the cutting force also varies. Accurate modelling of the cut-
ting forces is required to predict the cutting forces, vibration, surface quality, and stability of
machining processes.

A number of different methods to predict cutting forces have been developed over the last
years. These models can be classified into three major categories: analytical, empirical, and
mechanistic methods.

Analytical approaches, (Armarego & Brown, 1969), (Altintas, 2000), model the physical
mechanisms that occur during cutting. This includes complex mechanisms such as high strain
rates, high temperature gradients and combined elastic and plastic deformations and it’s not yet
completely solved. (Moufki et al, 2000)

In the empirical methods, a number of machining experiments are performed and perfor-
mance measures such as cutting forces, tool life, and tool wear are measured (Armarego &
Brown, 1969).

Mechanistic models, (Tlusty & MacNeil, 1975), (Kline, DeVor and Lindberg, 1982), (Altintas
& Spence, 1991), (Yun & Cho, 2001) and (Jayaram, Kapoor and DeVor, 2001), predict the cut-
ting forces based on a method that assumed cutting force to be proportional to the chip cross-
sectional area.

The constants of proportionality are called the specific cutting pressures and depend on
the cutter geometry, cutting conditions, insert grade and work piece material properties. This
paper questions the behavior in time of specific cutting pressures for cutting force models for
end milling process, estimating the specific cutting pressures directly from experimental cutting
force data.

2. CUTTING FORCE MODELLING OF END MILLING OPERATIONS
Instantaneous differential cutting force for one single flute was written by Martelotti (Tlusty
& MacNeil, 1975):
dﬁcutting = _)cutting tdb (1)

wheret is the uncut chip thickness amld is a differential piece of the depth of cut.
And was rewritten by (Armarego, 1989) adding the edge parcel:

dﬁ = dﬁedge + dﬁcutting

5 2)
AF = Koage db+ K eypiing t db

where[?edge and [?cuttmg are vectors called specific edge force and specific cutting force, re-
spectively.
The uncut chip thicknegsfor end milling is written as:

t = s;8in¢ 3
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whereg is the angle of the cutting piece measured in relation of the normal direction of the feed
per tooths;,

=N (4)

St

from knownv, w andN; as the feed velocity, rotation velocity and the number of flutes.

Figure 1: Milling geometry

The cutting tool pieces can be calculated by

B d
2 tan \

db do )

whered is the tool diameter and is the helix angle, as shown in Fig. 1.
The angle is calculated by

5= th;n)\ (©)

whereb is the the depth of cut.
The angle) is used to classify the cutting geometryBge lor Type ||,

Typell — 0> o — ¢y

wherey; andy, are the entry and exit angles, respectively (Fig. 1), enlightened on (Tlusty &

MacNeil, 1975) and (Araujo & Silveira, 1999).
The force become:

F - /l?edgedb + /I?cutting tdb= / <Xedge + I?cutting St sin ¢>

2 tan )\d¢ (8)
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So, the total force of cut, considering th& flutes of the mill, are calculated by the sum:
Ny
F=YF 9)
i=1

In this approach, all force contributions are calculated at the same time because all differ-
ential parts of the force are calculated for each cutting piece.

The time variation of the milling force vectoF(t)) is written as the multiplication of
functions in time.

F(t) = Keage()h(t) + Keupring () A (1) (10)

The specific forces, written as a vector functicﬁ,a@e(t) andﬁcuttmg(t)), are multiplied
by a scalar function relative to the height cuttithg#)) and other relative to the cutting area, the
scalar function A (¢)). This form is called from now on blfunctional approach

X .
O=w
0 \ '
/_\
P sz
—>

Figure 2: Milling Tool Referential

The time variable can be substituted by the angle of rotatwnf a fixed pointP in a
peripheral tool and the tool velocity rotatianas shown in Fig. 2.

F(t) = F(g) — F(8) (11a)
F(0) = Ketge(0)1(0) + K utring (0) A(0) (11b)

The functions:(0) and A(6) will be calculated separately in the following sections.
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Figure 3: Height of cutting

Table 1: Integration limits for each phase.

Type | Type Il
Phase Iy (0) LQ(Q) Ly (0) LQ(Q)
Fore; < 0 < ey -Phase A V1 0 V1 0
Fore, <0 <e3;-PhaseB 6 —§ 0 V1 V2
Fores <0 <es-PhaseC 60— ) 0—9o V9

3. THE HEIGHT FUNCTION

In Fig. 3. can be observed the height of cutting of the first flate &t the milling anglée,
for a cutting geometry.

The height function of cutting of the first flutg (¢) can be calculated by:

L2(0) d 5
= 1
a 6) /Ll(e) 2 sin A de (12)

where the limitsL; and L, are functions o#) and are calculated differently for each cutting
phase of) as can be observed on Table 1 and the values,aof;, e; ande, can be extracted
from Table 2.

In order to add the contributions of all flutes, the height of cutting for any flytes (vritten

( ) Lo (0+€&(n—1)) d ( )
ha(0) = / —de 13
Li@+e(n-1) 2 SMA

by:

Note that the functiong; and L, are now not only a function df but also a function of,
where¢ is the angle between the flutes.
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Table 2: Variables values

Type |l Typell
€1 P1 P1
es o1 +90 P2
€3 V2 Y1 +0
€4 P2 + 0 ©2 + )

The total length is calculated by:

Ny
o) = ha(6) (14)
n=1
A height function of each flute, for a four flute tool, is presented in Fig. 4.

h®)

he) he) he) he)

Figure 4: Function of height of cutting

4. THE CROSS-SECTIONAL AREA VARIATION

In Fig. 5 can be observed the chip cross-sectional adgpaf the first flute at milling angle
0, for a cutting geometry having, = 30° andy, = /2.
The chip area can be calculated by:

aigy = [ e
= in¢d 15
0= [ Sy o ds (15)

where the limitsL; and L, are functions of) and are calculated differently for each cutting
phase of) as can be observed on Table 1.
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Figure 5: Chip Cross-sectional Area

For a single flute andype | cutting geometry, the chip cross-sectional area function is
presented on Fig. 6. In order to add the contributions of all flutes, the chip cross-sectional area
function for any flute ) is written by:

La0+€n=1) ¢ g
An(0) = / ——sine de (16)
Ly@+e(n-1)) 2 SIMA

Note that the functiong, and L, are now not only a function af but also a function of,
where¢ is the angle between the flutes.
The total area is calculated by:

A(B) =) A (0) (17)

and the figure 7 shows the chip cross-sectional area fundti@nfor a milling with four flutes
(¢ =90°) and in bold the function of the first fluté, (¢), of a cut havinglype Igeometry.

5. FORCE COMPUTATION

In order to compare the present model with experimental data, the force components should
be decomposed in X, y and z directions as they are usually recorded in machining tests.

F,(0) K..(0) K. (0)
ﬁ(@) = Fy(e) = A(9> Kcy(e) + h(9> Key(e) (18)
F.(0) K..(0) K..(0)

But it's not convenient to write the specific cutting force in the fixed referential z. To
rewrite it on the more appropriate tool referentiat, = (tangential, radial and axial directions),
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Figure 6: Area Function for one Single Flute

another functionsiz(¢) andhr(#) has to be introduced:

F,(6) Kq(9) K.(0)
E,0) | = Ar(0) | Ko (0) | +hr(0) | K (0) ] (19)
Fz(e) Kcz(e) Kez(e)

In fact, the functionAz(0) andhr(#) are the rotation matriR.(6) multiplied by the area
and the height, respectively.

cos(f) sin(d) 0
R(f) = [ sin(d) —cos(f) 0 (20)
0 0 1
The rotation matriR, (¢) have to be written for each flute:
cos(@+&(n—1)) sin(@+&(n—1)) 0
R,(0)=[sin(@0+&(n—1) —cos(@+EE(n—1)) 0 (21)
0 0 1

Then, for all flutes, the rotated area function becomes:

Ar(0) =Y Ra(6) A,(0) (22)

and the rotated length function is:

hi(0) =) Ra(0) ha(0) (23)
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Figure 7: End Milling Area Function

To simplify the following calculations$; (0), S2(6), Ss3(0) andSy(¢)are defined:

ZA ) cos(0+& (n—1))

ZA ) sin(@ + & (n—1))
Zh ) cos(@ + & (n—1))

Zh ) sin(@ + & (n—1))

Rewriting the Eq. (19), the force can be expressed by:

F.(0) Ka(0) Ko (0)
Fy(9> ] = AR(Q) Kcr(e) ] + hR(e) Ker(e) ]
F.(0) Ke-(0) Ke.(0)
[ Kct(e) |
RO [50) S0 0 S0 s o] |
E,(0) ] = {52(9) —51(0) Sa(0)  —55(0) ] K(0)
F.(0) 0 A(6) 0 0 h(0) K::(O)
| Kez(e) a

Keyword

(24a)

(24b)

(24c)

(24d)

(25a)

(25D)
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Note that the matrix/(0) is the Jacobian of th& components in relation to the specific
cutting force coefficients.

S1(0)  S(0) 0 Ss(0) Su(0) 0
JO) = |S:(0) —5,(0) Su(0) —Su(6)
0 A() 0 0 hO)
-aagft 88[5:7" aalg‘fz 88]?;: 88[5‘:7 88]};32 | (26)

OFy IF JF JF JF OFy
8Kct 8Kcr aKcz 8Ket 8K€7‘ 8Kez

OF, oF, oF, oF, oF, oF,
LOKct  OKer O0Ker O0Ket O0Ker OKerH

6. SPECIFIC FORCE ANALYSIS

The problem is concentrated on the specific force analysis. The Eqg. (25) can be easily
calculated if the specific pressures are consta#it in

Empirical works, (Tlusty & MacNeil, 1975) and (Ber, Rotberg and Zombach, 1988), con-
sidered the specific force as one single value for each pair of tool-workpiece and relate the com-
ponents by coefficients of proportionality; these researchers considers that the specific force is
time constant.

Analytical approaches (Altintas, 2000) calculate the specific cutting forces as a function of
cutting parameters.

Orthogonal and Oblique are the most well known models and these specific cutting forces
are shown on Table 3, wheteis the shear angley the rake anglej the friction angley the
chip flow angle, and the lower indexmeans the normal component of the angles.

If these parameters are time constant, the specific cutting force do not change in time. To
analyze this behavior, for each pointéfthe equation:

K(0) = 3 (0)F () (27)

can be applied to any experimental data from milling process, then if the specific cutting force
is constant, the result must has the same value.

The graphic from Fig. 8 was taken from (Altintas & Lee, 1996). This experiment used the
following parameters:

d=181mm, A=30.0, N;j=4, b=508, ¢ =0, @=—, v=30——, s =0.05.
2 min

But, when calculating the Eq. 27, appears a singularity because there are three parameters
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Table 3: Analytical Specific Force

Orthogonal Model Oblique Model
g
K 7s cos(B—a) Te (cos(Bn—an)+tan X\ tann sinGn)

t sin ¢ cos(¢p+B—a) sin ¢, \/cos2 (¢pn+Bn—amn)+tan2 nsin? Gy,
K 7s sin(B—a) Te (cos(Bn—an) tan A—tan nsin By)

" sin ¢ cos(¢p+B—a) sin ¢, \/cos2 (¢pn+Bn—amn)+tan2 nsin? Gy,
K 0 T (sin(Bn—am))

# sin ¢n cos A \/COSQ(¢n+anan)+tan2 nsin? By,

400
200

-200 -200 ” N i
-400 /\/\/\/\/

-400
-600 -600
2n

600
400
200 |

(a) Scan (b) Digital

Figure 8: Experimental data from (Altintas & Lee, 1996)

and six unknown variables.

K. (0)
F,(0) Si(0)  Sa(0) 0 Ss(6) Su(6) 0 ggzg
Ey(0) | = |50) =5:(0) 0 Suf) —Ss(6) K..(0) 28)
F.(0) 0 A@B) 0 0 A Kt )

| Ke:(0) |

To solve this problem, we suppose that two consecutive points have the same specific force,



X =

Author Title Keyword

calculating the specific force for each interval:

F,(0) K. (0)
£F,(0) Ko (0)
F,(0) Ke-(0)
E0+do) | =70 | k) (29)
F,(0 + db) K..(0)
| FL(0+db) | | Ke.(0) |
The matrixJ amplified became a square matrix:
[ 51(0) S52(0) 0 S3(0) Sa(0) 0 ]
S2(0) —51(0) 0 Sa(0) —S53(0) 0
7.(0) — 0 0 A(6) 0 0 h(8)
a0) = S1(0+df) So(0 + db) 0 S3(0+df)  Su(0+ do) 0
So(0 + db) —S1(0+ db) 0 Sy(0 +df) —S5(0 + db) 0
0 0 A6+ do) 0 0 h(0 4+ df) |
(30)
and the problem has only one solution:
[ K.(0) ] F.(0)
KCT'<9> Fy(e)
K..(0 1 F.(0
Koo | =0 | R (1
K. (0) F,(0 + db)
| K..(0) | | F.(0+df) |

The Fig. 9 shows the result for specific pressures using the data from Fig. 8. Figuébs 9
and I, respectively tangential, radial and vertical specific cutting forces gnéhtand 9, are
tangential, radial and vertical specific edge forces). Figude®8 9f, 9j, 9% and 9 are them
distributions.

Calculating the average value of the specific values obtained for the hole rokatiand
applying on Eq. 25 results:

?ct
?CT
o K.
Fy(6) | =J(0) . (32)
F.(0) oo
L FCZ .

as shown in Table 4.
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Table 4: Average Specific Pressure Valued /mm?

Fct ?cr Fcz K et Fer Fez
1150.5 341.0 436.7 24.1 422 04

Using these values to recalculate the forces, Fig. 10 shows the comparison between exper-
imental force and semi-empirical force. This procedure aims to confirm if the behavior of the

specific pressure considered is correct.
A general code of an end milling process is given on Table 5. The input variables set by the
user are cutter radius, helix angle, entry and exit angles, axial depth of cut, the number of teeth,

feed per tooth and the experimental cutting force.
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Table 5: Algorithm to specific force analysis

or

or h(8)
8 Compute
51(0) =

52(0) =

A:(0)

6 ComputeA(d) =

7 Computen(0) =

2 Inputs:r, A\, Np,, b, 1, ©2, v, S
3 Compute) and(
4 Check forType lor Type Il

5 Computey, ey, e3 andey

1 Input experimental cutting forceéVp points)

Pae()),
Fyea:p(j.); € [1,Np]
FZeap(J)-
0 0 S 9 < €1
feel sm)\ St Sln¢d¢ e1 < 0 < €9
fe ssnx St singdo  ex <6 <es
o5 Ty St sin ¢do ez <0 <ey if Typel
0 es <0 <2r
0 0< 0 < eq
fe91 o St singdg e <0 <eo
Jer sui/\ st singdp ex <0 <eg if Typell
9626 Sinx St sin pdp ez <0 <ey
0 eq <0 <2m
0 0<0<e
f691 sirrl)\ d¢ €1 S 0 < €9
f: 1) 31rr1/\ ¢ €9 S 0 < eg if Type |
f(SSl:lA €3§9<€4
0 eq <0 <21
= 0 0< 0 < e1
fel sm/\ d¢ €1 S 0 < €9
fel sin A d¢ €2 S 0 < €3 if Type ]
Gésm)\d¢ 63§0<€4
0 eq < 0 < 27
sz A0+ E&(n—1)) cos(@+&(n—1))
Sl A+ E(n—1)) sin(0+E(n—1))

=S A0+ E(n—1))
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S3(0) = 302 h(6 + E(n— 1)) cos(d + £(n — 1))
Sa(0) = oLy h(0 + &(n — 1)) sin(0 + &(n —
ha(0) = 302y h(0 + E(n — 1))
9 Discretize all functions
Sdi(j) = S1(0 = =)
10 Compute/4(j)
[ Sdi(j) Sda(7) 0 Sds(j) Sda(j) 0 ]
Sdy(j) —Sd1(j) 0 Sdy(j) —Sds(j) 0
TAG) = 0 0 Ady () 0 0 hdy(5)
AV ZH8di(G+1)  Sda(j+ 1) 0 Sds(j+1)  Sdy(j+1) 0
Sda(j+1) —Sdi(j+1) 0 Sdy(j+1) —Sd3(j+1) 0
.0 0 Adi(j+1) 0 0 hdi(j + 1),
11 Compute the matriX'G:(j) with all specific pressures
Fieap(J)
erzp(j)
A N —1 F:L‘ewp(j)
KG(j) = Ja(y) erxp(j +1)
Frewp(j +1)
| Feap(j + 1)
12 Compute each specific pressure
Ku(j) = KG(j)
Kcr(j> = KG(])2
Kcz(j) = KG(])3
Kea(j) = KG(j)s
Ker(j) = KG(j)5
KGZ(]) = KG(j)6
13 Compute average specific pressures
Kct == Z;]V\[zpl Kc?ﬁ(])
Kcr = Z%\[zl Kcr(])
K., = Zﬂ'[:pl K62<j>
Koy = Zj:pl Kei(j)
Ker - Z%V:pl Ker(j)
Ke. = Zj:pl e=(J)
14 Use this values to calculate semi-empirical force

Fo(j) = KagSch(7) + KonStb(j) + KegS1ly(j) + K Sda(J)
Fy(]) = Kct5d2(j) - Kchdl(j) + KetSd4(j) - KeTSdS(j)
Fz(]) = KctSdl(j) + Kcr5d2<]> + KczAdt(j) + Kezhdt(j)
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7. CONCLUSIONS

This paper analyzes the behavior of the specific cutting pressures from experimental cutting
force data. A procedure to estimate the specific cutting forces from data is developed using
the function approach including the edge parcel in the model. The method is validated by
recalculation of the cutting force and compared with the experiment published by (Altintas &
Lee, 1996). The contribution of the edge force is important to the model but there is no visual
variation on time for them. The difference from results with and without the edge forces can be
observed comparing with (Araujo & Silveira, 2001).
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Figure 9: Experimental Specific Pressures and distribution
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Figure 10: Comparison between experimental and theoretic forces
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