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An analysis of specific cutting pressure in end milling process is presented. To model analytically milling forces it is necessary to compute the chip volume and the specific cutting pressure. The problem is concerned on the exact geometrical formulation of the process and especially on the last parameter. Considering only the influence of shearing and friction on the rake face and not taking into consideration the effects on cutting of the flank face i.e. the edge effects, the results obtained shown an error proportional to the contribution of the tool contact with the finished surface. This work aims taking the value, or the variation, of specific pressure from experimental data considering both effects, cutting force and edge force. This procedure analyzes the influence of the specific force modelling on the cutting process.

INTRODUCTION

In the end milling process there is a periodically varying chip cross section during the material removal and due to this the cutting force also varies. Accurate modelling of the cutting forces is required to predict the cutting forces, vibration, surface quality, and stability of machining processes.

A number of different methods to predict cutting forces have been developed over the last years. These models can be classified into three major categories: analytical, empirical, and mechanistic methods.

Analytical approaches, [START_REF] Armarego | The Machining of Metals[END_REF], [START_REF] Altintas | Manufacturing Automation[END_REF], model the physical mechanisms that occur during cutting. This includes complex mechanisms such as high strain rates, high temperature gradients and combined elastic and plastic deformations and it's not yet completely solved. [START_REF] Moufki | Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions[END_REF] In the empirical methods, a number of machining experiments are performed and performance measures such as cutting forces, tool life, and tool wear are measured [START_REF] Armarego | The Machining of Metals[END_REF].

Mechanistic models, [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF], [START_REF] Kline | The Prediction of Cutting Forces in End Milling[END_REF], [START_REF] Altintas | End Milling force algorithm for CAD Systems[END_REF], [START_REF] Yun | Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[END_REF] and [START_REF] Jayaram | Estimation of the Specific Cutting Pressures for Mechanistic Cutting Force Models[END_REF], predict the cutting forces based on a method that assumed cutting force to be proportional to the chip crosssectional area.

The constants of proportionality are called the specific cutting pressures and depend on the cutter geometry, cutting conditions, insert grade and work piece material properties. This paper questions the behavior in time of specific cutting pressures for cutting force models for end milling process, estimating the specific cutting pressures directly from experimental cutting force data.

CUTTING FORCE MODELLING OF END MILLING OPERATIONS

Instantaneous differential cutting force for one single flute was written by Martelotti [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF]:

d F cutting = K cutting t db (1)
where t is the uncut chip thickness and db is a differential piece of the depth of cut. And was rewritten by (Armarego, 1989) adding the edge parcel:

d F = d F edge + d F cutting d F = K edge db + K cutting t db (2)
where K edge and K cutting are vectors called specific edge force and specific cutting force, respectively.

The uncut chip thickness t for end milling is written as:

t = s t sin φ (3)
where φ is the angle of the cutting piece measured in relation of the normal direction of the feed per tooth s t ,

s t = v ω N f (4)
from known v, ω and N f as the feed velocity, rotation velocity and the number of flutes. The cutting tool pieces can be calculated by

db = d 2 tan λ dφ ( 5 
)
where d is the tool diameter and λ is the helix angle, as shown in Fig. 1. The angle δ is calculated by

δ = 2 b tan λ d ( 6 
)
where b is the the depth of cut.

The angle δ is used to classify the cutting geometry as Type I or Type II,

Type I -→ δ ≤ ϕ 2 -ϕ 1 Type II -→ δ > ϕ 2 -ϕ 1 (7)
where ϕ 1 and ϕ 2 are the entry and exit angles, respectively (Fig. 1), enlightened on [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF] and [START_REF] Araujo | Models for the Prediction of Instantaneous Cutting Forces in End Milling[END_REF]. The force become:

F = K edge db + K cutting t db = K edge + K cutting s t sin φ d 2 tan λ dφ (8)
So, the total force of cut, considering the N f flutes of the mill, are calculated by the sum:

F = N f i=1 F i (9)
In this approach, all force contributions are calculated at the same time because all differential parts of the force are calculated for each cutting piece.

The time variation of the milling force vector ( F(t)) is written as the multiplication of functions in time.

F(t) = K edge (t)h(t) + K cutting (t)A(t) (10) 
The specific forces, written as a vector function, ( K edge (t) and K cutting (t)), are multiplied by a scalar function relative to the height cutting (h(t)) and other relative to the cutting area, the scalar function (A(t)). This form is called from now on by Functional approach. The time variable t can be substituted by the angle of rotation θ of a fixed point P in a peripheral tool and the tool velocity rotation ω as shown in Fig. 2.

F(t) = F θ ω = F (θ) (11a) F (θ) = K edge (θ)h(θ) + K cutting (θ)A(θ) (11b) 
The functions h(θ) and A(θ) will be calculated separately in the following sections. 
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THE HEIGHT FUNCTION

In Fig. 3. can be observed the height of cutting of the first flute (h 1 ) at the milling angle θ, for a cutting geometry.

The height function of cutting of the first flute h 1 (θ) can be calculated by:

h 1 (θ) = L 2 (θ) L 1 (θ) d 2 sin λ dε ( 12 
)
where the limits L 1 and L 2 are functions of θ and are calculated differently for each cutting phase of θ as can be observed on Table 1 and the values of e 1 , e 2 , e 3 and e 4 can be extracted from Table 2. In order to add the contributions of all flutes, the height of cutting for any flute (n) is written by:

h n (θ) = L 2 (θ+ξ(n-1)) L 1 (θ+ξ(n-1)) d 2 sin λ dε (13)
Note that the functions L 1 and L 2 are now not only a function of θ but also a function of n, where ξ is the angle between the flutes. 
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The total length is calculated by: 

h(θ) = N f n=1 h n (θ) (14) 

THE CROSS-SECTIONAL AREA VARIATION

In Fig. 5 can be observed the chip cross-sectional area (A 1 ) of the first flute at milling angle θ, for a cutting geometry having ϕ 1 = 30 o and ϕ 2 = π/2.

The chip area can be calculated by:

A 1 (θ) = L 2 (θ) L 1 (θ) s t d 2 sin λ sin φ dφ ( 15 
)
where the limits L 1 and L 2 are functions of θ and are calculated differently for each cutting phase of θ as can be observed on Table 1.

y x z θ A 1 s sin t θ (θ) b Figure 5: Chip Cross-sectional Area
For a single flute and Type I cutting geometry, the chip cross-sectional area function is presented on Fig. 6. In order to add the contributions of all flutes, the chip cross-sectional area function for any flute (n) is written by:

A n (θ) = L 2 (θ+ξ(n-1)) L 1 (θ+ξ(n-1)) s t d 2 sin λ sin ε dε (16)
Note that the functions L 1 and L 2 are now not only a function of θ but also a function of n, where ξ is the angle between the flutes.

The total area is calculated by:

A(θ) = N f n=1 A n (θ) (17) 
and the figure 7 shows the chip cross-sectional area function A(θ) for a milling with four flutes (ξ = 90 o ) and in bold the function of the first flute A 1 (θ), of a cut having Type I geometry.

FORCE COMPUTATION

In order to compare the present model with experimental data, the force components should be decomposed in x, y and z directions as they are usually recorded in machining tests.

F (θ) =   F x (θ) F y (θ) F z (θ)   = A(θ)   K cx (θ) K cy (θ) K cz (θ)   + h(θ)   K ex (θ) K ey (θ) K ez (θ)   (18) 
But it's not convenient to write the specific cutting force in the fixed referential x, y, z. To rewrite it on the more appropriate tool referential t, r, z (tangential, radial and axial directions), another functions A R (θ) and h R (θ) has to be introduced:

  F x (θ) F y (θ) F z (θ)   = A R (θ)   K ct (θ) K cr (θ) K cz (θ)   + h R (θ)   K et (θ) K er (θ) K ez (θ)   (19) 
In fact, the function A R (θ) and h R (θ) are the rotation matrix R(θ) multiplied by the area and the height, respectively.

R(θ) =   cos(θ) sin(θ) 0 sin(θ) -cos(θ) 0 0 0 1   (20) 
The rotation matrix R n (θ) have to be written for each flute:

R n (θ) =   cos(θ + ξ (n -1)) sin(θ + ξ (n -1)) 0 sin(θ + ξ (n -1)) -cos(θ + ξ (n -1)) 0 0 0 1   (21) 
Then, for all flutes, the rotated area function becomes:

A R (θ) = N f n=1 R n (θ) A n (θ) (22) 
and the rotated length function is: To simplify the following calculations, S 1 (θ), S 2 (θ), S 3 (θ) and S 4 (θ)are defined:

h R (θ) = N f n=1 R n (θ) h n (θ) (23) 
S 1 (θ) = N f n=1 A n (θ) cos(θ + ξ (n -1)) (24a) S 2 (θ) = N f n=1 A n (θ) sin(θ + ξ (n -1)) (24b) S 3 (θ) = N f n=1 h n (θ) cos(θ + ξ (n -1)) (24c) S 4 (θ) = N f n=1 h n (θ) sin(θ + ξ (n -1)) (24d) 
Rewriting the Eq. ( 19), the force can be expressed by:

  F x (θ) F y (θ) F z (θ)   = A R (θ)   K ct (θ) K cr (θ) K cz (θ)   + h R (θ)   K et (θ) K er (θ) K ez (θ)   (25a)   F x (θ) F y (θ) F z (θ)   =   S 1 (θ) S 2 (θ) 0 S 3 (θ) S 4 (θ) 0 S 2 (θ) -S 1 (θ) 0 S 4 (θ) -S 3 (θ) 0 0 0 A(θ) 0 0 h(θ)           K ct (θ) K cr (θ) K cz (θ) K et (θ) K er (θ) K ez (θ)         (25b)
Note that the matrix J(θ) is the Jacobian of the F components in relation to the specific cutting force coefficients. 

J(θ) =   S 1 (θ) S 2 (θ) 0 S 3 (θ) S 4 (θ) 0 S 2 (θ) -S 1 (θ) 0 S 4 (θ) -S 4 (θ) 0 0 0 A(θ) 0 0 h(θ)   =      

SPECIFIC FORCE ANALYSIS

The problem is concentrated on the specific force analysis. The Eq. ( 25) can be easily calculated if the specific pressures are constant in θ.

Empirical works, [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF] and [START_REF] Ber | A Method for Cutting Forces in End Milling[END_REF], considered the specific force as one single value for each pair of tool-workpiece and relate the components by coefficients of proportionality; these researchers considers that the specific force is time constant.

Analytical approaches [START_REF] Altintas | Manufacturing Automation[END_REF] calculate the specific cutting forces as a function of cutting parameters.

Orthogonal and Oblique are the most well known models and these specific cutting forces are shown on Table 3, where φ is the shear angle, α the rake angle, β the friction angle, η the chip flow angle, and the lower index n means the normal component of the angles.

If these parameters are time constant, the specific cutting force do not change in time. To analyze this behavior, for each point of θ, the equation:

K(θ) = J -1 (θ)F(θ) (27) 
can be applied to any experimental data from milling process, then if the specific cutting force is constant, the result must has the same value.

The graphic from Fig. 8 was taken from [START_REF] Altintas | A General Mechanics and Dynamics Model for Helical End Mills[END_REF]. This experiment used the following parameters:

d = 18.1mm, λ = 30.0, N f = 4, b = 5.08, ϕ 1 = 0, ϕ 2 = π 2 , v = 30 m min , s t = 0.05.
But, when calculating the Eq. 27, appears a singularity because there are three parameters [START_REF] Altintas | A General Mechanics and Dynamics Model for Helical End Mills[END_REF] and six unknown variables.

  F x (θ) F y (θ) F z (θ)   =   S 1 (θ) S 2 (θ) 0 S 3 (θ) S 4 (θ) 0 S 2 (θ) -S 1 (θ) 0 S 4 (θ) -S 3 (θ) 0 0 0 A(θ) 0 0 h(θ)           K ct (θ) K cr (θ) K cz (θ) K et (θ) K er (θ) K ez (θ)         (28) 
To solve this problem, we suppose that two consecutive points have the same specific force, calculating the specific force for each interval:

        F x (θ) F y (θ) F z (θ) F x (θ + dθ) F y (θ + dθ) F z (θ + dθ)         = J A (θ)         K ct (θ) K cr (θ) K cz (θ) K et (θ) K er (θ) K ez (θ)         (29)
The matrix J amplified became a square matrix J A :

J A (θ) =         S 1 (θ) S 2 (θ) 0 S 3 (θ) S 4 (θ) 0 S 2 (θ) -S 1 (θ) 0 S 4 (θ) -S 3 (θ) 0 0 0 A(θ) 0 0 h(θ) S 1 (θ + dθ) S 2 (θ + dθ) 0 S 3 (θ + dθ) S 4 (θ + dθ) 0 S 2 (θ + dθ) -S 1 (θ + dθ) 0 S 4 (θ + dθ) -S 3 (θ + dθ) 0 0 0 A(θ + dθ) 0 0 h(θ + dθ)         (30) 
and the problem has only one solution:

        K ct (θ) K cr (θ) K cz (θ) K et (θ) K er (θ) K ez (θ)         = [J A (θ)] -1         F x (θ) F y (θ) F z (θ) F x (θ + dθ) F y (θ + dθ) F z (θ + dθ)         (31) 
The Fig. 9 shows the result for specific pressures using the data from Fig. 8. Figures 9a, 9b and9c, respectively tangential, radial and vertical specific cutting forces and 9g, 9h and 9i, are tangential, radial and vertical specific edge forces). Figures 9d,9e, 9f, 9j, 9k and 9l are them distributions.

Calculating the average value of the specific values obtained for the hole rotation K, and applying on Eq. 25 results:

  F x (θ) F y (θ) F z (θ)   = J(θ)         K ct K cr K cz K et K er K ez         (32) 
as shown in Table 4. Using these values to recalculate the forces, Fig. 10 shows the comparison between experimental force and semi-empirical force. This procedure aims to confirm if the behavior of the specific pressure considered is correct.

A general code of an end milling process is given on Table 5. The input variables set by the user are cutter radius, helix angle, entry and exit angles, axial depth of cut, the number of teeth, feed per tooth and the experimental cutting force. 

(θ) = N f n=1 A(θ + ξ(n -1)) cos(θ + ξ(n -1)) S 2 (θ) = N f n=1 A(θ + ξ(n -1)) sin(θ + ξ(n -1)) A t (θ) = N f n=1 A(θ + ξ(n -1)) S 3 (θ) = N f n=1 h(θ + ξ(n -1)) cos(θ + ξ(n -1)) S 4 (θ) = N f n=1 h(θ + ξ(n -1)) sin(θ + ξ(n -1)) h t (θ) = N f n=1 h(θ + ξ(n -1)) 9 
Discretize all functions Sd 1 (j) = S 1 (θ = 2π (j-1) Np-1 ) 10 Compute J A (j)

J A (j) =         Sd 1 (j) Sd 2 (j) 0 Sd 3 (j) Sd 4 (j) 0 Sd 2 (j) -Sd 1 (j) 0 Sd 4 (j) -Sd 3 (j) 0 0 0 Ad t (j) 0 0 hd t (j) Sd 1 (j + 1) Sd 2 (j + 1) 0 Sd 3 (j + 1) Sd 4 (j + 1) 0 Sd 2 (j + 1) -Sd 1 (j + 1) 0 Sd 4 (j + 1) -Sd 3 (j + 1) 0 0 0 Ad t (j + 1) 0 0 hd t (j + 1)        
11 Compute the matrix KG(j) with all specific pressures

KG(j) = J A (j) -1 .         F x exp (j) F x exp (j) F x exp (j) F x exp (j + 1) F x exp (j + 1) F exp (j + 1)         12 Compute each specific pressure K ct (j) = KG(j) 1 K cr (j) = KG(j) 2 K cz (j) = KG(j) 3 K et (j) = KG(j) 4 K er (j) = KG(j) 5 K ez (j) = KG(j) 6
13 Compute average specific pressures

K ct = Np j=1 K ct (j) K cr = Np j=1 K cr (j) K cz = Np j=1 K cz (j) K et = Np j=1 K et (j) K er = Np j=1 K er (j) K ez = Np j=1 K ez (j)
14 Use this values to calculate semi-empirical force

F x (j) = K ct Sd 1 (j) + K cr Sd 2 (j) + K et Sd 3 (j) + K er Sd 4 (j) F y (j) = K ct Sd 2 (j) -K cr Sd 1 (j) + K et Sd 4 (j) -K er Sd 3 (j)
F z (j) = K ct Sd 1 (j) + K cr Sd 2 (j) + K cz Ad t (j) + K ez hd t (j)

CONCLUSIONS

This paper analyzes the behavior of the specific cutting pressures from experimental cutting force data. A procedure to estimate the specific cutting forces from data is developed using the function approach including the edge parcel in the model. The method is validated by recalculation of the cutting force and compared with the experiment published by [START_REF] Altintas | A General Mechanics and Dynamics Model for Helical End Mills[END_REF]. The contribution of the edge force is important to the model but there is no visual variation on time for them. The difference from results with and without the edge forces can be observed comparing with [START_REF] Araujo | The influence of the specific cutting force on end milling models[END_REF]. 
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Table 1 :

 1 Integration limits for each phase.

		Type I	Type II
	Phase	L 1

Table 2 :

 2 Variables values

		Type I Type II
	e 1	ϕ 1	ϕ 1

Table 3 :

 3 Analytical Specific Force

		Orthogonal Model		Oblique Model
	K t	τs cos(β-α) sin φ cos(φ+β-α)	τs sin φn	(cos(βn-αn)+tan λ tan η sin βn) √ cos 2 (φn+βn-αn)+tan 2 η sin 2 βn

Table 4 :

 4 Average Specific Pressure Values -N/mm 2 K ct K cr K cz K et K er K ez 1150.5 341.0 436.7 24.1 42.2 0.4

Table 5 :

 5 Algorithm to specific force analysis . 1 Input experimental cutting force (Np points) . F x exp (j), F y exp (j), j ∈ [1, Np] F z exp (j). 2 Inputs: r, λ, N n , b, ϕ 1 , ϕ 2 , v, s t 3 Compute δ and ζ 4 Check for Type I or Type II 5 Compute e 1 , e 2 , e 3 and e 4

	6 Compute A(θ) =		0	0≤ θ < e 1
		θ e 1 θ θ-δ e 3 θ-δ		r sin λ s t sin φ dφ r sin λ s t sin φ dφ e 2 ≤ θ < e 3 e 1 ≤ θ < e 2 r sin λ s t sin φ dφ e 3 ≤ θ < e 4 if Type I
				0	e 4 ≤ θ < 2π
	or	A(θ) =		0	0≤ θ < e 1
		θ e 1 e 2 e 1 e 2 θ-δ	r sin λ s t sin φ dφ r sin λ s t sin φ dφ e 2 ≤ θ < e 3 if Type II e 1 ≤ θ < e 2 r sin λ s t sin φ dφ e 3 ≤ θ < e 4
				0	e 4 ≤ θ < 2π
	7 Compute h(θ) =		0	0≤ θ < e 1
		θ e 1 θ θ-δ e 3 θ-δ		r sin λ dφ r sin λ dφ r sin λ dφ 0	e 1 ≤ θ < e 2 e 2 ≤ θ < e 3 if Type I e 3 ≤ θ < e 4 e 4 ≤ θ < 2π
	or	h(θ) =		0	0≤ θ < e 1
		θ e 1 e 2 e 1 e 2 θ-δ	r sin λ dφ r sin λ dφ r sin λ dφ 0	e 1 ≤ θ < e 2 e 2 ≤ θ < e 3 if Type II e 3 ≤ θ < e 4 e 4 ≤ θ < 2π
	8 Compute		
	S 1			
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