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In order to predict machining forces it is necessary to know the chip volume and calculate the specific cutting force of the process, the prediction force problem is concerned on the right formulation of this last parameter that most models considers constant. This paper analyzes the behavior of the specific cutting pressures on end milling by calculating, from experimental data force, the pressure on each moment of cut. This procedure involves an approach which do not considers the force on each cutting edge piece but a function of area and height of cutting. After the cutting pressure analysis, some comparisons with previously published experiments are done and it can be seen that for the prediction of end milling cutting forces, the variation in time of the specific cutting force should be considered.

Introduction

The end milling process is one of the most widely used and efficient means of machining materials. In this process there is a periodically varying chip section during the material removal and the cutting force also varies during this process. Accurate modelling of the cutting forces is required to predict the cutting forces, vibration, surface quality, and stability of machining processes.

A number of different methods to predict cutting forces have been developed over the last years. These models can be classified into three major categories: empirical, analytical, and mechanistic methods. In the empirical methods, a number of machining experiments are performed and performance measures such as cutting forces, tool life, and tool wear are measured [START_REF] Armarego | The Machining of Metals[END_REF]. These responses are then correlated to the cutting conditions using empirical functions and require a lot of experimentation. Analytical approaches, [START_REF] Armarego | The Machining of Metals[END_REF] and [START_REF] Altintas | Manufacturing Automation[END_REF] model the physical mechanisms that occur during cutting. This include complex mechanisms such as high strain rates, high temperature gradients and combined elastic and plastic deformations and it's not yet completely solved. Mechanistic models [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF]Kline et all, 1982;[START_REF] Altintas | End Milling force algorithm for CAD Systems[END_REF][START_REF] Yun | Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[END_REF][START_REF] Yun | Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[END_REF]Kapoor et all, 2001) predict the cutting forces based on a method that assumed cutting force to be proportional to the chip cross-sectional area.

The constants of proportionality are called the specific cutting pressures and depend on the cutter geometry, cutting conditions, insert grade and workpiece material properties. This paper questions the behavior in time of specific cutting pressures for cutting force models for end milling process, estimating the specific cutting pressures directly from cutting force data previously published.

Cutting force modelling of end-milling operations

Instantaneous differential force modelling for one single flute is normally written by Martelotti formula [START_REF] Araujo | Models for the Prediction of Instantaneous Cutting Forces in End Milling[END_REF] 

d F i = K dA = K t db (1)
where K is a vector called specific cutting force and the instantaneous force is the sum of differential parts calculated on small cutting tool pieces (db) multiplied by the specific force and the uncut chip thickness (t) that for end milling can be written as:

t = s t sin φ (2)
where φ is the angle of the cutting piece measured in relation of the normal direction of the feed per tooth s t ,

s t = v ω N f (3)
from known v, ω and N f as the feed velocity, rotation velocity and the number of flutes.

The cutting tool pieces can be calculated by The angle δ is calculated by

δ = 2 b tan λ d ( 5 
)
where b is the the depth of cut.

The angle δ is used to classify the cutting geometry as Type I or Type II (Tab. ( 1)), where ϕ 1 and ϕ 2 are the entry and exit angles, respectively (Fig. ( 1)), which were enlightened on [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF] and [START_REF] Araujo | Models for the Prediction of Instantaneous Cutting Forces in End Milling[END_REF].

Table 1. Classification as Type I or Type II.

Type I Type II δ ≤ ϕ 2 -ϕ 1 δ > ϕ 2 -ϕ 1
The force become:

F i = KdA = Ktdb = K d s t sin φ 2 tan λ dφ (6)
So, the total force of cut, considering the N f flutes of the mill, are calculated by the sum:

F = N f i=1 F i (7)
In this approach, all force contributions are calculated at the same time because all differential parts of the force are calculated for each cutting piece.

Force as a function of time

The milling force vector ( F(t)) is written as the multiplication of two parcels: one relative to the specific force, written as a vector function ( K(t)), and other relative to the cutting area, an scalar function (A(t)). This form is called from now on by Function of area variation approach.

F(t) = K(t)A(t) (8) 
The time variable t can be substituted by the angle of rotation θ of a fixed point P in a peripheral tool and the tool velocity rotation ω: (Fig. (2))

F(t) = F θ ω = F (θ) (9a) F (θ) = K(θ) A(θ) (9b)
The function A(θ) will be calculated separately in the following section. 

The Cross-sectional Area Variation

Let take the area parcel separately to construct the area function A(θ).

In Fig.

(3) can be observed the chip cross-sectional area (A 1 ) of the first flute at milling angle θ, for a cutting geometry having ϕ 1 = 0 and ϕ 2 = π.

y x z θ A 1 s sin t θ (θ) b Figure 3. Chip Cross-sectional Area.
The chip area can be calculated by:

A 1 (θ) = L2(θ) L1(θ) s t d 2 sin λ sin φ dφ (10)
where the limits L 1 and L 2 are functions of θ and are calculated differently for each cutting phase of θ as can be observed on Tab. (2).

Table 2. Integration limits for each phase.

Type I Type II Phase L 1 (θ) L 2 (θ) L 1 (θ) L 2 (θ) For e 1 < θ ≤ e 2 -Phase A e 1 θ e 1 θ For e 2 < θ ≤ e 3 -Phase B θ -δ θ e 1 e 2 For e 3 < θ ≤ e 4 -Phase C θ -δ e 3 θ -δ e 2
The values of e 1 , e 2 , e 3 and e 4 can be extracted from Tab. (3). In order to add the contributions of all flutes, the chip cross-sectional area function for any flute (n) is written by:

A n (θ) = L2(θ+ξ(n-1)) L1(θ+ξ(n-1)) s t d 2 sin λ sin ε dε (11)
Note that the functions L 1 and L 2 are now not only a function of θ but also a function of n, where ξ is the angle between the flutes.

The total area is calculated by: 

A(θ) = N f n=1 A n (θ) (12 

Rotated Area Function

In order to compare the present model with experimental data, the force components should be decomposed in x, y and z directions as they are usually recorded in machining tests.

F (θ) =   F x (θ) F y (θ) F z (θ)   = A(θ)   K x (θ) K y (θ) K z (θ)   (13) 
But it's not convenient to write the specific cutting force in the fixed referential x, y, z. To rewrite it on the more appropriate tool referential t, r, z (tangential, radial and axial directions), another function A R (θ) has to be introduced:

  F x (θ) F y (θ) F z (θ)   = A R (θ)   K t (θ) K r (θ) K z (θ)   (14) 
In fact, the function A R (θ) is the rotation matrix R(θ) multiplied by the area.

R(θ) =   cos(θ) sin(θ) 0 sin(θ) -cos(θ) 0 0 0 1   (15) 
The rotation matrix R n (θ) have to be written for each flute:

R n (θ) =   cos(θ + ξ (n -1)) sin(θ + ξ (n -1)) 0 sin(θ + ξ (n -1)) -cos(θ + ξ (n -1)) 0 0 0 1   (16) 
Then, for all flutes, the rotated area function becomes:

A R (θ) = N f n=1 R n (θ) A n (θ) (17) 
To simplify the following calculations, C 1 (θ) and C 2 (θ) are defined:

C 1 (θ) = N f n=1 A n (θ) cos(θ + ξ (n -1)) (18a) C 2 (θ) = N f n=1 A n (θ) sin(θ + ξ (n -1)) (18b) A(θ) = N f n=1 A n (θ) (18c) 
Rewriting the Eq. ( 14), the force can be expressed by:

  F x (θ) F y (θ) F z (θ)   = A R (θ)   K t (θ) K r (θ) K z (θ)   =   C 1 (θ) C 2 (θ) 0 C 2 (θ) -C 1 (θ) 0 0 0 A(θ)     K t (θ) K r (θ) K z (θ)   (19) 
Multiplying the matrix A R (θ) by a fictitious specific cutting force, e.g. K t (θ) = K r (θ) = K z (θ) = 1N/mm 2 , can be analyzed the contribution only from the area, with constant specific force. (Fig. ( 6))

  f x (θ) f y (θ) f z (θ)   = A R (θ)   1 1 1   (20) 2π π x y z f f f N Figure 6. Cutting force for fictitious constant specific force (K t (θ) = K r (θ) = K z (θ) = 1 N/mm 2 ).
Note that the matrix A R (θ) is the Jacobian of the F components in relation to the specific cutting force coefficients:

A R (θ) =           ∂F x ∂K t ∂F x ∂K r ∂F x ∂K z ∂F y ∂K t ∂F y ∂K r ∂F y ∂K z ∂F z ∂K t ∂F z ∂K r ∂F z ∂K z           (21)

Specific Force Analysis

The problem is concentrated on the specific cutting force analysis. The Eq. ( 19) can be easily calculated if the specific pressure is constant in time (θ).

Empirical works, [START_REF] Tlusty | Dynamics of Cutting in End Milling[END_REF] and (Ber et all, 1988), considered the specific force as one single value for each pair of tool-workpiece and relate the components by coefficients of proportionality; these researchers considers that the specific force is time constant.

Analytical approaches [START_REF] Altintas | Manufacturing Automation[END_REF] calculate the specific cutting forces as a function of cutting parameters.

Orthogonal and Oblique are the most important models and the specific cutting forces are presented on Tab. ( 4), where φ is the shear angle, α the rake angle, β the friction angle, η the chip flow angle, and the "lower index" n means the normal component of the angles. Table 4. Analytical Specific Force.

Orthogonal Model

Oblique Model

K t τ s cos(β-α) sin φ cos(φ+β-α) τ s sin φ n (cos(β n -α n )+tan λ tan η sin β n ) √ cos 2 (φ n +β n -α n )+tan 2 η sin 2 β n K r τ s sin(β-α) sin φ cos(φ+β-α) τ s sin φ n (cos(β n -α n ) tan λ-tan η sin β n ) √ cos 2 (φ n +β n -α n )+tan 2 η sin 2 β n K z 0 τ s sin φ n cos λ (sin(β n -α n )) √ cos 2 (φ n +β n -α n )+tan 2 η sin 2 β n
If these parameters are time constant, the specific cutting force will not change in time. To analyze this behavior, for each point of θ, the Eq. ( 22)

K(θ) = A R -1 (θ)F(θ) (22) 
can be applied to any experimental data from milling process, then if the specific cutting force is constant, the result must has the same value.

The graphic from Fig. ( 7) was taken from [START_REF] Altintas | A General Mechanics and Dynamics Model for Helical End Mills[END_REF]. This experiment used the following parameters: Analyzing these points, with the aim to get the best proposal for the specific cutting force, the Eq. ( 19) is recalculated and compared with the experimental data.

d = 18.1mm, λ = 30.0, N f = 4, b = 5.08, ϕ 1 = 0, ϕ 2 = π 2 , v = 30 m min , s t = 0.05.
The first test is concerned on a constant value: the mean of the function presented in Fig. (8):

K tmedio = 1 p p i=1 K t (θ) (23a) K r medio = 1 p p i=1 K r (θ) ( 23b 
)
where p is the number of points.

Those values, applied on Eq. ( 19) produces the forces presented and compared with the experimental data in Fig. (10). To improve the value of the constant specific force, those who minimize the difference between the theoretical and experimental forces are the asymptotic values: (Fig. ( 8))

K tconstant = 1700 N/mm 2 K r constant = 1350 N/mm 2 (24) 
Applied on Eq. ( 19) results the comparison presented in So, constant values for the specific force do not produces good agreement with the experiment. In a mechanistic approach, one proposal is modelling the radial specific force as a function of the crosssectional area, because it varies with θ.

Here, the proposed function for the radial specific cutting force is:

K r variable = k r 1 A(θ) -1 + k r 2 (25) 
where Using this proposal for the radial specific force and the tangential asymptotic value (K t = 1700 N/mm 2 ) and applying on Eq. ( 19):

  F x (θ) F y (θ) F z (θ)   =   C 1 (θ) C 2 (θ) 0 C 2 (θ) -C 1 (θ) 0 0 0 A(θ)     K t k r 1 A(θ) -1 + k r 2 K z   (26) 
The Fig. ( 13) presents the comparison of the result of the Eq. ( 26) with the experiment. For this case, can be observed that the cutting force model with time variable cutting pressure is more precise then the constant specific force. Applying on Eq. ( 19) and rewriting, the Eq. ( 28) becomes:

  F x (θ) F y (θ) F z (θ)   = A R (θ)   K t k r 2 K z   + k r 1   C 2 (θ) A(θ) -1 -C 1 (θ) A(θ) -1 0   (27) 
and shows that, for this case, the problem is engaged.

Conclusions

This paper analyzes the behavior of the specific cutting pressures from experimental cutting force data. A procedure to estimate the specific cutting forces from data is developed using the function of area variation approach. The developed method is validated by recalculation of the cutting force and compared with the experiment published by [START_REF] Altintas | A General Mechanics and Dynamics Model for Helical End Mills[END_REF]. From the results, it can be seen that the prediction of end milling forces should consider the variation on time of the specific cutting force.
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 7 Figure7. Experimental data from[START_REF] Altintas | A General Mechanics and Dynamics Model for Helical End Mills[END_REF].Taking each point of the curve (Fig. (7)) and calculating the proposed Eq. (22), results in behavior shown in the Fig. (8), that is K(θ) is not constant:
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 10 Figure 10. Comparison between experimental force and the force calculated from the mean specific force.
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 11 Figure 11. Comparison between experimental force and the force calculated from a constant specific force.
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 12 Figure 12. Proposed function for radial specific cutting force.
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 13 Figure 13. Comparison between experimental and calculated force from proposed specific force function.
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 3 Variables values.

		Type I Type II
	e 1	ϕ 1	ϕ 1
	e 2 ϕ 1 + δ	ϕ 2
	e 3	ϕ 2	ϕ 1 + δ
	e 4 ϕ 2 + δ	ϕ 2 + δ
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