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Abstract. This work compares some of the available models for prediction of instan-

taneous forces in end milling. A cutting model for predicting the instantaneous milling

forces involves partitioning each tooth cutting edge into a series of elemental tools. Based

on this concept, the cutting forces on disc-like elements that comprise the end mill can be

summed to give the total cutting force. Models based on empirical constants, orthogonal

cutting data and oblique cutting relations are reviewed, proposed and compared.
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1. INTRODUCTION

Machining is one of the oldest process for shaping components and due to its ver-

satility and precision achieved through continual innovation, research and development,

has become an indispensable process used in manufacturing industry. The need to un-

derstand the metal cutting processes have attracted the attention of many researchers

which proposed di®erent forms of modeling machining: analytical, numerical, experimen-

tal and hybrid approaches (Ehmann, Kapoor & DeVor, 1997). Some of the existing milling

forces approaches are: the instantaneous rigid force models, instantaneous force models

with static de°ection, average rigid force models and regenerative dynamic force models

(Smith and Tlusty, 1991).

In this paper, we consider the methods for prediction of forces in end milling which

involves instantaneous rigid forces and classi¯ed them as: semi-empirical, mechanistic,

orthogonal and oblique methods.

2. END MILLING MODELING

The machining process of end milling is shown in Fig. 1, which presents two moments

of cutting: on the left, the tool is beginning to cut the workpiece and the cutting width



(a) changes with the feed per tooth (sz), so the average force increases in time; on the

right, the cutting width (a) is constant and the force is periodic.

Figure 1 { End Milling.

The undeformed chip thickness (t) for each point of the cutting edge (Fig. 1) can be

calculated from the expression (1) as a function of the angular position (Ã) of the point

and the feed per tooth.

t = sz sin(Ã) (1)

The geometry of the end mill and the important variables are shown in Fig. 2, in

which is presented a lateral view of the tool-workpiece pair and the lateral face of the tool

in contact with the workpiece unfolded (unrolled) in a plane together with the superior

view of the tool.

Figure 2 { Geometry of cut.

In Figure 2, the cutting edge of each tooth is represented by a line, inclined by the

helix angle ¸ on the plane and, on the superior view, the cutting edge is represented by

the angle ', which indicates the leading point of the cutting edge. The angle Ã represents

the position of each point of the cutting edge in contact with the workpiece. This way,

the range for Ã is from Ã1, the initial angle, which in this case is zero, to Ã2, the exit

angle. The di®erence between them can be called the contact angle Ão = Ã2 ¡ Ã1.

Other angles have to be de¯ned: the angle ± is the di®erence between the angle Ã of

the leading point of the cutting edge and the last point of the edge which is engaged in

the cut. The helix angle ¸ relates the cutting edge and the Ã angle, so an element of the

cutting edge (db) can be written as:

db =
r

tg¸
dÃ (2)



Each cutting edge passes, from Ã1 to Ã2, through three phases: phase A, the cutter

is entering the workpiece and each rotation dÃ increases the length of the edge engaged

in cutting; phase B, the length of the cutting edge is constant; and in phase C it is

decreasing. Moreover, depending on the relation between the contact angle Ão and the

± angle, the geometry of the unfolded surface of cut can be classi¯ed as Type I, if the

contact angle Ão is larger than ±, else it is called Type II.

In the following table are presented the ranges of ' and Ã of each region and each

type of cutting.

Table 1 { Ranges of ' and Ã

Type I Type II Type I Type II

Region 'initial 'final 'initial 'final Ãinitial Ãfinal Ãinitial Ãfinal

A Ã1 ± Ã1 Ã2 Ã1 ' Ã1 '

B ± Ã2 Ã2 ± '¡ ± ' Ã1 Ã2

C Ã2 Ã2+± ± Ã2+± '¡ ± Ã2 '¡ ± Ã2

In general, the cutting forces in the end milling can be expressed as a function of

chip thickness and depth of cut:

F = K t b (3)

where K is the speci¯c cutting force, an empirical function of the workpiece material, tool

geometry and the average chip thickness. Replacing the chip thickness, an element of the

tangential and radial forces can be expressed as:

dFt = Kt sz sinÃ db dFr = Kr sz sinÃ db (4)

Integrating in the ranges of Ã, on each cutting region (Table 1), and transforming

to the workpiece referential, the forces acting can be written from (1) to (4), as:

Fn =

·
Fx

Fy

¸
n

=

Z Ã2

Ã1

sz sinÃ
r

tg¸

·
cosÃ sinÃ

¡ sinÃ cosÃ

¸ ·
¡Kt

Kr

¸
dÃ (5)

The sum on all cutters results the total force:

F =

NX
n=1

F
n

(6)

3. SEMI-EMPIRICAL MODELS

Koenigsberger and Sabberwal (Ehmann et al., 1997) proposed a model (eq. 3) for

tangential forces based on measurements during cutting tests and developed empirical

coe±cients that relate the instantaneous forces to the chip area in milling.

Tlusty and McNeil (1975) used an approach in which tangential and radial forces on

the cutter were predicted based on Sabberwal model and using a ¯xed rate between these

forces. The following equations describes the di®erential formulas for the forces where



K
(1)

t is the tangential speci¯c cutting force, and the superscript (1) indicates the ¯rst

formulation to the forces.

dF
(1)

t = K
(1)

t t db dF
(1)

r = 0:3 dF
(1)

t (7)

In the special case of end milling, and from eq. (5), the forces on the workpiece

referential, predicted by Tlusty, are:

·
dF

(1)

x

dF
(1)

y

¸
n

= ¡

·
cosÃ + 0:3 sinÃ

0:3 cosÃ ¡ sinÃ

¸
dF

(1)

t (8)

·
dF

(1)

x

dF
(1)

y

¸
n

= ¡K
(1)

t sz

r

tg ¯

Z Ã2

Ã1

·
sinÃ cosÃ + 0:3 sin2 Ã

sin2 Ã ¡ 0:3 sinÃ cosÃ

¸
dÃ (9)

Ber, Rotberg & Zombach (1988) introduced the vertical force and have considered

the vertical and radial forces proportional to the tangential force as Tlusty have already

done with the radial force:

dF
(2)

t = K
(2)

t t db dF
(2)

r = 0:4K
(2)

t t db dF
(2)

z = 0:3K
(2)

t t db (10)

2
64
dF

(1)

x

dF
(1)

y

dF
(1)

z

3
75
n

= ¡K
(2)

t sz

r

tg ¯

Z Ã2

Ã1

2
64
sinÃ cosÃ + 0:4 sin2 Ã

sin2 Ã ¡ 0:4 sinÃ cosÃ

0:3 sinÃ

3
75 dÃ (11)

4. MECHANISTICAL MODELS

The mechanistic models for the prediction of forces consider that the speci¯c cutting

force varies with the chip thickness as shown by Sabberwal (Kline et al., 1981).

Kline, DeVor and Lindberg (1981) proposed an approximation of the speci¯c force

K
(3)

t as a function of the feed rate sz:

K
(3)

t = Ct (t)
p
»= Ct (sz)

p (12)

dF
(3)

t = Ct (sz)
p+1

sinÃ db dF
(3)

r = K
(3)

r sz sinÃ db (13)

where the value of p is obtained experimentally, usually p = ¡0:3, and the values of Ct

and K
(3)

r are constants for each material and cutting condition.

Altintas & Spence (1991) consider both K
(4)

t and K
(4)

r a function of the average chip

thickness.

K
(4)

t = Ct (¹t)
pt K(4)

r
= Cr (¹t)

pr (14)

where Ct, Cr, pt and pr are empirical constants and the average chip thickness is calculated

using the expression:

¹t =

P
N

n=1(cosÃi ¡ cosÃf ) szP
N

n=1(Ãf ¡ Ãi)
(15)



So the forces predicted are:

dF
(4)
t = Ct (¹t)

pt+1 db dF (4)
r

= Cr (¹t)
pr+1 db (16)

5. ORTHOGONAL CUTTING MODELS

Most practical cutting operations, such as milling, involves edges inclined at various

angles to the direction of cut. The basic mechanism of cutting can be explained by ana-

lyzing cutting with a single cutting edge. The simplest case in which the cutting edge is

perpendicular to the relative cutting velocity between tool and workpiece is called orthog-

onal cutting (Fig. 3) case which the forces can be analyzed in the plane of deformation.

The following ¯gure presents the important angles related to the orthogonal cutting: the

shear plane angle Á, the friction angle ¯, which is the angle between the resultant force

and the normal to the rake face, and the tool rake angle °.

Figure 3 { Orthogonal cutting.

The Merchant analysis (Armarego, 1969) uses a thin-shear-plane model, which con-

siders the plastic zone as a plane. To formulate the model some assumptions have been

done: the sharpness of the tool tip, there is no rubbing, ploughing or side spread, the

stresses are uniformly distributed on the shear plane and the modulus and direction of

the resultant force on the contact between tool and chip are equal to the force applied in

the shear plane. From these hypotheses and some geometrical relations, the expressions

for tangential and radial forces were derived.

dF
(5)
t =

¿ cos(¯ ¡ °)

sin(Á) cos(Á+ ¯ ¡ °)
t db = Kt(¯; Á; °)

(5) t db (17)

dF (5)
r

=
¿ sin(¯ ¡ °)

sin(Á) cos(Á+ ¯ ¡ °)
t db = Kr(¯; Á; °)

(5) t db (18)

where ¿ is the stress on the shear plane.

Spence and Elbestawi (1998) used this expression with constant empiric values for

¯, and Á. Usui, Hirota and Masuko (1978) developed experimental relations for ¯, and Á

as a function of °:

Á(°) = exp (C1 ° ¡ C2) ¯(°) = exp (C3 ° ¡ C4) (19)

where C1, C2, C3 e C4 are empirical constants. Using (19), equations (17) and (18) are

rewritten as:

dF
(6)
t (°) = Kt(°)

(6) t db dF (6)
r

(°) = Kr(°)
(6) t db (20)



The shear angle is a metal cutting characteristic which de¯nes the deformation con-

¯guration. Merchant considered that ¿ would have the value of the yield shear stress

for the work material and that the friction angle can be determined by the coe±cient of

friction, (¹ = tg ¯), from the usual dry sliding friction. To determine Á he assumed that

the minimum-energy principle applied in metal cutting, so that the deformation process

adjusted itself to a minimum-energy condition by equating dFp=dÁ to zero, for constant

speed:

Á =
¼

4
¡

1

2
(¯ ¡ °) (21)

Using (21), the cutting forces (17) and (18) can be expressed as:

dF
(7)
t = 2 ¿ cotg(Á) t db = Kt(Á)

(7) t db (22)

dF (7)
r

= 2 ¿ (cotg2(Á)¡ 1) t db = Kr(Á)
(7) t db (23)

The shear angle can be also determined experimentally knowing the chip-thickness

ratio (r = t=tc), assuming that the work material is incompressible and no side spread

occurs. From the geometry of cut, it can be shown that:

t

sinÁ
=

tc

cos(Á¡ °)
and Á = arctg

Ã
r cos°

1 ¡ r sin°

!
(24)

The forces (17) and (18) can be determined using this expression for Á. Hence:

dF
(8)
t = Kt(¯; r; °)

(8) t db dF (8)
r

= Kr(¯; r; °)
(8) t db (25)

6. OBLIQUE CUTTING MODELS

The mechanics of oblique cutting is based on a thin-shear-plane model as in Merchant

analysis on the orthogonal cutting. The principal angle that characterizes the oblique

cutting is the angle between the cutting edge and a normal to the cutting velocity vector,

the angle of inclination or obliquity, which in end milling is equal to the helix angle (¸).

The chip-°ow angle (´c) indicates the angle between the chip-°ow velocity and the normal

of the cutting edge, in the plane of the rake face and can be considered are collinear to the

friction force angle (´0
c
) (Armarego, 1969). The angles on oblique cutting are similar to

those on orthogonal cutting measured on the plane containing the cutting velocity vector

and the chip °ow vector. The Figure 4 presents the principal angles: normal angles ¯n,

°n, Án, the chip °ow angle ´c and helix angle ¸. The relations between ¯n, Án and ¯ are :

tg ¯n = tg ¯ cos ´c tg (¯n + Án) =
tg ¸ cos °n

tg ´c ¡ sin °n tg ¸
; (26)

Knowing these relations, the eq. (27) to (29) presents the force components as a

function of ¯, ¯n, ¸, °n:

dF
(9)
t =

¿ [cos(¯n ¡ °n) + tg ¸ tg ´c sin¯]

sinÁn

q
cos2(Án + ¯n ¡ °n) + tg 2(´c) sin

2(¯n)
t db = K

(9)
t t db (27)



Figure 4 { Oblique cutting.

dF (9)
r

=
¿ [cos(¯n ¡ °n)]

sinÁn cos¸
q
cos2(Án + ¯n ¡ °n) + tg 2(´c) sin

2(¯n)
t db = K(9)

r
t db (28)

dF (9)
z

=
¿ [cos(¯n ¡ °n) tg ¸¡ tg ´c sin ¯n]

sinÁn

q
cos2(Án + ¯n ¡ °n) + tg 2(´c) sin

2(¯n)
t db = K(9)

z
t db (29)

Kronemberg (Armarego, 1969) assumed that the chip °ow direction was in the ve-

locity rake plane so that tg ´c = tg ¸ sin °n and ¯n + Án = ¼

2
and then the forces can

be expressed as:

dF
(10)
t =

¿ [cos(¯n ¡ °n) + tg 2¸ sin °n sin¯]

sin¯n

q
cos2(°n) + tg 2¸ sin °n sin2(¯n)

t db = K
(10)
t t db (30)

dF (10)
r

=
¿ [cos(¯n ¡ °n) cos ¸]

sin¯n

q
cos2(°n) + tg 2¸ sin °n sin2(¯n)

t db = K(10)
r

t db (31)

dF (10)
z

=
¿ [cos(¯n ¡ °n) tg ¸¡ tg ¸ sin °n sin¯n]

sin ¯n

q
cos2(°n) + tg 2¸ sin °n sin2(¯n)

t db = K(10)
z

t db (32)

Stabler (Armarego, 1969) claimed that experimental evidence indicated a simple

relationship where ´c = ¸ for °n between ¡100 and 100. Then, tg (¯n + °n) =
cos(°n)
1¡sin°n

and

so:

dF
(11)
t =

¿ [cos(¯n ¡ °n) + tg 2¸ sin¯]

sinÁn

q
cos2(Án + ¯n ¡ °n) + tg 2¸ sin2(¯n)

t db = K
(11)
t t db (33)

dF (11)
r

=
¿ [cos(¯n ¡ °n] cos ¸

sinÁn

q
cos2(Án + ¯n ¡ °n) + tg 2¸ sin2(¯n)

t db = K(11)
r

t db (34)

dF (11)
z

=
¿ [cos(¯n ¡ °n) tg ¸¡ tg ´c sin¯n]

sinÁn

q
cos2(Án + ¯n ¡ °n) + tg 2¸ sin2(¯n)

t db = K(11)
z

t db (35)



Altintas & Lee (1996) and Armarego & Deshpande (1989) considered that the cutting

force can be analyzed as a sum of two parcels, the cutting force and the edge force:

dF = dFcutting + dFedge (36)

For Altintas & Lee (1996) the chip-thickness ratio (r) and the normal friction angle

(¯n) were obtained from empirical relations of orthogonal data as a function of °n:

¯n(°n) = 19; 1 + 0;29°n r(°n) = p(°n) t
q
(°n) (37)

where

p(°n) = 1; 755¡ 0; 0282°n q(°n) = 0; 331¡ 0; 0082°n (38)

Then the tangential force dF
(12)
t , radial force dF (12)

r
, and axial force dF (12)

z
can be

calculated as:

dF
(12)
t (Á) =

³
K

(12)
te +K

(12)
tc t

´
t db (39)

dF (12)
r

(Á) =
³
K(12)

re
+K(12)

rc
t
´
t db (40)

dF (12)
z

(Á) =
³
K(12)

ze
+K(12)

zc
t
´
t db (41)

where the speci¯c cutting forces are:

K
(12)
tc = K

(9)
t K(12)

rc
= K(9)

r
K(12)

zc
= K(9)

z
(42)

and the speci¯c edge forces K
(12)
te , K(12)

re
and K(12)

ze
are empirical constants.

For Armarego & Deshpande (1989) the values of ¯ and r are constants and the

speci¯c edge forces are functions of the helix angle ¸:

K
(13)
te = Cte cos(¸) K(13)

re
= Cre K(13)

ze
= Cze cos(¸) (43)

dF
(13)
t (Á) =

³
Kte(¸)

(13)
+K

(9)
tc t

´
t db (44)

dF (13)
r

(Á) =
³
Kre(¸)

(13)
+K(9)

rc
t
´
t db (45)

dF (13)
z

(Á) =
³
Kze(¸)

(13)
+K(9)

zc
t
´
t db (46)

7. A NEW PROPOSAL

Using the Armarego & Deshpande model (1989) and minimizing the cutting force

energy to obtain the shear angle, the cutting force is given by:

dF
(14)
t (Á) =

³
Kte(¸)

(13) +K
(14)
tc t

´
t db (47)

dF (14)
r

(Á) =
³
Kre(¸)

(13) +K(14)
rc

t
´
t db (48)



dF (14)
z

(Á) =
³
Kze(¸)

(13)
+K(14)

zc
t
´
t db (49)

where the speci¯c cutting forces are:

K
(14)
tc = K

(9)
t (Á

¯
¯
¯

min

energy

) K(14)
rc

= K(9)
r
(Á

¯
¯
¯

min

energy

) K(14)
zc

= K(9)
z
(Á

¯
¯
¯

min

energy

) (50)

8. ANALYSIS AND COMPARATION

To compare those 14 models, with so many empirical constants, the data from the
experimental work of Tlusty and MacNeil (1975) was taken as reference. The mill chosen
has normal rake angle °

n
= 9o, four cutting edges z = 4, helix angle ¸ = 30o, contact

angle 'o = 90o and friction coe±cient ¹ = 0:45 (¯ = 24; 2o).
The models comparison are presented on Fig. 5. The ¯rst graphic in the left shows

standard curves where the forces calculated from di®erent models were divided by a
constant to analyze the shape of the di®erent curves. Only 12, 13 and 14 models di®ers
from the standard behavior of the other 11 curves. This graphic is a detail of that at the
botton, which shows almost one rotation of the end mill. The second graphic, in the right,
shows another way to compare them, all curves were translated to the same minimum
point where the actual amplitude of each one can be compared. The average values and
the di®erence between the maximum and minimum values (¢) of all 14 curves are shown
on Table 2.

Figure 5 { Graphics of force from di®erent models as a function of the rotation angle

Table 2 { Model number, Average Values and Amplitude ¢ of Forces

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1326 1425 1782 1782 1517 1826 1508 1536 1750 1397 1796 1827 1871 1540

273 290 367 367 313 376 311 317 355 281 365 328 334 380



9. CONCLUSION

In this work, some of the available models for prediction of instantaneous forces in end
milling were compared. Most of the models presented a similar shape in the description
of the force variation, the exeption were the models which included edge forces. A new
proposal including edge forces and an energy approach for the cutting forces was presented
and compared with the existing models.
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