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Abstract

This article describes a set of methods for quickly computing the solution to the regularized optimal trans-
port problem. It generalizes and improves upon the widely used iterative Bregman projections algorithm (or
Sinkhorn–Knopp algorithm). We first proposed to rely on regularized nonlinear acceleration schemes. In prac-
tice, such approaches lead to fast algorithms, but their global convergence is not ensured. Hence, we next
proposed a new algorithm with convergence guarantees. The idea is to overrelax the Bregman projection op-
erators, allowing for faster convergence. We proposed a simple method for establishing global convergence by
ensuring the decrease of a Lyapunov function at each step. An adaptive choice of the overrelaxation parameter
based on the Lyapunov function was constructed. We also suggested a heuristic to choose a suitable asymptotic
overrelaxation parameter, based on a local convergence analysis. Our numerical experiments showed a gain in
convergence speed by an order of magnitude in certain regimes.

1 Introduction
Optimal transport (OT) is an efficient and flexible tool to compare two probability distributions, which has
been popularized in the computer vision community in the context of discrete histograms [26]. The introduc-
tion of entropic regularization of the optimal transport problem in [10] has made possible the use of the fast
Sinkhorn–Knopp algorithm [32], scaling with high-dimensional data. Regularized optimal transport has thus
been intensively used in machine learning with applications such as geodesic PCA [31], domain adaptation [9],
data fitting [12], training of a Boltzmann machine [18], or dictionary learning [25, 27].

The computation of optimal transport between two data relies on the estimation of an optimal transport
matrix, the entries of which represent the quantity of mass transported between data locations. Regulariza-
tion of optimal transport with strictly convex regularization [10, 11], nevertheless, involves a spreading of the
mass. Hence, for particular purposes such as color interpolation [23] or gradient flow [7], it is necessary to
consider small parameters ε for the entropic regularization term. The Sinkhorn–Knopp (SK) algorithm is a
state-of-the-art algorithm to solve the regularized transport problem. The SK algorithm performs alternated
projections, and the sequence of generated iterates converges to a solution of the regularized transport problem.
Unfortunately, the lower ε is, the slower the SK algorithm converges. To improve the convergence rate of the
SK algorithm, several acceleration strategies have been proposed in the literature, based for example on mixing
or overrelaxation.

1.1 Accelerations of the Sinkhorn–Knopp Algorithm
In the literature, several accelerations of the Sinkhorn–Knopp algorithm have been proposed, using for instance
greedy coordinate descent [2] or screening strategies [1]. In another line of research, the introduction of relax-
ation variables through heavy ball approaches [22] has recently gained popularity to speed up the convergence
of algorithms optimizing convex [13] or non-convex [36, 19] problems. In this context, the use of regularized
nonlinear accelerations (RNAs) [3, 29, 30] based on Anderson mixing has led to important numerical improve-
ments, although the global convergence is not guaranteed with such approaches, as is shown further. In this
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paper, we also investigated another approach related to the successive overrelaxation (SOR) algorithm [35],
which is a classical way to solve linear systems. Similar schemes have been empirically considered to acceler-
ate the SK algorithm in [20, 27]. The convergence of these algorithms has nevertheless not been studied yet in
the context of regularized optimal transport.

Recent progress has been made on computational complexity guarantees for the Sinkhorn–Knopp algorithm
and accelerated versions [2, ?, ?, ?]. Since the methods we discuss in this paper are based on asymptotic ac-
celeration techniques, it is challenging to show their efficiency via global computational complexity guarantee,
and we do not cover these aspects here.

1.2 Overview and Contributions
The contribution of this paper is twofold. First, the numerical efficiency of the RNA methods applied to the
SK algorithm to solve the regularized transport problem is shown. Second, a new extrapolation and relaxation
technique for accelerating the Sinkhorn–Knopp (SK) algorithm while ensuring convergence is given. The nu-
merical efficiency of this new algorithm is demonstrated, and a heuristic rule is also proposed to improve the
rate of the algorithm.

Section 2 is devoted to the Sinkhorn–Knopp algorithm. In Section 3, we propose to apply regularized non-
linear acceleration (RNA) schemes to the SK algorithm. We experimentally show that such methods lead to
impressive accelerations for low values of the entropic regularization parameter. In order to have a globally
converging method, we then propose a new overrelaxed algorithm: Sinkhorn–Knopp with successive over-
relaxation (SK-SOR). In Section 4, we show the global convergence of this algorithm and analyze its local
convergence rate to justify the acceleration. We finally demonstrate numerically in Section 5 the interest of our
method. Larger accelerations are indeed observed for decreasing values of the entropic regularization parame-
ter.

Remark This paper is an updated version of an unpublished work [34] presented at the NIPS 2017 Workshop
on Optimal Transport & Machine Learning. In the meantime, complementary results on the global convergence
of our method presented in Section 4 were provided in [17]. The authors showed the existence of a parameter
θ0 such that both global convergence and local acceleration were ensured for overrelaxation parameters ω ∈
(1, θ0). This result was nevertheless theoretical, and the numerical estimation of θ0 is still an open question.
With respect to our unpublished work [34], the current article presents an original contribution in Section 3:
the application of RNA methods to accelerate the convergence of the SK algorithm.

2 Sinkhorn Algorithm
Before going into further details, we now briefly introduce the main notations and concepts used throughout
this article.

2.1 Discrete Optimal Transport
We considered two discrete probability measures µk ∈ Rnk

+∗. Let us define the two following linear operators:

A1 :

{
Rn1n2 → Rn1

(A1x)i =
∑
j xi,j

A2 :

{
Rn1n2 → Rn2

(A2x)j =
∑
i xi,j ,

as well as the affine constraint sets:

Ck = {γ ∈ Rn1n2 | Akγ = µk} .

Given a cost matrix c with nonnegative coefficients, where ci,j represents the cost of moving mass (µ1)i to
(µ2)j , the optimal transport problem corresponds to the estimation of an optimal transport matrix γ solution
of:

min
γ∈C1 ∩C2 ∩Rn1n2

+

〈c, γ〉 :=
∑
i,j

ci,jγi,j .

This is a linear programming problem whose resolution becomes intractable for large problems.
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2.2 Regularized Optimal Transport
In [10], it was proposed to regularize this problem by adding a strictly convex entropy regularization:

min
γ∈C1 ∩C2 ∩Rn1n2

+

Kε(γ) := 〈c, γ〉+ εKL(γ,1), (1)

with ε > 0, 1 the matrix of size n1 × n2 full of ones, and the Kullback–Leibler divergence is:

KL(γ, ζ) =
∑
i,j

γi,j

(
log

(
γi,j
ζi,j

)
− 1

)
+
∑
i,j

ζi,j (2)

with the convention 0 log 0 = 0. It was shown in [4] that the regularized optimal transport matrix γ∗, which
is the unique minimizer of Problem (1), is the Bregman projection of γ0 = e−c/ε (here and in the sequel,
exponentiation is meant entry-wise) onto C1 ∩C2:

γ∗ = argmin
C1 ∩C2

Kε(γ) = PC1 ∩C2(e−c/ε), (3)

where PC is the Bregman projection onto C defined as:

PC(ζ) := argmin
γ∈C

KL(γ, ζ).

2.3 Sinkhorn–Knopp Algorithm
Iterative Bregman projections onto C1 and C2 converge to a point in the intersection C1 ∩C2 [5]. Hence, the so-
called Sinkhorn–Knopp (SK) algorithm [32] that performs alternate Bregman projections can be considered to
compute the regularized transport matrix:

γ0 = e−c/ε γ`+1 = PC2(PC1(γ`)),

and we have lim`→+∞ γ
` = PC1 ∩C2(γ0) = γ∗.

In the discrete setting, these projections correspond to diagonal scalings of the input:

PC1(γ) = diag(u)γ with u = µ1 �A1γ (4)

PC2(γ) = γ diag(v) with v = µ2 �A2γ

where � is the pointwise division. To compute the solution numerically, one simply has to store (u`, v`) ∈
Rn1 ×Rn2 and to iterate:

u`+1 = µ1 � γ0v` v`+1 = µ2 � tγ0u`+1. (5)

We then have γ` = diag(u`)γ0 diag(v`).
Another way to interpret the SK algorithm is as an alternate maximization algorithm on the dual of the

regularized optimal transport problem; see [21], Remark 4.24. The dual problem of (1) is:

max
α∈Rn1

β∈Rn2

E(α, β) := 〈α, µ1〉+ 〈β, µ2〉 − ε
∑
i,j

e(αi+βj−ci,j)/ε. (6)

As the function E is concave, continuously differentiable, and admits a maximizer, the following alternate
maximization algorithm converges to a global optimum:

α`+1 = argmax
α

E(α, β`) (7)

β`+1 = argmax
β

E(α`+1, β). (8)

The explicit solutions of these problems are:

α`+1
i = ε log

(∑
j

exp
(

log(µ1)i −
(
β`j − ci,j

)
/ε
))

i = 1 · · ·n1 (9)

β`+1
j = ε log

(∑
i

exp
(

log(µ2)j −
(
α`+1
i − ci,j

)
/ε
))

j = 1 · · ·n2 (10)
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and we recover the SK algorithm (5) by taking ui = eαi/ε, vj = eβj/ε, and γ0
i,j = e−ci,j/ε.

Efficient parallel computations can be considered [10], and one can almost reach real-time computation
for large-scale problems for certain classes of cost matrices c, allowing the use of separable convolutions [33].
For low values of the parameter ε, numerical issues can arise, and the log stabilization version of the algorithm
presented in Relations (9) and (10) is necessary [7]. Above all, the linear rate of convergence degrades as ε→ 0
(see for instance Chapter 4 in [21]). In the following sections, we introduce different numerical schemes that
accelerate the convergence in the regime ε→ 0.

3 Regularized Nonlinear Acceleration of the Sinkhorn–Knopp Al-
gorithm
In order to accelerate the SK algorithm for low values of the regularization parameter ε, we propose to rely
on regularized nonlinear acceleration (RNA) techniques. In Section 3.1, we first introduce RNA methods.
The application to SK is then detailed in Section 3.2.

3.1 Regularized Nonlinear Acceleration
To introduce RNA, we first rewrite the SK algorithm (7) and (8) as:

β`+1 = SK(β`) := argmax
β

E

(
argmax

α
E(α, β`), β

)
. (11)

The goal of this algorithm is to build a sequence (β`)l>1 converging to a fixed point of SK, i.e., to a point
β∗ satisfying:

β∗ = SK(β∗). (12)

Many optimization problems can be recast as fixed-point problems. The Anderson acceleration or Anderson
mixing is a classical method to build a sequence (xn)n that converges numerically fast to a fixed point of any
operator T from RN to RN . This method defines at each step a linear (but not necessarily convex) combination
of some previous values of (xk)k and (Txk)k to provide a value of xn such that ‖xn − Txn‖ is as low
as possible.

Numerically, fast local convergence rates can be observed when the operator T is smooth. This method
can nevertheless be unstable even in the favorable setting where T is affine. Such case arises for instance
when minimizing a quadratic function F with the descent operator T = I − h∇F , with time step h > 0.
Unfortunately, there are no convergence guarantees, in a general setting or in the case T = SK, that the RNA
sequence (xn)n converges for any starting point x0.

RNA is an algorithm that can be seen as a generalization of the Anderson acceleration. It can also be
applied to any fixed-point problem. The RNA method [30] applied to algorithm (11) using at each step the N
previous iterates is:

(s`+1
l )N−1

l=0 = argmin
s;

∑N−1
l=0

sl=1

Pλ
(
s, (β`−l − y`−l)N−1

l=0

)
(13)

y`+1 =

N−1∑
l=0

s`+1
l (y`−l + ω(β`−l − y`−l)) (14)

β`+1 = SK(y`+1), (15)

where extrapolation weights s = (sl)
N−1
l=0 are the solution to the optimization problem (16) defined below,

and ω is a relaxation parameter. RNA uses the memory of the past trajectory when N > 1. We can remark that
for N = 1, s`0 = 1 for all ` > 0, and RNA is reduced to a simple relaxation parameterized by ω:

y`+1 = y` + ω(β` − y`).

Let us now discuss the role of the different RNA parameters ω and s.
Relaxation: Taking origins from Richardson’s method [24], relaxation leads to numerical convergence

improvements in gradient descent schemes [15]. Anderson suggested underrelaxing with ω ∈ (0; 1], while the
authors of [30] proposed to take ω = 1.

Extrapolation: Let us define the residual r(y) = SK(y) − y. As the objective is to estimate the fixed
point of SK, the extrapolation step builds a vector y such that ||r(y)|| is minimal. A relevant guess of such y
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is obtained by looking at a linear combination of previous iterates that reaches this minimum. More precisely,
RNA methods estimate the weight vector (s`+1

l )N−1
l=0 as the unique solution of the regularized problem:

(s`+1
l )N−1

l=0 = argmin
s;

∑N−1
l=0

sl=1

Pλ(s, R) := ||Rs||2 + λ||s||2 (16)

=
(tRR+ λIdN )−11N

〈(tRR+ λIdN )−11N ,1N 〉
. (17)

where the columns of R := [r(y`), · · · , r(y`+1−N )] are the N previous residuals. The regularization parame-
ter λ > 0 generalizes the original Anderson acceleration [3] introduced for λ = 0. Taking λ > 0 indeed leads
to a more stable numerical estimation of the extrapolation parameters.

3.2 Application to SK
We now detail the whole Sinkhorn–Knopp algorithm using regularized nonlinear acceleration, which is pre-
sented in Algorithm 1.

In all our experiments corresponding to N > 1, we considered a regularization λ = 1 × 10−10 for the
weight estimation (16) within the RNA scheme. For the SK algorithm, we considered the log-stabilization
implementation proposed in [7, 28, 27] to avoid numerical errors for low values of ε. This algorithm acts on
the dual variables α, β. We refer to the aforementioned papers for more details.

As the SK algorithm successively projects the matrix γ` onto the set of linear constraints Ck, k = 1, 2,
we took as the convergence criterion the error realized on the first marginal of the transport matrix γ =
diag(exp(α/ε)) exp(−c/ε) diag(exp(β/ε)), that is

∑
i |
∑
j γ

`
i,j − (µ1)i| < η = 1e − 9. Note that the

variable α is introduced into the algorithm only for computing the convergence criterion.

Algorithm 1 RNA SK Algorithm in the Log Domain

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set ` = 0, β0, y0 = 0n2
, γ0 = exp−c/ε, ω ∈ R, N > 0 and η > 0

Set xi = −maxj(ci,j − y0j ) and αi = −maxj(ci,j − β0
j ), i = 1 · · ·n1

while || exp(α/ε)⊗ (γ0 exp(β`/ε))− µ1|| > η do
Ñ = min(N, `+ 1)

R = [β` − y`, · · · , β`+1−Ñ − y`+1−Ñ ]
w = (tRR+ λIdÑ )−11Ñ/〈(tRR+ λIdÑ )−11Ñ ,1Ñ 〉
y`+1 =

∑Ñ−1
l=0 wl((1− ω)y`−l + ωβ`−l)

x̃i = −maxj(ci,j − y`+1
j ), i = 1 · · ·n1

xi = x̃i − ε log(
∑

j exp ((−ci,j + x̃i + y`+1
j )/ε− log(µ1)i)), i = 1 · · ·n1

β`+1
j = y`+1 − ε log(

∑
i exp ((−ci,j + xi + y`+1

j )/ε− log(µ2)j)), j = 1 · · ·n2
αi = −maxj(ci,j − β`+1

j ), i = 1 · · ·n1
`← `+ 1

end while
return γi,j = diag(exp(α/ε))γ0 diag(exp(β/ε))

We now present numerical results obtained with random cost matrices of size 100×100 with entries uniform
in [0, 1] and uniform marginals µ1 and µ2. All convergence plots are mean results over 20 realizations.

We first considered the relaxation parameter ω = 1, in order to recover the original SK algorithm for
N = 1. In Figure 1, we show the convergence results obtained with RNA orders N ∈ {1, 2, 4, 8} on four
regularized transport problems corresponding to entropic parameters ε ∈ {0.003, 0.01, 0.03, 0.1}. Figure 1
first illustrates that the convergence is improved with higher RNA orders N .
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Figure 1: Convergence of RNA schemes for a relaxation parameter ω = 1 and different orders N ∈ {1, 2, 4, 8}.
All approaches lead to similar convergence as the original SK algorithm (order N = 1, with blue dots) for high
values of the entropic parameter such as ε = 0.1. When facing more challenging regularized optimal transport
problems, high-order RNA schemes (N > 1) realize important accelerations. This behavior is highlighted in the
bottom row for ε = 0.01 and ε = 0.003. In these settings, with respect to SK, RNA of order N = 8 (plain red
curves) reduces by a factor 100 the number of iterations required to reach the same accuracy.

The acceleration is also greater for low values of the regularization parameter ε. This is an important be-
havior, as many iterations are required to have an accurate estimation of these challenging regularized transport
problems. In the settings ε ∈ {0.003, 0.01}, a speedup of more than ×100 in terms of the iteration number
was observed between RNA orders N = 8 and N = 1 (SK) to reach the same convergence threshold. We did
not observe a significant improvement by considering higher RNA orders such as N = 16.

Next, we focus on the influence of the relaxation parameter ω ∈ {0.5, 1, 1.5, 1.9} onto the behavior of
RNA schemes of orders N ∈ {1, 2, 8}. We restricted our analysis to the more challenging settings ε = 0.01
and ε = 0.003. As illustrated in Figure 2, increasing ω systematically led to improvements in the case N = 1.
For other RNA orders satisfying N > 1, we did not observe clear tendencies. Taking ω ≈ 1.5 generally
allowed accelerating the convergence.

To sum up, we recommend the use of the parametrization N = 8 and ω = 1.5 when applying the RNA
method to the SK algorithm.

We recall that the convergence of such approaches is not ensured. This last experiment nevertheless sug-
gested that in the case N = 1, there is room to accelerate the original SK algorithm (ω = 1), while keeping its
global convergence guarantees, by looking at overrelaxed schemes with parameters ω > 1.
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Figure 2: Comparison of RNA schemes on an optimal transport problem regularized with the entropic parameters
ε = 0.01 (top line) and ε = 0.003 (bottom line). The convergence of RNA scheme N ∈ {1, 2, 8} is illustrated
for different relaxation parameters ω ∈ {0.5, 1, 1.5, 1.9}. Higher values of ω lead to larger improvements in the
case N = 1 (first column). When N > 1 (as in the middle column for N = 2 and the right column for N = 8),
it is not possible to conclude and to suggest a choice for the parameter ω with the obtained numerical results.

3.3 Discussion
The nonlinear regularized acceleration algorithm involves relevant numerical accelerations without conver-
gence guarantees. To build an algorithm that ensures the convergence of iterates, but also improves the numer-
ical behavior of the SK algorithm, we now propose to follow a different approach using Lyapunov sequences,
which is a classical tool to study optimization algorithms. The new scheme proposed here uses the specific
form of the SK algorithm with the two variables α and β. It performs two successive overrelaxations (SOR)
at each step, one for the update of α and one for β. The algorithm does not use any mixing scheme, but the
simple structure allows defining a sequence, called a Lyapunov sequence, which decreases at each step. This
Lyapunov approach allows ensuring the convergence of the algorithm for a suitable choice of the overrelax-
ation parameter.

The algorithm can be summarized as follows:

α`+1 = (1− ω)α` + ω argmax
α

E(α, β`) (18)

β`+1 = (1− ω)β` + ω argmax
β

E(α`+1, β). (19)

Our convergence analysis relied on an online adaptation of the overrelaxation parameter ω ∈ [1, 2). As il-
lustrated by Figure 3, in the case for ε = 0.01, the proposed SK-SOR method was not as performant as high
RNA orders N > 1 with ω = 1.5. It nevertheless gave an important improvement with respect to the original
SK method, while being provably convergent.
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Figure 3: Comparison between RNA schemes with ω = 1.5 and SK-SOR for a transport regularized with
ε = 0.01. The SK-SOR performance is in between the ones of RNA of orders N = 1 and N = 2.

4 Sinkhorn–Knopp with Successive Overrelaxation
In this section, we propose a globally convergent overrelaxed SK algorithm. Different from the RNA point of
view of the previous section, our algorithm SK-SOR relies on successive overrelaxed (SOR) projections.

As illustrated in Figure 4a,b, the original SK algorithm (5) performs alternate Bregman projections (4) onto
the affine sets C1 and C2. In practice, the convergence may degrade when ε → 0. The idea developed in this
section is to perform overrelaxed projections in order to accelerate the process, as displayed in Figure 4c.

γ0

γ∗

C1C2

(a)

γ0

γ∗

C1C2

(b)

γ0

γ∗

C1C2

(c)

Figure 4: The trajectory of γ` given by the SK algorithm is illustrated for decreasing values of ε in (a,b).
Overrelaxed projections (c) typically accelerate the convergence rate.

In what follows, we first define overrelaxed Bregman projections. We then propose a Lyapunov function
that is used to show the global convergence of our proposed algorithm in Section 4.3. The local convergence
rate is then discussed in Section 4.4.

4.1 Overrelaxed Projections
We recall that PCk are operators realizing the Bregman projection of matrices γ ∈ Rn1n2 onto the affine sets
Ck, k = 1, 2, as defined in (4). For ω ≥ 0, we now define the ω-relaxed projection operator PωCk as:

logPωCk (γ) = (1− ω) log γ + ω logPCk (γ), (20)
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where the logarithm is taken coordinate-wise. Note thatP 0
Ck is the identity, P 1

Ck = PCk is the standard Bregman
projection, and P 2

Ck is an involution (in particular because Ck is an affine subspace). In the following, we
will consider overrelaxations corresponding to ω ∈ [1; 2). A naive algorithm would then consist of iteratively
applying PωC2 ◦P

ω
C1 for some choice of ω. While it often behaves well in practice, this algorithm may sometimes

not converge even for reasonable values of ω. Our goal in this section is to make this algorithm robust and to
guarantee its global convergence.
Remark 1. Duality gives another point of view on the iterative overrelaxed Bregman projections: they indeed
correspond to a successive overrelaxation (SOR) algorithm on the dual objective E given in (6). This is a
procedure that, starting from (α0, β0) = (0,0), defines for ` ∈ N∗,

α`+1 = (1− ω)α` + ω argmax
α

E(α, β`) (21)

β`+1 = (1− ω)β` + ω argmax
β

E(α`+1, β), (22)

From the definition of the projections in (4) and using again the relationships ui = eαi/ε, vj = eβj/ε and
γ0
i,j = e−ci,j/ε, Expressions (21) and (22) correspond to the overrelaxed projections (20).

4.2 Lyapunov Function
Convergence of the successive overrelaxed projections is not guaranteed in general. In order to derive a robust
algorithm with provable convergence, we introduced the Lyapunov function:

F (γ) = KL(γ∗, γ), (23)

where γ∗ denotes the solution of the regularized OT problem. We used this function to enforce the strict descent
criterion F (γ`+1) < F (γ`) as long as the process has not converged.

The choice of (23) as a Lyapunov function is of course related to the fact that Bregman projections are used
throughout the algorithm. Further, we show (Lemma 1) that its decrease is simple to compute, and this descent
criterion still allows enough freedom in the choice of the overrelaxation parameter.

Crucial properties of this Lyapunov function are gathered in the next lemma.

Lemma 1. For any M ∈ R∗+, the sublevel set {γ | F (γ) ≤M} is compact. Moreover, for any γ in Rn1n2
+∗ ,

the decrease of the Lyapunov function after an overrelaxed projection can be computed as:

F (γ)− F (PωCk (γ)) = 〈µk, ϕω ((Akγ)� µk)〉 , (24)

where
ϕω(x) = x(1− x−ω)− ω log x (25)

is a real function, applied coordinate-wise.

Proof. The fact that the Kullback–Leibler divergence is jointly lower semicontinuous implies in particular that
K is closed. Moreover, K ⊂ Rn1×n2

+ is bounded because F is the sum of nonnegative, coercive functions of
each component of its argument γ.

Formula (24) comes from the expression:

F (γ1)− F (γ2) =
∑
i,j

(
γ∗i,j log(γ2

i,j/γ
1
i,j) + γ1

i,j − γ2
i,j

)
and Relations (4) and (20).

It follows from Lemma 1 that the decrease of F for an overrelaxed projection is very inexpensive to esti-
mate, since its computational cost is linear with respect to the dimension of data µk. In Figure 5, we display
the function ϕω(x). Notice that for the Sinkhorn–Knopp algorithm, which corresponds to ω = 1, the function
ϕω is always nonnegative. For other values 1 ≤ ω < 2, it is nonnegative for x close to one.
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Figure 5: Value of ϕω(x). The function is positive above the red line, negative below. For any relaxation
parameter ω smaller than two, there exists a neighborhood of one on which ϕω(·) is positive.

4.3 Proposed Algorithm
We first give a general convergence result that later serves as a basis to design an explicit algorithm.

Theorem 1. Let Θ1 and Θ2 be two continuous functions of γ such that:

∀γ ∈ Rn1n2
+∗ , F (P

Θk(γ)
Ck (γ)) ≤ F (γ), (26)

where the inequality is strict whenever γ /∈ Ck. Consider the sequence defined by γ0 = e−c/ε and:

γ̃`+1 = P
Θ1(γ`)
C1 (γ`)

γ`+1 = P
Θ2(γ̃`+1)
C2 (γ̃`+1).

Then, the sequence (γ`) converges to γ∗.

Lemma 2. Let us take γ0 in Rn1n2
+∗ , and denote:

S =
{

diag(u)γ0 diag(v), (u, v) ∈ Rn1+n2
+∗

}
the set of matrices that are diagonally similar to γ0. Then, the set S ∩ C1 ∩C2 contains exactly one element
γ∗ = PC1 ∩C2(γ0).

Proof. We refer to [10] for a proof of this lemma.

Proof of the Theorem. First of all, notice that the operators P θCk apply a scaling to lines or columns of matrices.
All (γ`) are thus diagonally similar to γ0:

∀` ≥ 0, γ` ∈ S

By construction of the functions Θk, the sequence of values of the Lyapunov function (F (γ`)) is non-
increasing. Hence, (γ`) is precompact. If ζ is a cluster point of (γ`), let us define:

ζ̃ = P
Θ1(ζ)
C1 (ζ)

ζ′ = P
Θ2(ζ̃)
C2 (ζ̃).

Then, by the continuity of the applications, F (ζ) = F (ζ̃) = F (ζ′). From the hypothesis made on Θ1 and
Θ2, it can be deduced that ζ is in C1 and is thus a fixed point of PC1 , while ζ̃ is in C2. Therefore, ζ′ = ζ̃ = ζ is
in the intersection C1 ∩C2. By Lemma 2, ζ = γ∗, and the whole sequence (γ`) converges to the solution.

We can construct explicitly functions Θk as needed in Theorem 1 using the following lemma.

10



Lemma 3. Let 1 ≤ ω < θ. Then, for any γ ∈ Rn1n2
+∗ , one has:

F (PωCk (γ)) ≤ F (P θCk (γ)). (27)

Moreover, equality occurs if and only if γ ∈ Ck.

Proof. Thanks to Lemma 1, one knows that:

F (PωCk (γ))− F (P θCk (γ)) = 〈µk, (ϕθ − ϕω) ((Akγ)� µk)〉 .

The function that maps t ∈ [1,∞) to ϕt(x) is non-increasing since ∂tϕt(x) =
(x1−t − 1) log x. Moreover, for x 6= 1, it is strictly decreasing. Thus, Inequality (27) is valid, with equal-
ity iff Akγ = µk.

We now argue that a good choice for the functions Θk may be constructed as follows. Pick a target pa-
rameter θ0 ∈ [1; 2), which will act as an upper bound for the overrelaxation parameter ω, and a small security
distance δ > 0. Define the functions Θ∗ and Θ as:

Θ∗(w) = sup {ω ∈ [1; 2] | ϕω (minw) ≥ 0} , (28)

Θ(w) = min(max(1,Θ∗(w)− δ), θ0), (29)

where minw denotes the smallest coordinate of the vector w.

Proposition 1. The function:
Θk(γ) = Θ ((Akγ)� µk) (30)

is continuous and verifies the descent condition (26).

Proof. Looking at Figure 5 can help understand this proof. Since the partial derivative of ∂ωϕω(x) is nonzero
for any x < 1, the implicit function theorem proves the continuity of Θ∗. The function Θ∗ ((Akγ)� µk)) is
such that every term in Relation (24) is non-negative. Therefore, by Lemma 3, using this parameter minus δ
ensures the strong decrease (26) of the Lyapunov function. Constraining the parameter to [1, θ0] preserves this
property.

This construction, which is often an excellent choice in practice, has several advantages:

• it allows choosing arbitrarily the parameter θ0 that will be used eventually when the algorithm is close to
convergence (we motivate what are good choices for θ0 in Section 4.4);

• it is also an easy approach to having an adaptive method, as the approximation of Θ∗ has a negligible cost
(it only requires solving a one-dimensional problem that depends on the smallest value of (Akγ) � µk,
which can be done in a few iterations of Newton’s method).

The resulting algorithm, which is proven to be convergent by Theorem 1, is written in pseudocode in
Algorithm 2. The implementation in the log domain is also given in Algorithm 3. Both processes use the
function Θ defined implicitly in (29). The evaluation of Θ is approximated in practice with a few iterations of
Newton’s method on the function ω 7→ ϕω(minu), which is decreasing, as can be seen in Figure 5. With the
choice θ0 = 1, one recovers exactly the original SK algorithm.

Algorithm 2 Overrelaxed SK Algorithm (SK-SOR)

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set u = 1n1 , v = 1n2 , γ0 = e−c/ε, θ0 ∈ [1; 2) and η > 0
while ||u⊗ γ0v − µ1|| > η do
ũ = µ1 � (γ0v),
ω = Θ(u� ũ)
u = u1−ω ⊗ ũω
ṽ = µ2 � (tγ0u)
ω = Θ(v � ṽ)
v = v1−ω ⊗ ṽω

end while
return γ = diag(u)γ0 diag(v)
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Algorithm 3 Overrelaxed SK Algorithm (SK-SOR) in the Log Domain

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set α = 0n1 , β = 0n2 , γ0 = e−c/ε, θ0 ∈ [1; 2) and η > 0
while || exp (α/ε)⊗ (γ0 exp (β/ε))− µ1|| > η do
ri =

∑
j exp ((−ci,j + αi + βj)/ε− log(µ1)i), i = 1 · · ·n1

α̃ = α− ε log r
ω = Θ(r)
α = (1− ω)α+ ωα̃
sj =

∑
i exp ((−ci,j + αi + βj)/ε− log(µ2)j), j = 1 · · ·n2

β̃ = β − ε log s
ω = Θ(s)
β = (1− ω)β + ωβ̃

end while
return γ = diag(exp(α/ε))γ0 diag(exp(β/ε))

4.4 Acceleration of the Local Convergence Rate
In order to justify the acceleration of convergence that is observed in practice, we now study the local conver-
gence rate of the overrelaxed algorithm, which follows from the classical convergence analysis of the linear
SOR method. Our result involves the second largest eigenvalue of the matrix:

M1 = diag(1� µ1) γ∗ diag(1� µ2) tγ∗ (31)

where γ∗ is the solution to the regularized OT problem (the largest eigenvalue is one, associated with the
eigenvector 1). We denote the second largest eigenvalue by 1− η; it satisfies η > 0 [16].

Proposition 2. The SK algorithm converges locally at a linear rate 1−η. For the optimal choice of extrapola-
tion parameter θ∗ = 2/(1 +

√
η), algorithm SK-SOR converges locally linearly at a rate (1−√η)/(1 +

√
η).

The local convergence of SK-SOR is guaranteed for θ ∈ ]0, 2[, and the linear rate is given in Figure 6 as a
function of 1− η and θ.

Figure 6: Local linear rate of convergence of the SK-SOR algorithm as a function of 1−η, the local convergence
rate of the SK algorithm, and θ the overrelaxation parameter. (Plain curve) The original rate is recovered for
θ = 1. (Dashed curve) Optimal overrelaxation parameter θ∗.

Proof. In this proof, we focus on the dual problem, and we recall the relationship γ` = eα
`/εγ0eβ

`/ε between
the iterates of the overrelaxed projection algorithm γ` and the iterates (α`, β`) of the SOR algorithm on the
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dual problem (21), initialized with (α0, β0) = (0, 0). The dual problem (6) is invariant by translations of the
form (α, β) 7→ (α − k, β + k), k ∈ R, but is strictly convex up to this invariance. In order to deal with this
invariance, consider the subspace S of pairs of dual variables (α, β) that satisfy

∑
α =

∑
β; let πS be the

orthogonal projection on S of kernel (1,−1), and let (α∗, β∗) ∈ S be the unique dual maximizer in S.
Since one SK-SOR iteration is a smooth map, the local convergence properties of the SK-SOR algorithm

are characterized by the local convergence of its linearization, which here corresponds to the SOR method
applied to the maximization of the quadratic Taylor expansion of the dual objectiveE at (α∗, β∗). This defines
an affine map Mθ : (α`, β`) 7→ (α`+1, β`+1) whose spectral properties are well known [8, 35] (see also [6]
(Chapter 4) for the specific case of convex minimization and [14] for the non-strictly convex case). For the
case θ = 1, this is the matrix M1 defined in Equation (31). The operator norm of πS ◦M1 is smaller than
1 − η, so the operator (πS ◦M1)` = πS ◦M `

1 converges at the linear rate 1 − η towards zero (observe that
by construction, πS and M1 are co-diagonalizable and thus commute): for any (α, β) ∈ Rn1 × Rn2 , it holds
‖πS ◦M `

1(α−α∗, β−β∗)‖2 ≤ ‖πS(α−α∗, β−β∗)‖2(1−η)`. More generally, the convergence of πS ◦M `
θ

is guaranteed for θ ∈]0, 2[, with the linear rate:

f(θ, η) =

{
θ − 1 if θ > θ∗

1
2
θ2(1− η)− (θ − 1) + 1

2

√
(1− η)θ2(θ2(1− η)− 4(θ − 1)) otherwise.

(32)

This function is minimized with θ∗ := 2/(1 +
√
η), which satisfies f(θ∗, η) = (1 − √η)/(1 +

√
η).

The function f is plotted in Figure 6.
To switch from these dual convergence results to primal convergence results, we remark that γ` → γ∗

implies KL(γ`, γ0) → KL(γ∗, γ0), which in turn implies E(α`, β`) → maxE, so by invoking the par-
tial strict concavity of E, we have πS(α`, β`) → (α∗, β∗). The converse implication is direct, so it holds
[πS(α`, β`)→ (α∗, β∗)]⇔ [γ` → γ∗]. We conclude by noting the fact that πS(α`, β`) converges at a linear
rate, which implies the same rate on γ`, thanks to the relationship between the iterates.

Corollary 1. The previous local convergence analysis applies to Algorithm 3 with Θ defined as in Equa-
tion (29), and the local convergence rate is given by the function of Equation (32) evaluated at the target
extrapolation parameter θ0.

Proof. What we need to show is that eventually, one always has Θ(γ`) = θ0. This can be seen from the
quadratic Taylor expansion ϕθ0(1 + z) = z2(θ0 − θ0

2/2) + o(z2), which shows that for any choice of
θ0 ∈ ]1, 2[, there is a neighborhood of one on which ϕθ0(·) is nonnegative.

5 Experimental Results
We compared Algorithm 2 to the SK algorithm on two very different optimal transport settings. In the setting of
Figure 7(a), we considered the domain [0, 1] discretized into 100 samples and the squared Euclidean transport
cost on this domain. The marginals were densities made of the sum of a base plateau of height 0.1 and another
plateau of height and boundaries chosen uniformly in [0, 1], subsequently normalized. In the setting of Figure
7(b), the cost was a 100× 100 random matrix with entries uniform in [0, 1], and the marginals were uniform.

Given an estimation of 1 − η, the local convergence rate of the SK algorithm, we define θ0 as the optimal
parameter as given in Proposition 2. For estimating η, we followed two strategies. For strategy “estimated”
(in blue on Figure 7), η was measured by looking at the local convergence rate of the SK algorithm run on
another random problem of the same setting and for the same value of ε. For strategy “measured” (in orange
on Figure 7), the parameter was set using the local convergence rate of the SK algorithm run on the same
problem. Of course, the latter was an unrealistic strategy, but it was interesting to see in our experiments that
the “estimated” strategy performed almost as well as the “measured” one, as shown in Figure 7.
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(a) Quadratic cost, random marginals. (b) Random cost, uniform marginals.

Figure 7: Speed ratio between the SK algorithm and its accelerated SK-SOR version Algorithm 2 w.r.t. parameter
ε.

Figure 7 displays the ratio of the number of iterations required to reach a precision of 10−6 on the dual
variable α for the SK algorithm and Algorithm 2. It is worth noting that the complexity per iteration of
these algorithms is the same modulo negligible terms, so this ratio is also the runtime ratio (our algorithm can
also be parallelized on GPUs just as the SK algorithm). In both experimental settings, for low values of the
regularization parameter ε, the acceleration ratio was above 20 with Algorithm 2.

6 Conclusions and Perspectives
The SK algorithm is widely used to solve entropy-regularized OT. In this paper, we first showed that RNA
methods are adapted to the numerical acceleration of the SK algorithm. Nevertheless, the global convergence
of such approaches is not guaranteed.

Next, we demonstrated that the use of successive overrelaxed projections is a natural and simple idea to
ensure and accelerate the convergence, while keeping many nice properties of the SK algorithm (first order,
parallelizable, simple). We proposed an algorithm (SK-SOR) that adaptively chooses the overrelaxation pa-
rameter so as to guarantee global convergence. The acceleration of the convergence speed was numerically
impressive, in particular in low regularization regimes. It was theoretically supported in the local regime by
the standard analysis of SOR iterations. Nevertheless, the SK-SOR algorithm was not as performant as RNA,
and no guarantee was given on the global computational complexity of either algorithm.

This idea of overrelaxation can be generalized to solve more general problems such as multi-marginal
OT, barycenters, gradient flows, and unbalanced OT [6] (Chapter 4), but there is no systematic way to derive
globally convergent algorithms. Our work is a step in the direction of building and understanding the properties
of robust first-order algorithms for solving OT. More understanding is needed regarding SOR itself (global
convergence speed, choice of θ0), as well as its relation to other acceleration methods [29, 2].
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