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2 Université de Toulouse, F-31062 Toulouse Cedex 9, France 3 INSA, F-31077 Toulouse, France

July 20, 2022

Abstract— A recent trend in the signal/image

processing literature is the optimization of

Fourier sampling schemes for specific datasets of

signals. In this paper, we explain why choosing

optimal non Cartesian Fourier sampling patterns

is a difficult nonconvex problem by bringing to

light two optimization issues. The first one is the

existence of a combinatorial number of spurious

minimizers for a generic class of signals. The sec-

ond one is a vanishing gradient effect for the high

frequencies. We conclude the paper by showing

how using large datasets can mitigate the first ef-

fect and illustrate experimentally the benefits of

using stochastic gradient algorithms with a vari-

able metric.

1 Introduction

Finding efficient Fourier sampling schemes is a crit-
ical issue in communications and imaging. This
led to various theories including the celebrated
Shannon-Nyquist theorems for bandlimited signals
and compressed sensing for sparse signals. Un-
fortunately - in most practical cases - the signals
to reconstruct are quite loosely described by these
generic classes. For instance, magnetic resonance
images of brains or knees have a rich structure due
to the underlying object. It is therefore tempting
to optimize a sampling scheme directly for a given
dataset rather than relying on a rough mathemati-
cal model. The recent progresses in Graphical Pro-
cessing Units (GPU) programming, automatic dif-
ferentiation and machine learning make this idea
even more tantalizing. In the sole field of Magnetic
Resonance Imaging (MRI), the following list of ref-
erences [9, 10, 15, 3, 19, 16, 17, 16, 8, 11, 14, 1]
illustrates this novel trend.

Unfortunately, most of the above works report
(more or less explicitly) optimization issues. Fig. 1
illustrates one of them. In this example, we tried
to optimize a sampling scheme for a single image

from the fastMRI challenge [18]. To this end, we
minimize the `2 reconstruction error using a sim-
ple back-projection reconstructor with a subsam-
pling factor of 2. The trajectory of a gradient de-
scent is displayed in Fig. 1b. As can be seen, the
final sampling set covers approximately uniformly
the Fourier domain, while we would expect the low
frequencies to be sampled more densely. This likely
highlights the presence of a spurious minimizer.

The aim of this paper is to explain this phe-
nomenon from a mathematical perspective and to
bring some solutions to mitigate the difficulties. We
focus on linear reconstruction methods, which sim-
plifies the analysis and we highlight the critical role
of the non uniform Fourier transform as an oscil-
lation generator. We expect that some of the ar-
guments can be reused for more complex nonlin-
ear reconstruction methods, which suffer from the
same experimental issues. We also focus on op-
timization schemes that continuously optimize the
positions of some sampling locations. These tech-
niques have the advantage of not relying on a grid,
which is an essential feature for various applica-
tions such as magnetic resonance imaging or radio-
interferometry. In addition, they spark the hope of
avoiding the curse of dimensionality encountered in
combinatorial problems. We show that this dream
is not realistic, but that the situation improves by
considering large signals datasets and specific vari-
able metric techniques. We conclude the paper by
illustrating our findings on 1D experiments.

2 Notation

In this paper, we will focus on discrete 1D signals,
for the ease of exposition. However, the main ar-
guments apply to arbitrary dimensions and contin-
uous signals as well.

We consider a signal u as a vector of CN with
N ∈ 2N. We let N =

q
−N

2 ,
N
2 − 1

y
. An alternative

way to represent a signal u ∈ CN is to use a discrete
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Figure 1: A typical sampling optimization trajectory. Starting from the sampling configuration on the left
(uniform point process), we obtain the sampling scheme on the right after 107 iterations. The trajectory
in the center corresponds to the 107 iterations of a gradient descent with fixed step size. Notice that the
points clusters have disappeared, but that the scheme is still essentially uniform, while we would expect
the low frequencies to be sampled more densely.

measure µ of the form:

µ =
∑
n∈N

unδ n
N
. (1)

Given a location ξ ∈ R, we define:

û(ξ)
def
=

1√
N

∑
n∈N

une
−2ιπ〈ξ, nN 〉, (2)

which can be seen as the continuous Fourier
transform of the measure µ. We consider Ξ =
[ξ1, . . . , ξM ] ∈ RM a set of M locations. The Fourier
transform û(Ξ) ∈ CM at the locations Ξ can be
written as a matrix-vector product of the form
û(Ξ) = A(Ξ)∗u with the normalized Vandermonde
matrix A(Ξ) ∈ CN×M defined by

A(Ξ)n,m
def
=

1√
N
e2ιπ〈ξm, nN 〉.

In what follows, we let a(ξ) ∈ CN denote the vector
defined for all n ∈ N by

a(ξ)[n]
def
=

1√
N
e2ιπ〈ξ, nN 〉,

so that
A(Ξ) = [a(ξ1), . . . , a(ξM )].

The matrix A(Ξ)∗ can be seen as the nonuniform
Fourier transform [13] from the grid to the set of
sampling locations Ξ. We let (A(Ξ)∗)+ denote the
pseudo-inverse of A(Ξ)∗.

3 Preliminaries

Below, we first describe the precise mathematical
setting and then turn to some preliminary results.

3.1 The setting

Let u ∈ CN denote a signal. We assume that
a sampling device allows to pick M frequencies
ξ1, . . . , ξM in R, yielding the set of measurements
y = A(Ξ)∗u + w with w ∼ N (0, σ2Id) a white
Gaussian noise. A vast amount of reconstruction
techniques have been designed in the literature to
reconstruct u from y. A generic reconstructor can
be defined as a mapping R : (CM × RM ) → CN

that takes as an input a measurement y ∈ CM and
a sampling scheme Ξ ∈ RM and outputs a recon-
structed signal R(y,Ξ). Given a collection of sig-
nals u1, . . . , uP and a reconstructor R, a natural
framework to find the best sampling scheme Ξ is to
solve the following optimization problem:

inf
Ξ∈RM

1

2P

P∑
p=1

Ew(‖R(A(Ξ)∗up +w,Ξ)−up‖22). (3)

This problem can be attacked with first order meth-
ods that continuously optimize the sampling loca-
tions ξm, see for instance [17, 8, 16]. In this work,
we will concentrate on three simple linear recon-
struction methods of the form R(y,Ξ) = R(Ξ)y:

The back-projection method which consists
in defining the reconstructor as R1(Ξ) = A(Ξ) or

R1(y,Ξ)
def
= A(Ξ)y. (4)

The pseudo-inverse method where the recon-
structor is defined with R2(Ξ) = (A(Ξ)∗)+ or

R2(y,Ξ)
def
= (A(Ξ)∗)+ y. (5)
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The Tikhonov method (or regularized inverse)
which consists in solving the following quadratic
problem:

R3(y,Ξ)
def
= (1+λ) arg min

f∈CN

1

2
‖A(Ξ)∗f−y‖22+

λ

2
‖f‖22

(6)
for λ > 0. Hence

R3(Ξ) = (1 + λ) (A(Ξ)A(Ξ)∗ + λId)−1A(Ξ). (7)

The multiplication by (1 + λ) is there to compen-
sate the bias introduced by the regularization and
will later simplify the expressions. A similar analy-
sis can be carried out for the more standard solver
R3(Ξ) = (A(Ξ)A(Ξ)∗ + λId)−1A(Ξ), but it leads to
significantly more complicated formulas, which we
prefer avoiding for the sake of readability.

These techniques are quite popular in the actual
practice. We restrict our analysis to linear recon-
structors of the type (4), (5) and (6) for simplicity
reasons. Note that (5) corresponds to the limit case
of (6) when λ tends to zero. Numerical experiments
reveal that the optimization issues raised in Theo-
rems 1 and 2 also apply to nonlinear reconstruc-
tors such as sparsity promoting convex penalties.
However, the techniques used in the proofs do not
directly extend to this framework.

We first analyze the problem with a single image
u in the dataset, i.e. P = 1. Let us define three
cost functions J1, J2 and J3 which respectively cor-
respond to the back-projection, the pseudo-inverse
and the regularized inverse.

Definition 1 (Cost function). Given a signal u,
a sampling scheme Ξ and a reconstruction method
R(Ξ), the cost function reads

J(Ξ)
def
= Ew

(
1

2
‖R(Ξ)(A(Ξ)∗u+ w)− u‖22

)
(8)

where w ∼ N
(
0, σ2Id

)
is white Gaussian noise.

3.2 Elementary observations

We will make use of the following definitions.

Definition 2 (The min distance). Given a set of
sampling points Ξ, the min distance md(Ξ) is de-
fined by

md(Ξ)
def
= min

m 6=m′
dist(ξm, ξm′)

where dist is the distance on the torus defined for
(ξ1, ξ2) ∈ R2 as

dist(ξ1, ξ2)
def
= inf

k∈Z
‖ξ1 − ξ2 − kN‖∞. (9)

Definition 3 (Subgrid). Throughout the paper, we
say that Ξ ∈ [−N/2, N/2[M is a subgrid if ξm −
ξm′ ∈ Z∗ for all m 6= m′.

Proposition 1 (J is N -periodic). We have

J(Ξ mod N) = J(Ξ). (10)

Proof. Let n = kN with k ∈ N. The proof simply
stems from the fact that a(ξ + n) = a(ξ).

The previous proposition shows that we can re-
strict our attention to frequencies ξ belonging to
the set [−N/2, N/2[.

Proposition 2 (Existence of minimizers). For any
M ∈ N and any u ∈ CN , there exists at least one
minimizer of J on [−N/2, N/2[M .

Proof. We start by noticing that J is a C∞ function
since it is defined as a composition of C∞ functions.
Hence it is also continuous on [−N/2, N/2]M . This
yields the existence of at least one minimizer.

Now we proceed to a reformulation of the prob-
lem by rearranging the terms involved in the defi-
nition of J .

Proposition 3. The reconstructors associated to
J1, J2 and J3 defined in (8) can be expressed as

R(Ξ) = A(Ξ)Q(Ξ) (11)

(i.e. the solution lives in ran(A)) with:

• Q1(Ξ) = Id

• Q2(Ξ) = (A(Ξ)∗A(Ξ))+

• Q3(Ξ) = (1 + λ)(A(Ξ)∗A(Ξ) + λId)−1.

Proof. For Q1, there is nothing to prove. For
Q2, we use one of the standard properties of
the pseudo-inverse. For Q3, we use the equal-
ity A (A∗A+ λId) = (AA∗ + λId)A and then left
multiply by (AA∗ + λId)−1 and right multiply by
(A∗A+ λId)−1.

Proposition 4. Letting û(Ξ) = A(Ξ)∗u, we have

J(Ξ) =
1

2
‖u‖22 − 〈Q(Ξ)û(Ξ), û(Ξ)〉 (12)

+
1

2
‖R(Ξ)û(Ξ)‖22 +

1

2
Ew
(
‖R(Ξ)w‖22

)
Proof. We drop the dependency in Ξ to simplify the
notation.

2J = ‖u‖22 + ‖RA∗u‖22 + Ew
(
‖Rw‖22

)
+ 2Ew (Re〈RA∗u− u,w〉)− 2Re〈RA∗u, u〉

= ‖u‖22 + ‖RA∗u‖22 + Ew
(
‖Rw‖22

)
− 2〈Qû, û〉

where we used Q(Ξ)∗ = Q(Ξ) and Ew(w) = 0.
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Equation (12) greatly simplifies when Ξ is a sub-
grid. Let us define the following function

J̃(Ξ)
def
=

1

2
‖u‖22 −

1

2
‖û(Ξ)‖22 +

σ2M

2
. (13)

Proposition 5. When Ξ is a subgrid, J(Ξ) =
J̃(Ξ).

Proof. When Ξ is a subgrid, we have A(Ξ)∗A(Ξ) =
Id and we use the decomposition of Proposition 4
with Q(Ξ) = Id, R(Ξ)∗R(Ξ) = Id.

4 Theoretical issues

In this section, we give the main theoretical results
of the paper.

4.1 Spurious minimizers

The aim of this section is to illustrate a common sit-
uation where the function J possesses a combinato-
rial number of minimizers. We construct examples
where the function J̃ defined in (13) is very oscilla-
tory, while J−J̃ is of small amplitude. The function
J is close to J̃ not only for subgrids as in Proposi-
tion 5 but also for well-spread schemes. Following
the proof of Proposition 5, and the decomposition
of Proposition 4, it is sufficient to control how close
Q(Ξ) and R(Ξ)∗R(Ξ) are to Id. This is the aim of
the following proposition.

Proposition 6 (Bound on Q and R∗R). Consider
a sampling pattern Ξ such that md(Ξ) > 1 and set
ε = 1/md(Ξ). Then

−aiId 4 Qi − Id 4 aiId (14)

−biId 4 R∗iRi − Id 4 biId, (15)

with

a1 = 0, a2 =
ε

1− ε
, a3 =

ε

1− ε

b1 = ε, b2 =
ε

1− ε
, b3 =

4ε

(1− ε)2

The proof is postponed to Section 7.1.

Theorem 1 (A combinatorial number of minimiz-
ers ). Set a number of samples M ∈ N and consider
a vector u ∈ CN such that the following properties
are verified

i) The modulus |û|2 possesses a subset of K ≥M
local maximizers Z = {ζ1, . . . , ζK} separated by
a distance at least δ = md(Z) with δ > 1 + 2r
for some r > 0.

ii) The modulus |û|2 is locally strictly concave for
each ζk:

|û|2(ζk + h) ≤ |û|2(ζk)−
c

2
h2,∀h ∈ [−r, r]

for some c > 0.

iii) For any subset Ξ̄ of M distinct points in Z, we
have

cr2

2
> (b+ 2a) ‖û(Ξ̄)‖22 + bMσ2 (16)

where a and b are given in Proposition 6 with
ε = 1

δ−2r .

Then, the function J possesses at least
(
K
M

)
· M !

local minimizers.

The proof of Theorem 1 is postponed to Sec-
tion 7.2. The conditions in Theorem 1 may look
cryptic at first sight. We first show a simple exam-
ple of a function u that verifies the hypotheses and
leads to a huge number of critical points.

Corollary 1. Assume that N ∈ 4N and define u ∈
CN as follows

u[n] =

{√
N/2 if n = ±N/4,

0 otherwise.
(17)

Let M = bη
√
Nc with η = π2

√
2

256·(20+16σ2)
then all

the functions Ji possess a number of minimizers

larger than M ! ·
(

1
2η

)η√N
.

For σ ≤ 1, the bound holds for η = 3 · 10−3.
For σ = 0 and J1 the bound can be increased to
η = 1.09 · 10−1.

Proof. The choice of u in (17) leads to the oscilla-
tory function û(ξ) = cos

(
π
2 ξ
)
. The modulus |û| is

maximal at every point ξ ∈ 2N. Let ξ0 ∈ 2N and
set r = 1

4 . For any ξ ∈ [ξ0 − r, ξ0 + r], we have

(|û|2)′′(ξ) =
π2

2

(
sin2

(π
2
ξ
)
− cos2

(π
2
ξ
))

≤ − π2

2
√

2
.

Let p ∈ N. The conditions i) and ii) of Theorem 1
are satisfied with Z = 2pN ∩ [−N/2, N/2[, K =

bN/(2p)c, r = 1/4, c = π2
√

2
8 , δ = 2p. Further

notice that for every set Ξ̄ ∈ ZM , ‖û(Ξ̄)‖22 = M .

For this example, the condition (16) therefore
reads

M <
π2
√

2

256
·
(

1

b+ 2a+ bσ2

)
. (18)
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As long as this condition is satisfied, Theorem 1
allows to conclude on the existence of

(bN/2pc
M

)
·M !

maximizers.

Now, if δ − 2r ≥ 2, we can coarsely simplify the
bounds in Proposition 6 as

a ≤ 2

δ − 2r
and b ≤ 16

δ − 2r
.

Hence, a combinatorial number of minimizers is
granted given that

M <
π2
√

2

256
·
(

δ − 2r

20 + 16σ2

)
. (19)

Now, take p = b
√
Nc and M = bη ·

√
Nc with

η = π2
√

2
128·(20+16σ2)

. Then Theorem 1 yields a number

of minimizers larger than
(b√N/2c
bη·
√
Nc

)
·M !. Using the

standard bound (
n

k

)
≥
(n
k

)k
(20)

yields a number of minimizers larger than
(

1
2η

)η√N
.

In particular for σ < 1 this yields η = 0.003. The
bound can be increased to η = 0.109 for σ = 0 and
J1.

4.2 Numerical illustration of Theorem 1

In this section we illustrate Theorem 1 through nu-
merical examples in Fig. 2. We first consider the
noiseless settings σ = 0 and illustrate the existence
of spurious minimizers for the back-projection and
the pseudo-inverse methods.

We introduce the following function

F (Ξ)
def
=

1

2

M∑
m=1

|û(ξm)|2 =
1

2
‖û(Ξ)‖22, (21)

which somehow measures the energy captured
within a sampling scheme Ξ. We also introduce the
functions G1 and G2 such that J1 = 1

2‖u‖
2
2−F+G1

and J2 = 1
2‖u‖

2
2−F +G2. Using Proposition 4, we

have

G1(Ξ) =
1

2
〈(A(Ξ)∗A(Ξ)− Id) û(Ξ), û(Ξ)〉 , (22)

and

G2(Ξ) =
1

2

〈(
Id− (A(Ξ)∗A(Ξ))+

)
û(Ξ), û(Ξ)

〉
.

(23)

From the left to the right, we used three differ-
ent 1D signals: a high frequency cosine, a low fre-
quency sine and a Gaussian. We plot the different

energy landscapes, for M = 2 measurements at lo-
cations Ξ = {ξ1, ξ2} and N = 16. From the top
to the bottom, we display the functions J1, J2, G1,
G2, −F and the modulus of the Fourier transform
ξ 7→ |û(ξ)|. In order to understand the effect of the
signal’s structure, the local minima of J1, J2, G1,
G2 and −F are represented with red dots.

First notice that the cost functions are symmetric
with respect to the diagonal. This simply reflects
the fact that permutation of points lead to the same
energy, and this illustrates the factor M ! in Theo-
rem 1.

As can be seen in all cases, the functions G1 and
G2 vanish far away from the diagonal (see Propo-
sition 6). These point configurations correspond
to well-spread sampling schemes. On the contrary,
the function −F can have a large amplitude even
outside the diagonal. These two properties are the
main ingredients to prove Theorem 1.

The left column (high frequency cosine), corre-
sponds to the example in Corollary 1. We see a
number of minimizers that seems quadratic in N
for M = 2. The center column (low frequency sine)
shows that the number of minimizers decreases with
a higher regularity of the signal, by reducing the os-
cillations in F . On the right (Gaussian function),
we illustrate a case where F has only one local
maximum. Even in this case, the function J still
has valleys with shallow local minima. The same
phenomenon appears in the center (low frequency
sine). Notice that this phenomenon is not captured
by Theorem 1, which only relies on local maximiz-
ers of F . In these two examples, the oscillations are
induced by the function G, which we do not explore
in this paper.

In Fig. 3, the energy profile of J3 is displayed
with the low frequency signal (see Fig. 2 center col-
umn) for M = 2 and for various noise levels σ and
regularization parameters λ.

Neither the noise, nor the regularization param-
eter λ are able to remove the local minimizers of
J3 which are displayed by red dots. The last col-
umn is a critical case where the noise prevails over
the signal and the reconstruction error is high (typ-
ically ∼ 0.18 in the noiseless setting and ∼ 0.5 with
σ = 5× 10−1).

4.3 Flatness for high frequencies

In this paragraph we show that the partial deriva-
tives of the cost function may vanish, for indexes
corresponding to high frequencies. This explains
another practical difficulty in Fourier sampling opti-
mization: without using variable metric techniques,
the sampling points located in the high frequencies
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move very slowly. Though our proof only applies
to the function J1, this effect also seems to occurs
for J2. See for instance the four corners of Fig. 2,
right.

Proposition 7. Letting r denote the residual error
function

r(Ξ) = A(Ξ)A(Ξ)∗u− u, (24)

the gradient of the cost function J1 reads:

∇J1(Ξ) = Re
(
∇
(
û(Ξ)� r̂(Ξ)

))
, (25)

where ∇ in the right-hand-side denotes the usual
derivative in 1D or the gradient in higher dimension
and where � is the coordinate-wise (Hadamard)
product.

The proof of Proposition 7 is postponed to Sec-
tion 7.3.

Theorem 2 (Vanishing gradients for high frequen-
cies). Consider a signal u ∈ CN and a point config-
uration Ξ ∈ RM . Under the decay assumptions

|û(ξ)| . 1

|ξ|α
and |û′(ξ)| . 1

|ξ|α
, (26)

with α > 0, we have∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ . ‖û(Ξ)‖1
md(Ξ)|ξm|α

. (27)

The decay assumption appear naturally in the
continuous setting, when considering signals u from
Sobolev spaces Hk with k derivatives in L2.

5 Escaping the minimizers

In this section we propose some solutions to miti-
gate the issues raised in Section 4 and we illustrate
them numerically.

5.1 The effect of using a large dataset

In Theorem 1, we proved existence of many lo-
cal minimizers in the case P = 1, which corre-
sponds to a unique signal. Let us now assume
that we have access to P signals u1, . . . , uP in CN .
The analysis carried out to prove Theorem 1 can
be replicated verbatim. The only difference being
that every occurence of |û|2 must be replaced by

ρP
def
= 1

P

∑P
p=1 |ûp|2. The function ρP can be un-

derstood as the average power spectral density of
the family u1, . . . , uP . As highlighted in Theorem 1,
two important factors that can create spurious min-
imizers are i) the number K of strict maximizers of
ρP and ii) the curvature c at these maximizers.

As P increases, we typically expect the density
ρP to become smoother. This effect is illustrated
for a simple family of shifted and dilated rectangu-
lar functions in Fig. 4. As can be seen, both the
number of maxima and the curvature c of ρP in
Theorem 1 decay with P . For N = 128, we display
the average power spectral density for P ranging
from 1 to 103. Each signal is defined by

u[n] =

∫ n+ 1
2

n− 1
2

1[a,b](x) dx, (28)

where a and b are drawn uniformly in the range
[−N/2 + 1, N/2− 1]. The discrete signals are then
renormalized so that ‖u‖2 = 1.

The same experiment can be reproduced in a
more relevant framework from a practical view-
point. The average power spectral density for 2D
knee images of the fastMRI database [18] are rep-
resented in Fig. 5. The image are of size 320× 320.
The local maximizers are computed and displayed
with red dots in Fig. 5. In that case, increasing the
family size P reduces the number of maximizers at
a slow rate. Indeed they slightly increase from 13k
points in the case P = 1 to 14k in the case P = 100
and then start to decrease to 11k for P = 10000.
However, the curvature c decays much faster. As
a conclusion, we see that using large families of
signals can reduce asymptotically the number and
the size of the basins of attraction of some spurious
minimizers.

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60
10 6

10 5

10 4

10 3

10 2

10 1

P

P=1
P=10
P=50
P=100
P=1000

Figure 4: Average power spectral density ρP for
families of rectangular functions with different sizes
P . The dots represent local maxima of ρP for dif-
ferent values of P .

5.2 Stochastic gradient descent

When using a large family of signals, the cost func-
tion (3) naturally lends itself to the use of stochastic
gradient descents (SGD), see [16, 17] that address

8



(a) P = 100 – 13746 maxima (b) P = 102 – 14888 maxima (c) P = 104 – 11592 maxima

Figure 5: Average power spectral density ρP for a subset of images from the knee dataset of fastMRI.
The image size is N = 320 and the red dots represent local maximizers.

large MRI datasets. Contrarily to a determinis-
tic gradient descent, which is known to converge to
critical points under mild regularity conditions, the
stochastic gradient with a fixed step size does not
converge. The method is known to end up frolicking
in the neighborhood of local critical points [6]. The
radius of the neighborhood depends on the stochas-
tic gradient variance and on the step-size. Intu-
itively, using stochastic gradients algorithms should
therefore allow escaping local minimizers. We will
showcase this effect in the forthcoming numerical
experiments.

5.3 Variable metric

In Section 4.3, Theorem 2 states that the gradient of
J1 might vanish in the high frequency domain. Us-
ing second order information is a well known rem-
edy to mitigate this effect. In this work, we propose
a simple method which corresponds to a variable di-
agonal metric with well-chosen coefficients.

As shown in Theorem 2, the gradient vanishes
with a rate depending on the Fourier transform
magnitude |û|. For a dataset, this decay is some-
what captured by the average power spectral den-

sity ρP (ξ)
def
= 1

P

∑P
p=1 |ûp(ξ)|2. Hence, we propose

to compute ρP once and for all on a fine grid (20×N
discretization points in our example). The function
ρP is then linearly interpolated in between the grid
points during the gradient descent. At each gradi-
ent iteration we replace ∂J1(Ξ)

∂ξm
by

1

ρP (ξm)β
∂J1(Ξ)

∂ξm
, (29)

where β is a constant that has to be set empiri-
cally. From numerical experiments β ∈ [1, 2] shows
good performance. In all the experiments presented
hereafter we use β = 1. We will see later in the nu-
merical experiments, that this variable metric sig-
nificantly accelerates the convergence for sampling

points located in high frequencies.

5.4 Numerical illustrations

In this section, we aim at illustrating numerically
the different results established previously. We aim
at reconstructing 1D signals of size N = 128 from
M = 64 measurements in the Fourier domain. We
suppose that P rectangular signals generated using
(28) are given. We illustrate our findings with the
back-projection reconstructor associated to the cost
function J1, but similar results have been obtained
with the pseudo-inverse. As we are working in 1D
with small dimensions N and M , at each iteration,
the whole matrix A(Ξ)∗ is evaluated and the gra-
dient ∇J1 is computed directly from the analytic
expression (25). We first use a fixed step gradient
descent algorithm in order to showcase the conver-
gence dynamics of the algorithm. The initialization
of Ξ is a subgrid with a constant spacing of 2. The
following experiments are conducted:

Effect of the dataset size P We first vary the
number of signals by taking P = 1 and P = 1000.
The evolution of Ξ is displayed in Fig. 6, respec-
tively top-left and top-center. The history of the
cost function is given in Fig. 7. For this experiment,
we expect that a good sampling scheme consists
of low frequencies sampled at the Shannon-Nyquist
rate. In this regard, the sampling scheme obtained
in Fig. 6 for P = 1000 is more satisfactory than
the one obtained for P = 1. In the case P = 1000,
the displacement of Ξ is more important, suggesting
that some local minima have been discarded.

Variable metric We then study, for P = 1000
the effect of a variable metric gradient descent as
described in Section 5.3. We also compare this
approach to an L-BFGS algorithm [7] with a line
search and with a Hessian estimated using the last
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8 gradients. In Fig. 6, the usual gradient algorithm
is at the top-center, the variable metric gradient de-
scent is at the bottom-center and the L-BFGS algo-
rithm is at the bottom-left. The cost function evo-
lution is displayed in Fig. 7. Using a variable metric
results in a huge speed-up of the algorithm. This
is particularly visible for points ξ located at high
frequencies, which is another illustration of Theo-
rem 2. For this example, the L-BFGS algorithm
converges slightly faster than the variable metric
gradient descent in the early iterations. However,
its per-iteration cost is much higher since it uses a
line search and a non diagonal metric. Since the
L-BFGS algorithm can be seen as a state-of-the-
art quasi-Newton method, the proposed empirical
metric (29) seems remarkably efficient.

Stochastic gradient descent Finally in Fig. 6
right column, we investigate the use of a fixed-
step stochastic gradient descent algorithm with a
batch size of 1. In that experiment, a new ran-
dom signal is generated at every iteration using the
model (28) and the stochastic gradient is computed
with respect to that signal only. The trajectory of
the vanilla SGD is comparable with the one ob-
tained using a deterministic gradient descent for
P = 1000 in Fig. 6 top-center. The variable metric
trick significantly improves the convergence speed
and more importantly, the final points configura-
tion. As a conclusion, the variable metric SGD al-
gorithm seems to be able to escape spurious mini-
mizers and to take advantage of the averaging effect
of the large dataset without the struggle of comput-
ing the gradient over a large dataset.

Comparison of the sampling schemes The fi-
nal sampling schemes are not directly comparable in
terms of cost function because the objective func-
tion is computed over different datasets. In Ta-
ble 1, we therefore report the cost function com-
puted on a specific set of signals. This set contains
the P = 1000 signals that are used in the numerical
illustrations of Fig. 6 center column. When tested
against a large dataset, the final configuration ob-
tained for P = 1 seems highly sub-optimal. This
effect is most likely due to a convergence to a local
minimizer and also to the fact that the sampling
scheme is not adapted to a whole family but only
to a single signal. The remarkable observation that
can be made from Table 1 is that the optimal con-
figuration obtained with the variable metric SGD
performs better on the dataset of P = 1000 sig-
nals than the experiment conducted in Fig. 6 which
is taylored for this dataset. This shows that the

the usual deterministic algorithms are stuck in local
minima even with large datasets. On the contrary,
the variable metric SGD algorithm seems effective.

These numerical results highlight the effective-
ness of the different tricks suggested in this sec-
tion: the use of a variable metric to handle high
frequencies and a stochastic optimization to avoid
local minima.

6 Conclusion

We highlighted two obstacles to the convergence
of gradient based algorithms for Fourier sampling
schemes optimization. The first one is a high num-
ber of local minimizers and the second one is a van-
ishing gradient phenomenon for high frequencies.
As far as we know, this is the first theoretical study
explaining why optimizing sampling patterns with
modern automatic differentiation tools might result
in algorithms being stucked at unsatisfactory loca-
tions. We also proposed three approaches to mit-
igate these effects. First, the number of spurious
minimizers, the width and the depth of their basins
of attraction can be reduced by considering large
databases of signals. This acts as a regularization
by averaging. Second, the vanishing gradient ef-
fect can be attacked with variable metric gradient
descents. Finally, the use of a stochastic gradient
instead of a deterministic gradient approach seems
to allow escaping the narrow basins in a simpli-
fied 1D setting. These remarks may help explaining
why the recent approaches in the literature based
on the Adam optimizer manage to slightly improve
the sampling pattern efficiency. Our work suggests
that increasing the database sizes may help further
easing the numerical resolution of the sampling pat-
tern optimization by further smoothing the energy
profiles. Many state-of-the-art reconstructors are
based on a quadratic data fidelity term and we ex-
pect that some of the techniques used in this paper
in the linear case can be reused even in a nonlinear
setting. This is left for future research.
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(f) variable metric SGD

Figure 6: Trajectories of Ξ the back-projection reconstructor J1 and a fixed-step gradient descent. The
iterations are represented on the vertical axis, and the horizontal axis corresponds to ξ and is periodic.
The initialization is a uniform subgrid and is seen on the axis y = 0 of the top and middle figures. Left
and center: trajectories of Ξ for different sizes of signals families. The objective function is given in
Fig. 7. The right column represents trajectories of Ξ using a stochastic gradient descent with one signal
in the batch that is different at each iteration. The trajectories in the stochastic case have been averaged
over the last 10000 iterations.

Test case P = 1 P = 1000 P = 1000 with
var. metric

L-BFGS SGD SGD with
var. metric

Eff. 9.07× 10−2 2.68× 10−2 2.38× 10−2 2.41× 10−2 6.63× 10−2 1.00× 10−2

Table 1: Effectiveness of the sampling schemes obtained with different strategies on a dataset of 1000
signals. The table contains the average reconstruction error J1 over the dataset. This dataset is the one
used in the case P = 1000, see Fig. 6 center column.

7 Proofs

7.1 Proof of Proposition 6

Significant progress have been made lately in the
control of the extreme eigenvalues of Vandermonde
matrices, which play a pivotal role in algebraic num-
ber theory [5, 12, 4, 2]. The tightest results for
well separated schemes was recently obtained in [2].
Rewriting their result in our formalism, we obtain
the following inequality.

Proposition 8 (Conditioning of Vandermonde ma-
trices [2] ). Let Ξ = (ξ1, . . . , ξM ) denote a set of
distinct sampling points. The following inequalities
hold(

1− 1

md(Ξ)

)
Id 4 A(Ξ)∗A(Ξ) 4

(
1 +

1

md(Ξ)

)
Id

(30)

Proof. Relation (30) is a direct consequence of [2,
eq. (31)] up to renormalizations.

Proof. For i = 1, recall that Q1 = Id and R∗1R1 −
Id = A∗A. Then (14) is trivial and (15) follows
from Proposition 8.

Let τm denote the eigenvalues of A(Ξ)∗A(Ξ). By
Proposition 8, |τm − 1| ≤ ε < 1.

For i = 2, R∗2R2 = Q∗2A
∗AQ2 = (A∗A)+, Q2 =

(A∗A)+. With ε < 1, A(Ξ)∗A(Ξ) is invertible and
we have

1

1 + ε
Id 4 (A(Ξ)∗A(Ξ))−1 4

1

1− ε
Id. (31)

And we finally get

−ε
1 + ε

Id 4 (A(Ξ)∗A(Ξ))−1 − Id 4
ε

1− ε
Id. (32)
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Figure 7: Objective function J1 (back-projection)
for the different experiments in Fig. 6 in the deter-
ministic case.

For i = 3, Q3 = (1 + λ) (A∗A+ λId)−1, so that

1 + λ

1 + λ+ ε
Id 4 Q3 4

1 + λ

1 + λ− ε
Id.

This gives

−ε
1 + λ+ ε

Id 4 Q3 − Id 4
ε

1 + λ− ε
Id

and using that ε > 0 and λ ≥ 0 allows to conclude.
In order to prove (15), Proposition 8 yields 1−ε ≤

τm ≤ 1 + ε. In addition,

R∗3R3 = (1 + λ)2(A∗A+ λId)−1A∗A(A∗A+ λId)−1

can be diagonalized and its eigenvalues are therefore
of the form

(1 + λ)2 τm
(τm + λ)2

.

By taking the upper-bound on the numerator and
the lower-bound on the denominator, we obtain the
following bound:

R∗3R3 4 (1 + λ)2 1 + ε

(1− ε+ λ)2
Id.

We can continue as follows:

(1 + λ)2 1 + ε

(1− ε+ λ)2

= (1 + λ)2 1 + ε

(1 + λ)2(1− ε/(1 + λ))2

≤ 1 + ε

(1− ε)2
.

By a similar reasoning with respect to the smallest
eigenvalue of R∗3R3, we get:

1− ε
(1 + ε)2

Id 4 R∗3R3 4
1 + ε

(1− ε)2
Id.

Substracting the identity on both sides and using
the fact that ε2 < ε since ε < 1 yields

− 4ε

(1− ε)2
Id 4 R∗3R3 − Id 4

4ε

(1− ε)2
Id.

7.2 Proof of Theorem 1

Under the hypotheses of Theorem 1, first notice
that any set Ξ ∈ ZM is a local maximizer of
Ξ 7→ ‖û(Ξ)‖22. Indeed any perturbation of the indi-
vidual sampling locations ξm results in a decay of
the captured energy.

There are
(
K
M

)
possible sampling configurations

when all the points belong to Z. Let Ξ̄ =
{ξ̄1, . . . , ξ̄M} denote one of them. The idea of the
proof is to show that there is a local minimizer of
J in the following neighborhood B = [ξ̄1 − r, ξ̄1 +
r]× . . .× [ξ̄M − r, ξ̄M + r]. A sufficient condition for
the set B to contain a local minimizer of J is that
J(Ξ̄) < J(Ξ) for all Ξ ∈ ∂B (the boundary of B)
since J is continuous. Throughout this proof, we
use ε = 1

δ−2r since we always have for all Ξ under
consideration, md(Ξ) ≥ δ − 2r.

Using the bounds of Proposition 6, we obtain∣∣∣J(Ξ)− J̃(Ξ)
∣∣∣ ≤ ( b

2
+ a

)
‖û(Ξ)‖22 +

b

2
σ2M. (33)

For all Ξ ∈ ∂B, at least one index m must verify
ξ̄m − ξm = r and we have by strict concavity of |û|
around ξ̄m

‖û(Ξ̄)‖22 − ‖û(Ξ)‖22 ≥
cr2

2
(34)

‖û(Ξ̄)‖22 + ‖û(Ξ)‖22 ≤ 2‖û(Ξ̄)‖22. (35)

Hence for Ξ ∈ ∂B, using (34) yields

J̃(Ξ)− J̃(Ξ̄) ≥ cr2

2
(36)

Combining the previous inequalities yields

J(Ξ)− J(Ξ̄)

= J(Ξ)− J̃(Ξ) + J̃(Ξ)− J̃(Ξ̄) + J̃(Ξ̄)− J(Ξ̄)

(36)

≥ cr2

2
+ J(Ξ)− J̃(Ξ) + J̃(Ξ̄)− J(Ξ̄)

(33)

≥ cr2

2
−
[(

b

2
+ a

)(
‖û(Ξ)‖22 + ‖û(Ξ̄)‖22

)
+ bMσ2

]
(35)

≥ cr2

2
−
[
(b+ 2a) ‖û(Ξ̄)‖22 + bMσ2

]
Therefore, the condition

cr2

2
> (b+ 2a) ‖û(Ξ̄)‖22 + bMσ2 (37)
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suffices to conclude on the existence of a maximizer
of J in the interior of B. The multiplicative factor
M ! is related to the fact that for a given maximizer,
all the possible permutations of indices give rise to
different maximizers.

7.3 Proof of Proposition 7

Proof. Let us consider a point configuration Ξ ∈
RM and a perturbation ε ∈ RM . Given a vec-
tor of measurements û(Ξ) ∈ CM , we let ∇û(Ξ) = û′(ξ1)

...
û′(ξM )

 denote the vector of derivatives at the

sampling locations. Elementary calculus leads to
the following identities for every ε direction of vari-
ation:

(JacA(Ξ)ε)∗ = JacA∗(Ξ)ε

∇û(Ξ)� ε = JacA∗(Ξ)ε · u.

Then, we apply standard calculus of variations:

J1(Ξ + ε) =J1(Ξ) + Re〈JacA(Ξ)ε · û(Ξ), r(Ξ)〉
+ Re〈A(Ξ)JacA∗(Ξ)ε · u, r(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈û(Ξ), (JacA(Ξ)ε)∗ r(Ξ)〉
+ Re〈∇û(Ξ)� ε, r̂(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈û(Ξ),∇r̂(Ξ)� ε〉
+ Re〈ε,∇û(Ξ)� r̂(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈∇r̂(Ξ)� û(Ξ), ε〉
+ Re〈ε,∇û(Ξ)� r̂(Ξ)〉+ o(‖ε‖22).

Hence, by identification

∇J1(Ξ) = Re
(
∇r̂(Ξ)� û(Ξ) +∇û(Ξ)� r̂(Ξ)

)
= Re

(
∇
(
û(Ξ)� r̂(Ξ)

))
.

7.4 Proof of Theorem 2

In order to simplify the notation, let L(Ξ)
def
=

A(Ξ)∗A(Ξ). By Proposition 7, we have∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ ≤ |û′(ξm)| · |r̂(ξm)|+ |û(ξm)| · |r̂′(ξm)|.

By definition, we have r̂(Ξ) = (L(Ξ) − Id)û(Ξ),
hence

|r̂(ξm)| ≤ ‖r̂(Ξ)‖2 ≤
‖û(Ξ)‖2
md(Ξ)

, (38)

where we used Proposition 8 to obtain the last in-
equality. Now, we also wish to control |r̂′(ξm)|. To

this end, first notice that

r̂′(ξm) =

M∑
m′=1

(
∂L(Ξ)m,m′

∂ξm
û(ξm′)

+ L(Ξ)m,m′ û
′(ξm′)1m=m′

)
− û′(ξm)

=
M∑

m′=1

∂L(Ξ)m,m′

∂ξm
û(ξm′).

We start with an analytical expression of the ma-
trix L(Ξ).

Proposition 9 (The expression of A∗A). Let

L(Ξ)
def
= A(Ξ)∗A(Ξ). We have

[L(Ξ)]m,m′ =


1 if m = m′,

1
N

exp

(
ιπ(ξm−ξm′ )

N

)
×

sin(π(ξm−ξm′ ))

sin

(
π(ξm−ξm′ )

N

) otherwise.

(39)

Proof. We have:

[L(Ξ)]m,m′ =
1

N

∑
n

e2ι π
N
〈ξm′−ξm,n〉

=
1

N
e−ιπ(ξm′−ξm) 1− e2ιπ(ξm′−ξm)

1− e2ι π
N

(ξm′−ξm)

=
1

N
e−ιπ(ξm′−ξm) e

ιπ(ξm′−ξm)

eι
π
N

(ξm′−ξm)

× e−ιπ(ξm′−ξm) − eιπ(ξm′−ξm)

e−ι
π
N

(ξm′−ξm) − eι
π
N

(ξm′−ξm)

=
1

N
e−ι

π
N

(ξm′−ξm) sin(π(ξm′ − ξm))

sin( πN (ξm′ − ξm))
.

Now, we will use the following lemma.

Lemma 1. The following bound holds:∣∣∣∣∂L(Ξ)m,m′

∂ξm

∣∣∣∣ ≤ π

N
+

4

dist(ξm′ , ξm)
≤ π

N
+

4

md(Ξ)
.

Proof. Letting δ = ξm − ξm′ , we have

∂L(Ξ)m,m′

∂ξm
=

π

N2
× ιeι

π
N
δ sin(πδ)

sin
(
π
N δ
)

+
π

N
× e−ι

π
N
δ

sin( πN δ)

(
cos(πδ)− sin(πδ)

N
×

cos( πN δ)

sin( πN δ)

)
.

Without loss of generality we consider the case

0 ≤ δ ≤ N/2. Using
∣∣∣ sin(πδ)
N sin( π

N
δ)

∣∣∣ ≤ 1 let us remark

that∣∣∣∣∂L(Ξ)m,m′

∂ξm

∣∣∣∣ ≤ π

N

+
π

N

∣∣∣∣ 1

sin( πN δ)

(
sin(πδ) cos( πN δ)

N sin( πN δ)
− cos(πδ)

)∣∣∣∣ .
13



Using the inequality
∣∣∣ sin(πδ)
N sin( π

N
δ)

∣∣∣ ≤ 1 again, we

obtain∣∣∣∣sin(πδ) cos( πN δ)

N sin( πN δ)
− cos(πδ)

∣∣∣∣ ≤ ∣∣∣cos(
π

N
δ)
∣∣∣+ 1 ≤ 2.

Finally, using the inequality sin(x) ≥ x/2 for x ∈
(0, π/2), we get

∣∣∣∂L(Ξ)m′,m
∂ξm′

∣∣∣ ≤ π
N + 4

δ .

Lemma 1 and a Cauchy-Schwarz inequality pro-
vides the following bound:

|r̂′(ξm)| ≤
(
π

N
+

4

md(Ξ)

)
‖û(Ξ)‖1.

Combining everything finally yields:∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ ≤|û′(ξm)| · ‖û(Ξ)‖2
md(Ξ)

+ |û(ξm)| · ‖û(Ξ)‖1 ·
(
π

N
+

4

md(Ξ)

)
.

Under the decay assumptions of Theorem 2, we
obtain ∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ . ‖û(Ξ)‖1
md(Ξ)|ξm|α

.

References

[1] Hemant Kumar Aggarwal and Mathews Jacob. J-
modl: Joint model-based deep learning for opti-
mized sampling and reconstruction. IEEE journal
of selected topics in signal processing, 14(6):1151–
1162, 2020.
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