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1 Institut de Mathématiques de Toulouse; UMR5219; Université de Toulouse; CNRS
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Abstract— A recent trend in the signal/image

processing literature is the optimization of

Fourier sampling schemes for specific datasets of

signals. In this paper, we explain why choosing

optimal non Cartesian Fourier sampling patterns

is a difficult nonconvex problem by bringing to

light two optimization issues. The first one is the

existence of a combinatorial number of spurious

minimizers for a generic class of signals. The sec-

ond one is a vanishing gradient effect for the high

frequencies. We conclude the paper by showing

how using large datasets can mitigate the first ef-

fect and illustrate experimentally the benefits of

using stochastic gradient algorithms with a vari-

able metric.

1 Introduction

Finding efficient Fourier sampling schemes is a crit-
ical issue in communications and imaging. This
led to various theories including the celebrated
Shannon-Nyquist theorems for bandlimited signals
and compressed sensing for sparse signals. Un-
fortunately - in most practical cases - the signals
to reconstruct are quite loosely described by these
generic classes. For instance, magnetic resonance
images of brains or knees have a rich structure due
to the underlying object. It is therefore tempting
to optimize a sampling scheme directly for a given
dataset rather than relying on a rough mathemati-
cal model. The recent progresses in GPU program-
ming, automatic differentiation and machine learn-
ing make this idea even more tantalizing. In the
sole field of MRI, the following list of references
[7, 8, 11, 2, 15, 12, 13, 12, 6] illustrates this novel
trend.

Unfortunately, most of the above works report
(more or less explicitly) optimization issues. Fig. 1
illustrates one of them. In this example, we tried
to optimize a sampling scheme for a single image
from the fastMRI challenge [14]. To this end, we

minimize the `2 reconstruction error using a sim-
ple back-projection reconstructor with a subsam-
pling factor of 2. The trajectory of a gradient de-
scent is displayed in Fig. 1b. As can be seen, the
final sampling set covers approximately uniformly
the Fourier domain, while we would expect the low
frequencies to be sampled more densely. This likely
highlights the presence of a spurious minimizer.

The aim of this paper is to explain this phe-
nomenon from a mathematical perspective and to
bring some solutions to mitigate the difficulties. We
focus on optimization schemes that continuously
optimize the positions of some sampling locations.
These techniques have the advantage of not relying
on a grid, which is an essential feature for vari-
ous applications such as magnetic resonance imag-
ing or radio-interferometry. In addition, they spark
the hope of avoiding the curse of dimensionality
encountered in combinatorial problems. We show
that this dream is not realistic, but that the situa-
tion improves by considering large signals datasets
and specific variable metric techniques. We con-
clude the paper by illustrating our findings on 1D
experiments.

2 Notation

In this paper, we will focus on discrete 1D signals,
for the ease of exposition. However, the main ar-
guments apply to arbitrary dimensions and contin-
uous signals as well.

We consider a signal u as a vector of CN with
N ∈ 2N. We let N =

q
−N

2 ,
N
2 − 1

y
. An alternative

way to represent a signal u ∈ CN is to use a discrete
measure µ of the form:

µ =
∑
n∈N

unδ n
N
. (1)

Given a location ξ ∈ R, we define:

û(ξ)
def
=

1√
N

∑
n∈N

une
−2ιπ〈ξ, nN 〉, (2)
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(a) Initial (b) Trajectory over 107 iterations (c) Final

Figure 1: A typical sampling optimization trajectory. Starting from the sampling configuration on the left
(uniform point process), we obtain the sampling scheme on the right after 107 iterations. The trajectory
in the center corresponds to the 107 iterations of a gradient descent with fixed step size. Notice that the
points clusters have disappeared, but that the scheme is still essentially uniform, while we would expect
the low frequencies to be sampled more densely.

which can be seen as the continuous Fourier
transform of the measure µ. We consider Ξ =
[ξ1, . . . , ξM ] ∈ RM a set of M locations. The Fourier
transform û(Ξ) ∈ CM at the locations Ξ can be
written as a matrix-vector product of the form
û(Ξ) = A(Ξ)∗u with the normalized Vandermonde
matrix A(Ξ) ∈ CN×M defined by

A(Ξ)n,m
def
=

1√
N
e2ιπ〈ξm, nN 〉.

In what follows, we let a(ξ) ∈ CN denote the vector
defined for all n ∈ N by

a(ξ)[n]
def
=

1√
N
e2ιπ〈ξ, nN 〉,

so that

A(Ξ) = [a(ξ1), . . . , a(ξM )].

The matrix A(Ξ)∗ can be seen as the nonuniform
Fourier transform [10] from the grid to the set of
sampling locations Ξ. We let (A(Ξ)∗)+ denote the
pseudo-inverse of A(Ξ)∗.

3 Preliminaries

Below, we first describe the precise mathematical
setting and then turn to some preliminary results.

3.1 The setting

Let u ∈ CN denote a signal. We assume that a sam-
pling device allows to pick M frequencies ξ1, . . . , ξM
in R, yielding the set of measurements y = A(Ξ)∗u.
A vast amount of reconstruction techniques have

been designed in the literature to reconstruct u
from y. A generic reconstructor can be defined as
a mapping R : (CM × RM ) → CN that takes as
an input a measurement y ∈ CM and a sampling
scheme Ξ ∈ RM and outputs a reconstructed signal
R(y,Ξ). Given a collection of signals u1, . . . , uP and
a reconstructor R, a natural framework to find the
best sampling scheme Ξ is to solve the following
optimization problem:

inf
Ξ∈RM

1

2P

P∑
p=1

‖R(A(Ξ)∗up,Ξ)− up‖22. (3)

This problem can be attacked with first order meth-
ods that continuously optimize the sampling loca-
tions ξm, see for instance [13, 6, 12]. In this work,
we will concentrate on two simple linear reconstruc-
tion methods:

The back-projection method which consists in
defining the reconstructor as

R(y,Ξ) = A(Ξ)y. (4)

The pseudo-inverse method which consists in
defining the reconstructor as

R(y,Ξ) = (A(Ξ)∗)+ y. (5)

Both techniques are quite popular in the literature.
In fact, they coincide whenever Ξ is a subgrid (see
definition hereafter) since in that case, the Fourier
atoms are pairwise orthogonal. We restrict our
analysis to linear reconstructors of the type (4) and
(5) for simplicity reasons. Numerical experiments
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reveal that the optimization issues raised in Theo-
rems 1 and 2 also apply to nonlinear reconstructors
such as sparsity promoting convex penalties. How-
ever, the techniques used in the proofs do not seem
to easily extend to this framework.

We first analyze the problem with a single image
u in the dataset, i.e. P = 1. Let us define the
following two cost functions.

J1(Ξ)
def
=

1

2
‖A(Ξ)A(Ξ)∗u− u‖22 (6)

and

J2(Ξ)
def
=

1

2
‖ (A(Ξ)∗)+A(Ξ)∗u− u‖22 (7)

Minimizing J1 allows to optimize the sampling
scheme associated to the back-projection while min-
imizing J2 allows to optimize the sampling scheme
for the pseudo-inverse.

3.2 Elementary observations

We will make use of the following definitions.

Definition 1 (The min distance). Given a set of
sampling points Ξ, the min distance md(Ξ) is de-
fined by

md(Ξ)
def
= min

m 6=m′
dist(ξm, ξm′)

where dist is the distance on the torus defined for
(ξ1, ξ2) ∈ R2 as

dist(ξ1, ξ2)
def
= inf

k∈Z
‖ξ1 − ξ2 − kN‖∞. (8)

Definition 2 (Subgrid). Throughout the paper, we
say that Ξ ∈ [−N/2, N/2[M is a subgrid if ξm −
ξm′ ∈ Z∗ for all m 6= m′.

In what follows J can denote either J1 or J2 de-
fined in (6) and (7).

Proposition 1 (J is N -periodic). We have

J(Ξ mod N) = J(Ξ). (9)

Proof. Let n = kN with k ∈ N. The proof simply
stems from the fact that a(ξ + n) = a(ξ).

The previous proposition shows that we can re-
strict our attention to frequencies ξ belonging to
the set [−N/2, N/2[.

Proposition 2 (Existence of minimizers). For any
M ∈ N and any u ∈ CN , there exists at least one
minimizer of J on [−N/2, N/2[.

Proof. We start by noticing that J is a C∞ function
since it is defined as a composition of C∞ functions.
Hence it is also continuous on [−N/2, N/2]. This
yields the existence of at least one minimizer.

Now we proceed to a reformulation of the prob-
lem by rearranging the terms involved in the defi-
nition of J defined in (6). To that end, let us intro-
duce the following function

F (Ξ)
def
=

1

2

M∑
m=1

|û(ξm)|2 =
1

2
‖û(Ξ)‖22, (10)

which somehow measures the energy captured
within a sampling scheme Ξ. We also introduce
the functions

G1(Ξ)
def
=

1

2
〈(A(Ξ)∗A(Ξ)− Id) û(Ξ), û(Ξ)〉 , (11)

and

G2(Ξ)
def
=

1

2

〈(
Id− (A(Ξ)∗A(Ξ))+

)
û(Ξ), û(Ξ)

〉
.

(12)

Proposition 3. We have

J1(Ξ) =
1

2
‖u‖22 − F (Ξ) +G1(Ξ) (13)

and

J2(Ξ) =
1

2
‖u‖22 − F (Ξ) +G2(Ξ). (14)

In particular, when Ξ is a subgrid, we have

J1(Ξ) = J2(Ξ) =
1

2
‖u‖22 −

1

2
‖û(Ξ)‖22.

Proof. The proof of (13) and (14) is postponed
to Section 7.1. When Ξ is a subgrid, the matrix
A(Ξ)∗A(Ξ)− Id vanishes and so do G1 and G2.

4 Theoretical issues

In this section, we give the main theoretical results
of the paper.

4.1 Spurious minimizers

The aim of this section is to illustrate common sit-
uations where the functions J1 and J2 both pos-
sess a combinatorial number of minimizers. Follow-
ing Proposition 3, we construct examples where the
function F is very oscillatory, while G1 and G2 are
of small amplitude.

Theorem 1 (A combinatorial number of minimiz-
ers ). Set a number of samples M ∈ N and consider
a vector u ∈ CN such that the following properties
are verified

3



1. The modulus |û|2 possesses a subset of K ≥M
strict maximizers Z = {ζ1, . . . , ζK} separated
by a distance at least δ = md(Z).

2. The modulus |û|2 is locally strictly concave for
each ζk:

(|û|2)′′(ξ) ≤ −c, ∀ξ ∈ [ζk − r, ζk + r]

for some radius 0 < r < δ/2 and constant c >
0.

3. For any set Ξ of M distinct points in Z,
F (Ξ) ≤ C for some constant C ≥ 0.

Then under the condition

C <
cr2(δ − 2r)

4
, (15)

the function J1 possess at least
(
M
K

)
·M ! local max-

imizers. The same result holds for J2 under the

conditions δ > 1 and C < cr2(δ−1−2r)
4 .

The proof of Theorem 1 is postponed to Sec-
tion 7.2. The conditions in Theorem 1 may look
cryptic at first sight. Let us show a simple exam-
ple of a function u that verifies the hypotheses and
leads to a huge number of critical points.

Corollary 1. Assume that N ∈ 4N and define u ∈
CN as follows

u[n] =

{√
N/2 if n = ±N/4,

0 otherwise.
(16)

Let M = b0.11
√
Nc, then J1 possesses a

number of minimizers, which is equivalent to

α eβ
√
NN−1/4M !, asymptotically as N goes to in-

finity. The values α and β are explicit and positive.

Proof. The choice of u in (16) leads to the oscilla-
tory function û(ξ) = cos

(
π
2 ξ
)
. The modulus |û| is

maximal at every point ξ ∈ 2N. Let ξ0 ∈ 2N and
set r = 1

4 . For any ξ ∈ [ξ0 − r, ξ0 + r], we have

(|û|2)′′(ξ) =
π2

2

(
sin2

(π
2
ξ
)
− cos2

(π
2
ξ
))

≤ − π2

2
√

2
.

Let p ∈ N. The conditions 1 and 2 of Theorem 1
are satisfied with Z = 2pN ∩ [−N/2, N/2[, K =

bN/(2p)c, r = 1/4, c = π2
√

2
8 , δ = 2p. Further

notice that for every set Ξ ∈ ZM , F (Ξ) = M . We
can consequently set C = M for condition 3. For
this example, the condition (15) therefore reads

M <
π2
√

2(p− 1/4)

128
< 0.11(p− 1/4). (17)

As long as this condition is satisfied, Theorem 1
allows to conclude on the existence of

(
M
N/2p

)
·M !

maximizers. Taking p = b
√
Nc and M = b0.11 ·√

Nc yields a number of minimizers larger than(b0.11·
√
Nc

b
√
N/2c

)
· M !. Using Stirling formula, we have

as γ goes to infinity while 0 < θ < 1(
θγ

γ

)
∼ αe

βγ

√
γ
,

with α = (2πθ(1− θ))−1/2 and β = −θ log(θ) −
(1 − θ) log(1 − θ). Setting θ = 0.22 concludes the
proof.

4.2 Numerical illustration of Theorem 1

In this section we illustrate Theorem 1 through nu-
merical examples in Fig. 2. From the left to the
right, we used three different 1D signals: a high
frequency cosine, a low frequency sine and a Gaus-
sian. We plot the different energy landscapes, for
M = 2 measurements at locations Ξ = {ξ1, ξ2} and
N = 16. From the top to the bottom, we display
J1 = 1

2‖u‖
2
2−F+G1, J2 = 1

2‖u‖
2
2−F+G2, the func-

tions G1, G2, −F and the modulus of the Fourier
transform ξ 7→ |û(ξ)|. In order to understand the
effect of the signal’s structure, the local minima of
J1, J2, G1, G2 and −F are represented with red
dots.

First notice that the cost functions are symmetric
with respect to the diagonal. This simply reflects
the fact that permutation of points lead to the same
energy, and this illustrates the factor M ! in Theo-
rem 1.

As can be seen in all cases, the functions G1 and
G2 vanish far away from the diagonal (see Corol-
lary 2 below). These point configurations corre-
spond to well-spread sampling schemes. On the
contrary, the function −F can have a large ampli-
tude even outside the diagonal. These two proper-
ties are the main ingredients to prove Theorem 1.

The left column (high frequency cosine), corre-
sponds to the example in Corollary 1. We see a
number of minimizers that seems quadratic in N
for M = 2. The center column (low frequency sine)
shows that the number of minimizers decreases with
a higher regularity of the signal, by reducing the os-
cillations in F . On the right (Gaussian function),
we illustrate a case where F has only one local
maximum. Even in this case, the function J still
has valleys with shallow local minima. The same
phenomenon appears in the center (low frequency
sine). Notice that this phenomenon is not captured
by Theorem 1, which only relies on local minimiz-
ers of F . In these two examples, the oscillations are
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induced by the function G, which we do not explore
in this paper.

4.3 Flatness for high frequencies

In this paragraph we show that the partial deriva-
tives of the cost function may vanish, for indexes
corresponding to high frequencies. This explains
another practical difficulty in Fourier sampling opti-
mization: without using variable metric techniques,
the sampling points located in the high frequencies
move very slowly. Though our proof only applies
to the function J1, this effect also seems to occurs
for J2. See for instance the four corners of Fig. 2,
right.

Proposition 4. Letting r denote the residual error
function

r(Ξ) = A(Ξ)A(Ξ)∗u− u, (18)

the gradient of the cost function J1 reads:

∇J1(Ξ) = Re
(
∇
(
û(Ξ)� r̂(Ξ)

))
, (19)

where ∇ in the right-hand-side denotes the usual
derivative in 1D or the gradient in higher dimension
and where � is the coordinate-wise (Hadamard)
product.

The proof of Proposition 4 is postponed to Sec-
tion 7.3.

Theorem 2 (Vanishing gradients for high frequen-
cies). Consider a signal u ∈ CN and a point config-
uration Ξ ∈ RM . Under the decay assumptions

|û(ξ)| . 1

|ξ|α
and |û′(ξ)| . 1

|ξ|α
, (20)

with α > 0, we have∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ . ‖û(Ξ)‖1
md(Ξ)|ξm|α

. (21)

The decay assumption appear naturally in the
continuous setting, when considering signals u from
Sobolev spaces Hk with k derivatives in L2.

5 Numerical tips and tricks

In this section we propose some solutions to miti-
gate the issues raised in Section 4 and we illustrate
them numerically.

5.1 The effect of using a large dataset

In Theorem 1, we proved existence of many lo-
cal minimizers in the case P = 1, which corre-
sponds to a unique signal. Let us now assume
that we have access to P signals u1, . . . , uP in CN .
The analysis carried out to prove Theorem 1 can
be replicated verbatim. The only difference being
that every occurence of |û|2 must be replaced by

ρP
def
= 1

P

∑P
p=1 |ûp|2. The function ρP can be un-

derstood as the average power spectral density of
the family u1, . . . , uP . As highlighted in Theorem 1,
two important factors that can create spurious min-
imizers are i) the number K of strict maximizers of
ρP and ii) the curvature c at these maximizers.

As P increases, we typically expect the density
ρP to become smoother. This effect is illustrated
for a simple family of shifted and dilated rectangu-
lar functions in Fig. 3. As can be seen, both the
number of maxima and the curvature c of ρP in
Theorem 1 decay with P . For N = 128, we display
the average power spectral density for P ranging
from 1 to 103. Each signal is defined by

u[n] =

∫ n+ 1
2

n− 1
2

1[a,b](x) dx, (22)

where a and b are drawn uniformly in the range
[−N/2 + 1, N/2− 1]. The discrete signals are then
renormalized so that ‖u‖2 = 1.

The same experiment can be reproduced in a
more relevant framework from a practical view-
point. The average power spectral density for 2D
knee images of the fastMRI database [14] are rep-
resented in Fig. 4. The image are of size 320× 320.
The local maximizers are computed and displayed
with red dots in Fig. 4. In that case, increasing the
family size P reduces the number of maximizers at
a slow rate. Indeed they slightly increase from 13k
points in the case P = 1 to 14k in the case P = 100
and then start to decrease to 11k for P = 10000.
However, the curvature c decays much faster. As
a conclusion, we see that using large families of
signals can reduce asymptotically the number and
the size of the basins of attraction of some spurious
minimizers.

5.2 Stochastic gradient descent

When using a large family of signals, the cost func-
tion (3) naturally lends itself to the use of stochastic
gradient descents (SGD), see [12, 13] that address
large MRI datasets. Contrarily to a determinis-
tic gradient descent, which is known to converge to
critical points under mild regularity conditions, the
stochastic gradient with a fixed step size does not
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J
1

=
1 2
‖u
‖2 2
−
F

+
G

1
J
2

=
1 2
‖u
‖2 2
−
F

+
G

2
G

1
G

2
−
F

|û
|

Figure 2: The energy profile for M = 2 and three different signals û: a high frequency cosine, a low
frequency sine and a Gaussian (from left to right). From top to bottom, we represent J1, J2, G1, G2, F
and |û|. The red dots represent local minima.
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Figure 3: Average power spectral density ρP for
families of rectangular functions with different sizes
P . The dots represent local maxima of ρP for dif-
ferent values of P .

converge. The method is known to end up frolicking
in the neighborhood of local critical points [5]. The
radius of the neighborhood depends on the stochas-
tic gradient variance and on the step-size. Intu-
itively, using stochastic gradients algorithms should
therefore allow escaping local minimizers. We will
showcase this effect in the forthcoming numerical
experiments.

5.3 Variable metric

In Section 4.3, Theorem 2 states that the gradient of
J1 might vanish in the high frequency domain. Us-
ing second order information is a well known rem-
edy to mitigate this effect. In this work, we propose
a simple method which corresponds to a variable di-
agonal metric with well-chosen coefficients.

As shown in Theorem 2, the gradient vanishes
with a rate depending on the Fourier transform
magnitude |û|. For a dataset, this decay is some-
what captured by the average power spectral den-

sity ρP (ξ)
def
= 1

P

∑P
p=1 |ûp(ξ)|2. Hence, we propose

to compute ρP once and for all on a fine grid (20×N
discretization points in our example). The function
ρP is then linearly interpolated in between the grid
points during the gradient descent. At each gradi-
ent iteration we replace ∂J1(Ξ)

∂ξm
by

1

ρP (ξm)β
∂J1(Ξ)

∂ξm
, (23)

where β is a constant that has to be set empiri-
cally. From numerical experiments β ∈ [1, 2] shows
good performance. In all the experiments presented
hereafter we use β = 1. We will see later in the nu-
merical experiments, that this variable metric sig-
nificantly accelerates the convergence for sampling
points located in high frequencies.

5.4 Numerical illustrations

In this section, we aim at illustrating numerically
the different results established previously. We aim
at reconstructing 1D signals of size N = 128 from
M = 64 measurements in the Fourier domain. We
suppose that P rectangular signals generated using
(22) are given. We illustrate our findings with the
back-projection reconstructor associated to the cost
function J1, but similar results have been obtained
with the pseudo-inverse. As we are working in 1D
with small dimensions N and M , at each iteration,
the whole matrix A(Ξ)∗ is evaluated and the gra-
dient ∇J1 is computed directly from the analytic
expression (19). We first use a fixed step gradient
descent algorithm in order to showcase the conver-
gence dynamics of the algorithm. The initialization
of Ξ is a subgrid with a constant spacing of 2. The
following experiments are conducted:

Effect of the dataset size P We first vary the
number of signals by taking P = 1 and P = 1000.
The evolution of Ξ is displayed in Fig. 5, respec-
tively top-left and top-center. The history of the
cost function is given in Fig. 6. For this experiment,
we expect that a good sampling scheme consists
of low frequencies sampled at the Shannon-Nyquist
rate. In this regard, the sampling scheme obtained
in Fig. 5 for P = 1000 is more satisfactory than
the one obtained for P = 1. In the case P = 1000,
the displacement of Ξ is more important, suggesting
that some local minima have been discarded.

Variable metric We then study, for P = 1000
the effect of a variable metric gradient descent as
described in Section 5.3. We also compare this ap-
proach to an L-BFGS algorithm with a line search
and with a Hessian estimated using the last 8 gra-
dients. In Fig. 5, the usual gradient algorithm is at
the top-center, the variable metric gradient descent
is at the bottom-center and the L-BFGS algorithm
is at the bottom-left. The cost function evolution is
displayed in Fig. 6. Using a variable metric results
in a huge speed-up of the algorithm. This is particu-
larly visible for points ξ located at high frequencies,
which is another illustration of Theorem 2. For this
example, the L-BFGS algorithm converges slightly
faster than the variable metric gradient descent in
the early iterations. However, its per-iteration cost
is much higher since it uses a line search and a non
diagonal metric. Since the L-BFGS algorithm can
be seen as a state-of-the-art quasi-Newton method,
the proposed empirical metric (23) seems remark-
ably efficient.

7



(a) P = 100 – 13746 maxima (b) P = 102 – 14888 maxima (c) P = 104 – 11592 maxima

Figure 4: Average power spectral density ρP for a subset of images from the knee dataset of fastMRI.
The image size is N = 320 and the red dots represent local maximizers.

Stochastic gradient descent Finally in Fig. 5
right column, we investigate the use of a fixed-
step stochastic gradient descent algorithm with a
batch size of 1. In that experiment, a new ran-
dom signal is generated at every iteration using the
model (22) and the stochastic gradient is computed
with respect to that signal only. The trajectory of
the vanilla SGD is comparable with the one ob-
tained using a deterministic gradient descent for
P = 1000 in Fig. 5 top-center. The variable metric
trick significantly improves the convergence speed
and more importantly, the final points configura-
tion. As a conclusion, the variable metric SGD al-
gorithm seems to be able to escape spurious mini-
mizers and to take advantage of the averaging effect
of the large dataset without the struggle of comput-
ing the gradient over a large dataset.

Comparison of the sampling schemes The fi-
nal sampling schemes are not directly comparable in
terms of cost function because the objective func-
tion is computed over different datasets. In Ta-
ble 1, we therefore report the cost function com-
puted on a specific set of signals. This set contains
the P = 1000 signals that are used in the numerical
illustrations of Fig. 5 center column. When tested
against a large dataset, the final configuration ob-
tained for P = 1 seems highly sub-optimal. This
effect is most likely due to a convergence to a local
minimizer and also to the fact that the sampling
scheme is not adapted to a whole family but only
to a single signal. The remarkable observation that
can be made from Table 1 is that the optimal con-
figuration obtained with the variable metric SGD
performs better on the dataset of P = 1000 sig-
nals than the experiment conducted in Fig. 5 which
is taylored for this dataset. This shows that the
the usual deterministic algorithms are stuck in local
minima even with large datasets. On the contrary,
the variable metric SGD algorithm seems effective.

These numerical results highlight the effective-
ness of the different tricks suggested in this sec-
tion: the use of a variable metric to handle high
frequencies and a stochastic optimization to avoid
local minima.

6 Conclusion

We highlighted two obstacles to the convergence of
gradient based algorithms for sampling schemes op-
timization. The first one is a high number of local
minimizers and the second one is a vanishing gradi-
ent phenomenon for high frequencies. The first ob-
struction can be mitigated with a regularization by
averaging and the second one by an adhoc variable
metric gradient descent. Unfortunately, these tricks
still seems insufficient to avoid some local minimiz-
ers. The additional use of a stochastic gradient in-
stead of a deterministic gradient approach seems to
leverage most difficulties in a simplified 1D setting.

Many state-of-the-art reconstructors are based on
a quadratic data fidelity term and we expect that
some of the techniques used in this paper in the
linear case can be reused even in a nonlinear setting.
This is left for future research.
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(a) P = 1 – vanilla gradient descent (b) P = 1000 – vanilla gradient de-
scent

(c) vanilla SGD

(d) P = 1000 – L-BFGS (e) P = 1000 – variable metric gradi-
ent descent

(f) variable metric SGD

Figure 5: Trajectories of Ξ the back-projection reconstructor J1 and a fixed-step gradient descent. The
iterations are represented on the vertical axis, and the horizontal axis corresponds to ξ and is periodic.
The initialization is a uniform subgrid and is seen on the axis y = 0 of the top and middle figures. Left
and center: trajectories of Ξ for different sizes of signals families. The objective function is given in
Fig. 6. The right column represents trajectories of Ξ using a stochastic gradient descent with one signal
in the batch that is different at each iteration. The trajectories in the stochastic case have been averaged
over the last 10000 iterations.

Test case P = 1 P = 1000 P = 1000 with
var. metric

L-BFGS SGD SGD with
var. metric

Eff. 9.07× 10−2 2.68× 10−2 2.38× 10−2 2.41× 10−2 6.63× 10−2 1.00× 10−2

Table 1: Effectiveness of the sampling schemes obtained with different strategies on a dataset of 1000
signals. The table contains the average reconstruction error J1 over the dataset. This dataset is the one
used in the case P = 1000, see Fig. 5 center column.

7 Proofs

7.1 Proof of Proposition 3

Proof. Let us start with J1. We develop the squared
norm, leading to :

J1(Ξ) =
1

2
‖u‖22 +

1

2
‖A(Ξ)A(Ξ)∗u‖22

− Re(〈A(Ξ)A(Ξ)∗u, u〉).

Now, observe that

‖A(Ξ)A(Ξ)∗u‖22 = ‖A(Ξ)û(Ξ)‖22
= 〈A(Ξ)û(Ξ), A(Ξ)û(Ξ)〉 = 〈A(Ξ)∗A(Ξ)û(Ξ), û(Ξ)〉.

Then, (13) is a direct consequence of

〈A(Ξ)A(Ξ)∗u, u〉 = 〈A(Ξ)∗u,A(Ξ)∗u〉 = ‖û(Ξ)‖22.

Now, let us turn to J2. Using Pythagorean theo-
rem and the fact that (A(Ξ)∗)+A(Ξ)∗ = Πran(A(Ξ))

we have:

J2(Ξ) =
1

2
‖(A(Ξ)∗)+A(Ξ)∗u− u‖22

=
1

2
‖Πran(A(Ξ))(u)− u‖22

=
1

2
‖u‖22 −

1

2
‖Πran(A(Ξ))(u)‖22

Then, using the identity

Πran(A(Ξ)) = A(Ξ)(A(Ξ)∗A(Ξ))+A(Ξ)∗,

we obtain
1

2
‖Πran(A(Ξ))(u)‖22 =

1

2

〈
u,Πran(A(Ξ))(u)

〉
=

1

2

〈
A(Ξ)∗u, (A(Ξ)∗A(Ξ))+A(Ξ)∗u

〉
=

1

2

〈
û(Ξ), (A(Ξ)∗A(Ξ))+û(Ξ)

〉
.
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Figure 6: Objective function J1 (back-projection)
for the different experiments in Fig. 5 in the deter-
ministic case.

Adding and substracting 1
2‖û(Ξ)‖22 finishes the

proof of (14).

7.2 Proof of Theorem 1

7.2.1 Controlling the amplitude of G

Significant progress have been made lately in the
control of the extreme eigenvalues of Vandermonde
matrices, which play a pivotal role in algebraic num-
ber theory [4, 9, 3, 1]. The tightest results for
well separated schemes was recently obtained in [1].
Rewriting their result in our formalism, we obtain
the following inequality.

Proposition 5 (Conditioning of Vandermonde ma-
trices [1] ). Let Ξ = (ξ1, . . . , ξM ) denote a set of
distinct sampling points. Let L(Ξ) = A(Ξ)A(Ξ)∗.
The following inequality holds(

1− 1

md(Ξ)

)
Id 4 L(Ξ) 4

(
1 +

1

md(Ξ)

)
Id.

(24)

Proof. This is a direct consequence of [1, eq. (31)]
up to renormalizations.

The above result allows to obtain the following
corollary.

Corollary 2 (Function G is small for well sepa-
rated schemes ). When all the sampling points ξm
are distinct, we have

|G1(Ξ)| ≤ F (Ξ)

md(Ξ)
(25)

and for md(Ξ) > 1,

|G2(Ξ)| ≤ F (Ξ)

md(Ξ)− 1
(26)

Proof. We have

|G1(Ξ)| =
∣∣∣∣12 〈(A(Ξ)∗A(Ξ)− Id) û(Ξ), û(Ξ)〉

∣∣∣∣
≤ 1

2
‖ (A(Ξ)∗A(Ξ)− Id) ‖2→2‖û(Ξ)‖22

≤ ‖ (A(Ξ)∗A(Ξ)− Id) ‖2→2F (Ξ) ≤ F (Ξ)

md(Ξ)
.

For Ξ s.t. md(Ξ) > 1, L(Ξ) is invertible so that
L(Ξ)+ = L(Ξ)−1. Proposition 5 then yields

md(Ξ)

1 + md(Ξ)
Id 4 L(Ξ)−1 4

md(Ξ)

md(Ξ)− 1
Id, (27)

which implies

− 1

1 + md(Ξ)
Id 4 L(Ξ)−1 − Id 4

1

md(Ξ)− 1
Id,

and ‖Id − L(Ξ)−1‖2→2 ≤ 1
md(Ξ)−1 . It suffices to

apply the same reasoning as for G1 to conclude.

This inequality tells us that for well separated
sampling schemes, the functions G1 and G2 cannot
be too large. For instance, consider M roughly eq-
uispaced points on [−N/2, N/2]. Then md(Ξ) '
N/M and |G1(Ξ)| = O

(
M
N ‖û(Ξ)‖22

)
.

7.2.2 Combining the previous results

In what follows, G represents either G1 or G2. Un-
der the hypotheses of Theorem 1, first notice that
any set Ξ ∈ ZM is a local maximizer of F . Indeed
any perturbation of the individual sampling loca-
tions ξm results in a decay of the captured energy.

There are
(
M
K

)
possible sampling configurations

when all the points belong to Z. Let Ξ̄ =
{ξ̄1, . . . , ξ̄M} denote one of them. The idea of
the proof is to show that there is a local max-
imizer of F − G in the following neighborhood
B = [ξ̄1−r, ξ̄1+r]×. . .×[ξ̄M−r, ξ̄M+r]. A sufficient
condition for the set B to contain a local maximizer
of F − G is that F (Ξ̄) − G(Ξ̄) > F (Ξ) − G(Ξ) for
all Ξ ∈ ∂B (the boundary of B) since F − G is
continuous.

Using Corollary 2, first notice that

F (Ξ̄)−G1(Ξ̄) ≥ F (Ξ̄)− 1

md(Ξ̄)
F (Ξ̄)

≥ F (Ξ̄)

(
1− 1

md(Ξ̄)

)
≥ F (Ξ̄)

(
1− 1

δ

)
.

For all Ξ ∈ B, we have by strict concavity of |û|
around each ξ̄m, F (Ξ) ≤ F (Ξ̄)− c

2

∑M
m=1(ξm− ξ̄m)2.

Hence, for sampling sets Ξ ∈ ∂B on the boundary
of B, we have

F (Ξ) ≤ F (Ξ̄)− cr2

2
. (28)
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In addition for Ξ ∈ ∂B, md(Ξ) ≥ δ−2r and using
Corollary 2 again, we obtain:

F (Ξ)−G1(Ξ) ≤ F (Ξ̄)− cr2

2
+ F (Ξ̄)

1

δ − 2r

= F (Ξ̄)

(
1 +

1

δ − 2r

)
− cr2

2
.

Therefore, the condition

F (Ξ̄)

(
1 +

1

δ − 2r

)
− cr2

2
< F (Ξ̄)

(
1− 1

δ

)
(29)

suffices to conclude on the existence of a maximizer
of J1 in the interior of B. This condition is satisfied

for F (Ξ̄) < cr2(δ−2r)δ
4(δ−r) and a fortiori for

F (Ξ̄) <
cr2(δ − 2r)

4
(30)

The multiplicative factor M ! is related to the fact
that for a given maximizer, all the possible permu-
tations of indices give rise to different maximizers.

The same reasoning applies verbatim to J2 by
replacing δ with δ − 1.

7.3 Proof of Proposition 4

Proof. Let us consider a point configuration Ξ ∈
RM and a perturbation ε ∈ RM . Given a vec-
tor of measurements û(Ξ) ∈ CM , we let ∇û(Ξ) = û′(ξ1)

...
û′(ξM )

 denote the vector of derivatives at the

sampling locations. Elementary calculus leads to
the following identities for every ε direction of vari-
ation:

(JacA(Ξ)ε)∗ = JacA∗(Ξ)ε

∇û(Ξ)� ε = JacA∗(Ξ)ε · u.

Then, we apply standard calculus of variations:

J1(Ξ + ε) =J1(Ξ) + Re〈JacA(Ξ)ε · û(Ξ), r(Ξ)〉
+ Re〈A(Ξ)JacA∗(Ξ)ε · u, r(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈û(Ξ), (JacA(Ξ)ε)∗ r(Ξ)〉
+ Re〈∇û(Ξ)� ε, r̂(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈û(Ξ),∇r̂(Ξ)� ε〉
+ Re〈ε,∇û(Ξ)� r̂(Ξ)〉+ o(‖ε‖22)

=J1(Ξ) + Re〈∇r̂(Ξ)� û(Ξ), ε〉
+ Re〈ε,∇û(Ξ)� r̂(Ξ)〉+ o(‖ε‖22).

Hence, by identification

∇J1(Ξ) = Re
(
∇r̂(Ξ)� û(Ξ) +∇û(Ξ)� r̂(Ξ)

)
= Re

(
∇
(
û(Ξ)� r̂(Ξ)

))
.

7.4 Proof of Theorem 2

By Proposition 4, we have∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ ≤ |û′(ξm)| · |r̂(ξm)|+ |û(ξm)| · |r̂′(ξm)|.

By definition, we have r̂(Ξ) = (L(Ξ) − Id)û(Ξ),
hence

|r̂(ξm)| ≤ ‖r̂(Ξ)‖2 ≤
‖û(Ξ)‖2
md(Ξ)

, (31)

where we used Proposition 5 to obtain the last in-
equality. Now, we also wish to control |r̂′(ξm)|. To
this end, first notice that

r̂′(ξm) =

M∑
m′=1

(
∂L(Ξ)m,m′

∂ξm
û(ξm′)

+ L(Ξ)m,m′ û
′(ξm′)1m=m′

)
− û′(ξm)

=
M∑

m′=1

∂L(Ξ)m,m′

∂ξm
û(ξm′).

We start with an analytical expression of the ma-
trix L(Ξ).

Proposition 6 (The expression of A∗A). Let

L(Ξ)
def
= A(Ξ)∗A(Ξ). We have

[L(Ξ)]m,m′ =


1 if m = m′,

1
N

exp

(
ιπ(ξm−ξm′ )

N

)
×

sin(π(ξm−ξm′ ))

sin

(
π(ξm−ξm′ )

N

) otherwise.

(32)

Proof. We have:

[L(Ξ)]m,m′ =
1

N

∑
n

e2ι π
N
〈ξm′−ξm,n〉

=
1

N
e−ιπ(ξm′−ξm) 1− e2ιπ(ξm′−ξm)

1− e2ι π
N

(ξm′−ξm)

=
1

N
e−ιπ(ξm′−ξm) e

ιπ(ξm′−ξm)

eι
π
N

(ξm′−ξm)

× e−ιπ(ξm′−ξm) − eιπ(ξm′−ξm)

e−ι
π
N

(ξm′−ξm) − eι
π
N

(ξm′−ξm)

=
1

N
e−ι

π
N

(ξm′−ξm) sin(π(ξm′ − ξm))

sin( πN (ξm′ − ξm))
.

Now, we will use the following lemma.

Lemma 1. The following bound holds:∣∣∣∣∂L(Ξ)m,m′

∂ξm

∣∣∣∣ ≤ π

N
+

4

dist(ξm′ , ξm)
≤ π

N
+

4

md(Ξ)
.
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Proof. Letting δ = ξm − ξm′ , we have

∂L(Ξ)m,m′

∂ξm
=

π

N2
× ιeι

π
N
δ sin(πδ)

sin
(
π
N δ
)

+
π

N
× e−ι

π
N
δ

sin( πN δ)

(
cos(πδ)− sin(πδ)

N
×

cos( πN δ)

sin( πN δ)

)
.

Without loss of generality we consider the case

0 ≤ δ ≤ N/2. Using
∣∣∣ sin(πδ)
N sin( π

N
δ)

∣∣∣ ≤ 1 let us remark

that∣∣∣∣∂L(Ξ)m,m′

∂ξm

∣∣∣∣ ≤ π

N

+
π

N

∣∣∣∣ 1

sin( πN δ)

(
sin(πδ) cos( πN δ)

N sin( πN δ)
− cos(πδ)

)∣∣∣∣ .
Using the inequality

∣∣∣ sin(πδ)
N sin( π

N
δ)

∣∣∣ ≤ 1 again, we

obtain∣∣∣∣sin(πδ) cos( πN δ)

N sin( πN δ)
− cos(πδ)

∣∣∣∣ ≤ ∣∣∣cos(
π

N
δ)
∣∣∣+ 1 ≤ 2.

Finally, using the inequality sin(x) ≥ x/2 for x ∈
(0, π/2), we get

∣∣∣∂L(Ξ)m′,m
∂ξm′

∣∣∣ ≤ π
N + 4

δ .

Lemma 1 and a Cauchy-Schwarz inequality pro-
vides the following bound:

|r̂′(ξm)| ≤
(
π

N
+

4

md(Ξ)

)
‖û(Ξ)‖1.

Combining everything finally yields:∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ ≤|û′(ξm)| · ‖û(Ξ)‖2
md(Ξ)

+ |û(ξm)| · ‖û(Ξ)‖1 ·
(
π

N
+

4

md(Ξ)

)
.

Under the decay assumptions of Theorem 2, we
obtain ∣∣∣∣∂J1(Ξ)

∂ξm

∣∣∣∣ . ‖û(Ξ)‖1
md(Ξ)|ξm|α

.
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[5] Léon Bottou. Large-scale machine learning
with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, pages 177–186.
Springer, 2010.

[6] Alban Gossard, Frédéric de Gournay, and
Pierre Weiss. Off-the-grid data-driven opti-
mization of sampling schemes in mri. arXiv
preprint arXiv:2010.01817, 2020.
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