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1 Introduction

Let us consider a compact Riemannian manifold M of dimension d endowed
with its normalized Riemannian measure dx (x ∈M).

Let us consider m smooth vector fields Xi (We will suppose later that they
are withous divergence). We consider the second order differential operator:

L = 1/2

m∑
i=1

X2
i (1)

It generates a Markovian semi-group Pt which acts on continuous function f on
M

∂

∂t
Ptf = LPtf ;P0f = f (2)

Ptf ≥ 0 if f ≥ 0. It is represented by a stochastic differential equation in
Stratonovitch sense ([3])

Ptf(x) = E[f(xt(x))] (3)

where

dxt(x) =

m∑
i=1

Xii(xt(x))dwit ;x0(x) = x (4)

where t → wit is a flat Brownian motion on Rm Classically, the Stratonovitch
diffusion xt(x) can be approximated by its Wong-Zakai approximation.

Let wn,it be the polygonal approximation of the Brownian path t → wnt for
a subdivision of [0, 1] of length n.
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We introduce the random ordinary differential equation

dxnt (x) =

m∑
i=1

Xi(x
n
t (x))dwn,it ;xn0 (x) = x (5)

Wong-Zakai theorem ([3]) states that if f is continuous

E[f(xnt (x))]→ E[f(xt(x))] (6)

We are motivated in this paper by an extension of (6) to bigger order generators.
Let us consider the generator Lk = (−1)k

∑m
I X

2k
i . We suppose that the

vector fields Xi spann the tangent space of M in all point of M and that they
are divergent free. Lk is an elliptic postive essentially self-adjoint operator [1]
which generates a contraction semi-group P kt on L2(dx)

Let Lf,k be the generator on Rm ((wi) ∈ Rm) By [1], it generates a semi-

group P f,kt on C(Rm), the space of continuous functions on the flat space en-
dowed with the uniform topology, which is represented by an heat-kernel:

P f,kt [f ](w0) =

∫
Rm

f(w + w0)pf,kt (w)⊗ dwi (7)

(w = (wi)) In [7], we noticed that heuristically P f,kt is represented by a formal
path space measure Qf,k such that∫

E

f(wkt + w0)dQf,k(w.) = P k,ft (f)(w0) (8)

If we were able to construct a differential equation in the Stratonovitch sense

dxkt (x) =

m∑
i=1

Xi(x
k
t (x))dwkt,i ;xk0(x) = x (9)

P f,kt (x) =

∫
f(xkt (x))dQf,k (10)

These are formal considerations because in such a case the path measures are
not defined. We will give an approach to (11) by showing that some conve-
nient Wong-Zakai approximation converge to the semi-group. We introduce,
according to [4] and [5] the Wong-Zakai operator

Qkt [f ](x) =

∫
Rm

f(xi(w)(x))pf,kt (w)⊗ dwi =

∫
Rm

f(x(t1/2kw)(x))pf,k1 (w)dw

(11)
where

dx1(w)(x) =

m∑
i=1

Xi(xs(w))wids ;x0(w)(x) = x (12)

As a first theorem, we state:
Theorem 1 (Wong-Zakai)Let us suppose that the vector fields Xi commute.
Then (Qk1/n)n(f) converge in L2(dx) to P k1 f if f is in L2(dx)
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To give another example, we suppose that M is a compact Lie group G endowed
with its normalized Haar measure dg and that the vector fields Xi are elements
of the Lie algebra of G considered as right invariant vector fields. This means
,that if we consider the right action on L2(dg) Rg0

f → (g → (f(gg0)) (13)

we have
Rg0 [Xif ](.) = Xi[Rg0f ](.) (14)

We consider the rightinvariant elliptic differential operator

Lk = (−1)k
m∑
i=1

X2k
i (15)

It is an elliptic positive essentially selfadjoint operator. By elliptic theory ([1]),
it has a positive spectrum λ associated to eigenvectors fλ. λ ≥ 0 if λ belongs
to the spectrum.

Theorem 2 (Wong-Zakai) Let f =
∑
aλfλ such that

∑
λ |aλ|2Cλ <∞ for all

C > 0. Then (Qk1/n)n(f) converges in L2(dg) to P k1 f .

We refer to the reviews [5], [6] [7] for the study of stochastic analysis without
probability.

2 Proof of theorem 1

Lk is an elliptic positive operator. By elliptic theory [?], it has a discete spec-

trum λ associated to normalized eigenfunctions fλ. Since
∫
Rm |pf,k1 (w)|2dw <∞,

Qk1/n is a bounded operator on L2(dx). Moreover

Qk1/nf =
∑

aλQ
k
1/nfλ (16)

if
f =

∑
aλfλ (17)

The main remark is that we can compute explicitely Qk1/nfλ. We put t = 1/n.
Formally

fλ(x(t1/2kw))(x) =
∑
n′

1/n′!(
∑
m

Xiwit
1/2k))n

′
(fλ)(x) (18)

Namely, by ellipticity and because the vector fields Xi commute with Lk, we can
conclude that the L2-norm of Xα1

i1
Xα2
i2
...Xαl

il
fλ has a bound in λ

∑
αi/2kC

∑
αi

in order to deduce that the series in (18) converges. It is enough to compute

1/n′!

∫
Rm

(
∑

Xiwit
1/2k))n

′
fλ(x)pk,f1 (w)dw = Bn′ (19)
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The main remark is if one of the li is not a multiple of 2k, we have∫
Rm

wl11 ..w
lm
m pk,f1 (w)dw = 0 (20)

On the other hand, by using the semi-group properties of P k,ft , we have∫
Rm

w2kl1
1 ..w2klm

m pk,f1 (w)dw =
(2kl1)!

l1!
...

(2klm)!

lm!
(21)

Therefore, Bn′ = 0 if n′ is not a multiple of 2k and is equal because the vector
field commute, ,if n′ = 2kl′ to

1

(2kl)′!

∑
X2kl′1

1 ..X
2kl′m
m

(2kl1)!

l1!
...

(2klm)!

lm!

(2kl′)!

(2kl′1)!..(2kl′m)!
fλ = 1/l′!(Lk)l

′
fλ (22)

We deduce that
Qk1/nfλ = exp[−1/nλ]fλ (23)

and that
(Qk1/n)nfλ = exp[−λ]fλ (24)

such that
(Qk1/n)nf = exp[−L]f (25)

if f =
∑
aλfλ.

3 Proof of Theorem 2

Let Eλ be the space of eigenfunctions associated to the eigenvalue λ of Lk.
Since Lk commute with the right action of G, Eλ is a representation for the
right action of G ([2]). Therefore rightinvariant vector fields acts on Eλ. If
Z is a rightinvariant vector field, we can consider the L2 norm of Zfλ for fλ
belonging to Eλ. We remark that (Lk + C)1/2k is an elliptic pseudodifferential
operator of order 1 (C is strictly ppositive). By Garding inequality [1],

‖Zfλ‖L2(G) ≤ C‖fλ‖L2(G) + ‖(Lk + C)1/2kfλ‖L2(G) (26)

fλ is an eigenfunction associated to (Lk+C)1/2k and the eigenvalue (λ+C)1/2k.
Let us consider a polynomial Xα1

i1
...Xαl

il
= Zl. It acts on Eλ and is norm is

bounded by ((λ+ C)1/2k + C)
∑
αi for the L2 norm.

From that we deduce that if fλ is an eigenfunction associated to λ of Lk

that the series ∑
l

(Xit
1/2kwi)

l

l!
fλ (27)
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converges and is equal to fλ(x(t1/2kw)(x)) By distinguishing if w is big or not
and using (20), we see that if l 6= 2kl′∫

Rm

(

m∑
i=1

Xit
1/2kwi)

l′fλp
f,k
1 (x)dw = 0 (28)

Moreover, by (20) and (21)

1

(2kl′)!

∫
Rm

(

m∑
i=1

Xit
1/2kwi)

2kl′fλp
f,k
1 (x)dw =

tl
′

(2kl′)!

∫
Rm

∑
Xα1 ..Xα2kl′ fλw

2kl′1
1 ..w

2kl′m
m pf,k1 (w)dw (29)

where 2kl′j is the number of of αi equal to j. By using (20) and (21), we recognize
in (29)

1tl
′

(2kl′)!

∑
αi

Xα1
..Xα2kl′ fλ

(2kl′1)!

l′1!
...

(2kl′m)!

l′m!
(30)

For l′ = 1, we recognize tL. Let us compute the L2 norm of the previous
element. It is bounded by

tl
′

(2kl′)!

∑
αi

(λ1/2k + C)...(λ1/2k + C)
(2kl′1)!

l′1!
...

(2kl′m)!

l′m!
(31)

For l′ = 1, we recognize tL.
We recognize in the previous sum

tl
′

(2kl′)!

∑ (2kl′)!

(2kl′1)!...(2kl′m)!)

(2kl′1)!

l′1!
...

(2kl′m)!

l′m!
(λ1/2k + C)2kl

′
(32)

We deduce a bound of the operation given by (29) in tl
′
C2kl′

(l′)! (λ+ C)l
′
.

By the same argument, we have a bound of t
l′

l′! (L
k)l

′
on Eλ in tl

′

l′!C
l′(λ+C)l

′
.

In order to conclude, we see that on Eλ

Qkt = exp[−λt]Id+
∑
l′>1

tl
′

l′!
Ql

′,t
λ (33)

where Ql
′,t
λ has a bound on Eλ in Cl

′
(λ+ C)l

′
. We deduce that Qkt acts on Eλ

by
exp[−λt]Id+ t2Qλt = Rλt (34)

where the norm on Eλ of Qλt is smaller that C exp[Cλt].
But if f =

∑
aλfλ

(Qk1/n)nf =
∑

aλ(Rλ1/n)nfλ (35)
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Moreover

‖(Qkt )f‖L2(G) =

∫
G

|
∫
Rm

f(x(t1/2kw)(g)pf,k1 (w)dw|2dg ≤

C

∫
G

dg

∫
Rm

|f(x(t1/2kw)(g)|2|pf,k1 (w)|2dw ≤ C
∫
Rm

|pf,k1 (w)|2dw
∫
G

|f(x(t1/2kw)(g)|2dg

(36)

But ∫
G

|f(x(t1/2kw)(g)|2dg = ‖f‖2L2(G) (37)

because the vector fields are without divergence. If λ/n < C, the sum∑
λ<Cn

aλ(Rλ1/n)nfλ (38)

converges to ∑
aλ exp[−λ]fλ (39)

Moreover
∑
λ>Cn aλ(Rλ1/n)nfλ has a L2 norm bounded by(

∑
λ>Cn | aλ|2Cλ)1/2

which goes to 0 when n→∞.
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