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Abstract. Recently, several works have focused on the study of conflict
among belief functions with a geometrical approach. In such framework,
a corner stone is to endow the set of belief functions with an appropriated
metric, and to consider that distant belief functions are more conflicting
than neighboring ones. This article discusses such approaches, caveats
some of their difficulties and highlights ways to circumvent them.
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1 Introduction

Mass functions are rather simple objects from a mathematical point of view:
distributions over a finite powerset which add up to one. However, their seman-
tic is rich enough to be used in artificial intelligence to express the subjective
opinion of an agent, in versatile frameworks such as imprecisely known statistics
or censored data fusion. This difference between the simplicity of the mathe-
matical object, and the subtlety of its interpretation at a high semantic level is
probably the curse of belief function theory, as it prevents providing the scientist
or engineer with a simple textbook or recipe, that is no longer put into question,
on how to use belief functions to model a real world problem. For instance, after
few decades of developments, the theory still lacks a unique and well established
definition of conflicting belief functions. Since the seminal work of Dempster [8]
where the mass in the emptyset has been used as a normalization factor in
the orthogonal sum, the traditional conflict mass is regularly challenged with
alternative definitions [16, 17, 9].

This never-ending debate on the mathematical definition of conflict has been
fed for few years now by a trend, which is discussed in the present paper. This
trend is largely based on endowing the set of mass functions with a metric,
and on characterizing the degree of conflict between two mass functions accord-
ing to their pairwise distance. Historically, this direction was first initiated in
1996 by the work of George and Pal [10], which remains seldom cited (40 cita-
tions according to Google Scholar), while a few years latter (2001), Jousselme
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et al. [12] proposed their famous distance based on Jaccard’s index. During the
early 2000s, Cuzzolin developed his geometrical framework for belief functions,
and Liu proposed to complement the conflict mass by the Chebyshev (or L∞) dis-
tance between pignistic transforms [16]. Jousselme’s work being cited 400 times,
Liu around 200 times and Cuzzolin three most cited papers [4–6] on the subject
reaching more than 150 citations, we can fairly acknowledge that the interplay of
these works, crystalized in the 2012 survey of Jousselme [14] (a presentation of
which was given at BELIEF 2010, in Brest [13]) provided the technical ground,
on which these new ways to define conflict has blossomed in the past years.

From that point on, numerous works have focused on providing a distance
based definition of conflict. The objective of this article is not to review or to
compare them. Rather, it is to go back to the foundation of this trend, and to
address the interplays between the very mathematical notion of distance and
the concept of conflict as acknowledged in belief function theory. After some
definitions (Section 2), these interplays are discussed at a mathematical level
(Section 3), and at a semantic one (Section 4).

2 Definition

Let us recall that a metric space (E, d) is a set E endowed with a distance d. A
distance on E is defined as:

1. An application from E × E,
2. onto R+,
3. so that ∀x, y ∈ E2, d(x, y) = 0⇔ x = y,
4. d(x, y) = d(y, x),
5. ∀x, y, z ∈ E3, d(x, z) ≤ d(x, y) + d(y, z).

Usually, (2) is referred to as non-negativity, (3) as separability, (4) as symmetry
and (5) as subadditivity, or triangle inequality. Although the term is not standard,
let us refer to (1) as binarity for convenience. Beyond algebraic definitions, it is
classically assumed in information-related sciences, that the semantic associated
to a distance is that of dissimilarity : Greater the distance between two elements
of E the more dissimilar they are, and the smaller the distance, the more similar.
In the particular case of belief function theory, E is generally the set M(Ω) of
mass functions with frame Ω. To simplify distance definitions, M(Ω) is also
often assumed to be a (n − 1) standard simplex in a n dimensional normed
vector space V spanned by the n possible focal elements that are canonically
derived from working on Ω (see [6]). Thus, any norm defined on V trivially leads
to a distance on M(Ω).

Let us now turn to the definition of conflicting belief functions: As explained
in the introduction, the belief function community has not accepted a single
mathematical definition for it, and scientists may derive a posteriori the math-
ematical definition which fit with the particular situation they face. It means
that the definition is somehow clear at a “modeling” level, as everyone one can
tell if different opinions are conflicting or not; however, this does not obviously
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translate into the formalism of belief functions. If we refine a bit the process, it
appears that:

1. Several sources of information can agree or disagree on any phenomenon
they have evidence on;

2. We call degree of conflict among the sources the level to which the sources
disagree, yet no formal definition of such disagreement exists;

3. As the sources provide mass functions, a painless misnomer makes us talk
about degree of conflict among the mass functions;

4. This degree of conflict is computed by applying various formulas to the mass
functions.

Finally, the main difficulty is to define how agreement/disagreement of the
sources translates into the result of a mathematical operation on mass func-
tions, so that one can quantify it. During this “translation”, distances are likely
to be called for assistance. The reason is the following: In most applications, the
level of conflict itself is of seldom interest, and the practitioner is more inter-
ested in the combination of the sources. This combination is somehow expressing
a consensus among the sources. Naturally, one expects that consensus to be eas-
ier to find if the sources have similar opinions, while it is impossible to find it if
the sources support completely opposite opinions. As the conflict is supposed to
quantify this possibility to find a consensus, it makes intuitively sense to measure
distances between the masses to combine.

3 Mathematical discussion

At this point, one needs to check that the idea behind conflict measurement
is compliant with the mathematical definition of a distance. Regarding non-
negativity and symmetry, there should have very little problem: It is rather
intuitive that the conflict is a non-negative quantity, and most of the works on
the issue assume so. For instance, in [9], this assumption is explicitly included in
our first axiom, referred to as Extreme conflict value; and in [17], one finds it in
both the first axiom, simply called non-negativity, and in the fourth one, referred
to as normalization, and which corresponds to our Extreme conflict value axiom.
Similarly, it is also taken for granted that the conflict between m1 and m2 is the
same as the one between m2 and m1. As such, both [17] and [9] propose an
axiom named symmetry. However, the other properties (subadditivity, binarity
and separability) do not directly fit, and they are separately addressed hereafter.

3.1 The binarity issue

First, let us consider binarity : So far, in most works devoted to conflict, it is
assumed that n > 2 belief functions can generate some conflict, and that this
latter can be measured, which strongly goes against the binarity property. Thus,
if distances are involved in the process of conflict quantitation, a rigorous n-ary
extension is required. The most natural way to define such extension is to rely
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on hypervolumes, i.e. a distance in the binary case, an era in the ternary case, a
volume in the quaternary case, and so on. Naturally, this raises lots of questions:

– How to deal with hypervolume computation in case of belief functions pre-
sented by collinear/coplanar vectors? The problem is that the volume spanned
by a set of non full rank vectors is nil.

– How to compare the conflict arisen among a set of n1 belief functions, and
the conflict arisen among another set of n2 belief functions? In fact, volumes
of different dimensionalities are not comparable.

– Which type of hypervolume to consider? The smallest encompassing hyper-
sphere, the simplex spanned by the masses, etc.?

However, it has two major advantages: First, hypervolume computation being
insensitive to the order of the vertices under consideration, it naturally fits with
the n-ary generalization of the symmetry property discussed above. Second, it
can rely on matrix algebra as a robust mathematical background, where most
of the results are well documented: Indeed, determinant or eigenvalue computa-
tions relates to the geometry of the column vectors of a matrix. So far, such an
algebraic vision is seldom considered, and only weak justifications appear in [15].

3.2 The separability issue

Behind separability, one questions the equivalence between the following two
assertions: “These masses are non-conflicting” and “These masses are equal”.
To answer, one should question the implication of the first assertion by the
second, and the reverse implication; that is: Is it possible to find separable mass
functions with fully agreeing sources? and, is it possible to find fully disagreeing
sources with equal evidence?

Separable mass functions with agreeing sources? Let us remark that
in belief function theory, focal elements are most of the time interpreted as
epistemic sets [3], i.e. imprecise descriptions of the reality: one assumes the truth
is one and only one element amongst those composing the set1. Under such view,
it is possible to have sources of information having different descriptions with
a non-null intersection that they can agree on. The direct conclusion is that,
contrarily to distances, conflict is quantity that does not fit with the separability
property. Let us illustrate that with some examples:

Example 1 (Everyday life situation with an epistemic view). In this example,
we do not assume any model based on belief functions. We simply consider two
distinct sources of information. The first one supports an interval I1 (for a range
of acceptable values, a set of possible options, or whatever its meaning), while
the second source support another interval I2 included in I1. In such a case, both
sources can agree on I2 (there is no conflict), while their opinions differ.

1 To the best of my knowledge, no work proposes a new distance-based definition of
conflict while explicitely assuming an ontic view.
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Example 2 (Separable mass functions with fully agreeing sources). Assume that
source S1 provides a vacuous mass function m1, and that source S2 provides
a non-vacuous consonant mass function m2. One clearly has m1 6= m2, and
thus d(m1,m2) > 0 whatever d. However, S1 and S2 are not conflicting, as the
evidence supported by m1 is non-informative in an epistemic model.

It is also possible to define other similar examples by replacing m2 by a
consonant mass function having its focal elements included in those of m1, while
having m1 6= m2. Whatever the example, the underlying idea is that a part of the
distance between two separate mass functions can arise from their respective level
of imprecision, and that this difference does not necessarily imply any conflicting
views. This idea is implemented in the Ignorance is bliss axiom from [9] and in
the inclusion axiom from [17]. However, these axioms are not here taken as the
initial assumption to build these counter-examples on; I only rely on the weaker
assumption that belief functions theory assumes an epistemic model. On the
contrary, these axioms can be seen as a consequence of the epistemic modeling.

Disagreeing sources with equal evidence? Let m1 and m2 be two mass
functions such that m1 = m2, and thus d(m1,m2) = 0. Does this necessarily
imply that the conflict between m1 and m2 is nil? This question should be
sorted out with respect to the on-going discussions regarding the decomposition
of conflict into its inner part and its outer part [7, 20]. These works assume
that the global conflict arising from m1 and m2 can be partly explained by the
conflicts that are carried by m1 on its own regardless m2, and by m2 on its own
regardless m1. As such the outer conflict is what remains from the global conflict
once the inner conflicts have been subtracted. If d(m1,m2) = 0 implies a null
(global) conflict, one has to assume that inner conflict does not exist, which so far
contradicts with several state-of-the-art articles. An alternative is to assume that
a distance-based measure of conflict only accounts for outer conflict. However,
this line is also source of difficulties, as so far, no exact decomposition of the
conflict into its outer and inner parts holds.

3.3 The subadditivity issue

Let us finally and rapidly turn to subadditivity (or triangle ineqality). Is there
any reason to consider that the conflict between m1 and m2, plus the conflict
between m2 and m3 should be greater than the conflict between m1 and m3?
The following example provides a situation where this property is not desirable.

Example 3. Assume that m1 and m3 are consonant mass functions bearing on
different opinions, and each being different from the vacuous one. Naturally,
they have a non-null conflict. Now, let us assume m2 is the vacuous mass: it is
absolutely non-conflicting with either m1 or m3 so that the sum of these two
conflicts is nil, leading to a situation where the triangle inequality does not hold.

Of course, this example relies on Example 2 and assumes an epistemic model.
However, it makes sense: in everyday life, it is possible to consider two extreme
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positions that are in total conflict while an in-between position is hardly con-
flicting with both, as it supports an acceptable solution for everyone. In such
case, the triangle inequality does clearly not hold.

3.4 To conclude on the distance properties

Finally, amongst the five properties of metrics, two naturally fits to conflict
definition (symmetry and non-negativity), one may accept some suitable gener-
alization (binarity), and two are absolutely not compatible (subadditivity and
separability) with an epistemic view of belief functions. At this point, we can
argue that conflict and distances (or dissimilarities) are different notions which
cannot be interchanged. Unfortunately, a lot of recent works assume it is possible
to do so (see for example [18, 22, 19, 15]), which is arguable. On the other hands,
it is possible to agree on the mathematical differences between these notions,
while proposing to build a sounded definition of conflict thanks to the involve-
ment of an adapted metrics; most of the time, by coupling a distance measure to
another index, such as in [16, 17]. This second approach authorizes much more
rigorous works. However, one needs to remain cautious regarding the semantic
of such aggregation. For instance, what is the meaning of a multi-dimensional
conflict [16], or of multiplying a distance by an inclusion measure [17]? This
question is partly addressed in the next section.

4 Semantic discussion

Now, I leave the axiomatic discussion to question how conflict and distance
may interplay at a semantic level, i.e. at the moment when the practitioner
involves belief functions to model a particular real life phenomenon. I will first
push forward the line initiated in Section 3, by questioning the semantic of an
aggregation function used to build a measure of conflict on the basis of, among
others, a distance measure. Second, I will discuss the semantic of V , the normed
vector space derived from M(Ω). Finally, I will question the definition of a
consensus between several sources when the conflict is geometrically defined.

4.1 Between similarity and agreement

Let us assume that a measure of conflict is defined thanks to an aggregation
function which takes as input, among others, a distance measure. Let m1 and
m2 be two mass functions, and C a conflict measure reading:

C(m1,m2) = f (d (m1,m2) ,V1 (m1,m2) , . . . ,Vn (m1,m2))

where d is a distance over M(Ω), f an aggregation function, and V1, . . . ,Vn,
n ≥ 1 is a set of variables meaningfully describing some properties judged as
interesting to quantify conflict. For instance:
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– in [16], d is the Chebishev distance, f is a concatenation operator that builds
a vector on the basis of a list of its coordinates, n = 1, and V1 (m1,m2) is
the conflict mass.

– in [17], d is the Jousselme distance, f is a product, n = 1 and V1 (m1,m2)
is an inclusion measure.

– one could also assume that a distance is involved to measure the outer con-
flict, and that this latter is complemented with another measure accounting
for inner conflicts.

All these works assume that similarity and agreement are different notions, which
is so far supported by Section 3. However, they make an additional assumption,
which is that a distance can be combined with a finite set of other values, namely
V1 (m1,m2) , . . . ,Vn (m1,m2) so that the resulting combination is a conflict
measure that fairly describes the level of disagreement of the sources. So far,
I do not have any support for this assumption, nor any argument against it.
However, the assumption is often associated to a constructive approach I find
prone to discussion: Generally, a measure of conflict of the form of C is built
iteratively:

1. One starts from a first definition of conflict (either V1 (m1,m2) or d (m1,m2)
in the aforementioned examples);

2. One finds a counter-example on which this definition does not entirely cap-
ture what one expects as conflict;

3. One proposes a correction, generally by incorporating another variable, say
Vi (m1,m2). At this point, if the resulting definition of conflict is not sounded,
one goes back to the previous step.

During this process, one never has the confirmation that the collection {d (m1,m2) ,
V1 (m1,m2) , . . . ,Vn (m1,m2)} is complete: As long as no example puts it back
into question, the definition is accepted; while, on the contrary, one should ac-
cept it only after proving its completeness. Practically, when discussing the sep-
arability issue in Section 3, I pointed out that some distance could arise from
the different levels of imprecision between m1 and m2, without implying any
conflict. A similar conclusion was drawn in [17], so that the proposed measure
complements a distance by an inclusion measure. However, there is no evidence
supporting that the resulting measure of conflict is complete.

4.2 Sensitivity to permutations

The second issue to focus on is best illustrated by an example:

Example 4. Let v1 = (1, 0, 0)> and v2 = (0, 1, 0)> be two vectors of R3, and let
σ ∈ S3 be a permutation. As any permutation of the coordinates of a vector
can be decomposed into a succession of cycles (which intuitively corresponds to
rotations of the basis of R3), it is rather intuitive that most of the canonical
distances (such as Minkowski distances) on R3 are insensitive to permutations:
Practically, if d is such a distance, then d(v1, v2) = d(σ(v1), σ(v2)), ∀σ ∈ S3.
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However, if v1 and v2 are intepreted as mass functions (let us name them m1

and m2) over a binary frame the powerset of which reads {{ω1}, {ω2}, {ω1, ω2}},
things become different: m1 and m2 are naturally conflicting as they respectively
fully support {ω1} and {ω2}, however, if σ is the cycle (2, 3), then σ(m1) =
(1, 0, 0)> and σ(m2) = (0, 0, 1)> are not conflicting, as σ(m2) is vacuous.

The above example illustrates that, contrarily to a classical vector space
such as Rn, where the order of the coordinates of a vector are seldom important,
M(Ω) is rather sensitive to permutations. Naturally, this example also relies on
the same tricks as Examples 2 and 3: one involves a vacuous mass function and
one assumes it is not conflicting with any other consonant mass. However, this
is mainly to keep the example both simple and catchy. What really matters here
is much more general: as the semantic of each coordinate of a vector is not the
same (some correspond to singleton focal elements, while others do not, respec-
tively encoding precise knowledge, or not), any permutation of the vector space
strongly modifies the semantic of the mass functions. However, several classical
distances are unchanged by permutations. Thus, the sensitivity to permutation
must be explicitly accounted for, if one expects a distance to be involved in a
conflict definition. Jousselme’s distance based on Jaccard’s index, as well as other
entropy-related distances, partially do, yet in different manners. However, other
distances defined on M(Ω) may not (including most of the canonical distances
on a vector space).

4.3 Geometric definition of consensus

When combining belief functions, the resulting mass is supposed to reflect a con-
sensus among the original sources. This consensus aims at being as compatible
as possible with the pieces of evidences provided by the sources, while being
specific enough (a vacuous mass is not a relevant consensus). Let us explore the
consequences of that, in the case where conflict is reflected by distances. If the
degree of disagreement between the sources if fairly captured by a distance mea-
sure, the consensus mass function is expected to have a minimal distance to all
the original pieces of evidence. From a geometrical viewpoint, such a mass func-
tion is defined by the barycenter of the sources to combine. Thus, the merging of
the pieces of information should not be conducted according to Dempster’s rule,
but according to a convex combination. Although in plain contradiction with
the mainframe of belief function theory, the idea that a consensus is well-defined
by a barycenter has already showed up in the literature: In [21], Assumption
1.1. reads that the pignistic transform should be invariant with respect to con-
vex combination rather than with respect to Dempster’s rule, such as advocated
in [2]. In a slightly less related way, the pignistic transform is easily interpreted
in terms of linear combination: It provides the barycenter of dominating prob-
abilities [1], which can be interpreted as a geometric consensus between all the
compliant probability distributions. However, by now, Dempster’s rule is well
established (it is seldom put into questions, such as in [11]), and such a change
would have major impacts on the theory (far beyond the simple definition of
conflict) and its consequences should be globally considered.
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5 Conclusion

This article discusses the recent trend which focuses on using metrics to quantify
the degree of conflict between belief functions. As I am sure it appeared through
this discussion, I am not a supporter of this trend, and my views remains coherent
with a previous article [9] I was a co-author of, where one has defined various
axioms that we believe a sounded measure of conflict should meet. However, I
understand that belief functions have rich and multiple semantics that may differ,
and among which none is better than the others. As such, in this viewpoint, I
considered the question through some constructive Cartesian skepticism: I tried
to push as far as possible the line of mixing distances and conflict, with the hope
that it would raise interesting questions.

As a result of the axiomatic discussion conducted in Section 3, it appears that
the separability and subadditivity properties of distances contradict what can be
expected from a conflict measure. It clearly indicates that, at a low mathematical
level, the notions of conflict and of distance cannot be interchanged. However, at
this point, it is impossible to reject another trend, which consists in elaborating a
measure of conflict thanks to an aggregation function which takes into account,
among others, a distance. This is why, in Section 4, I discuss the differences
between distances and conflict at a semantic level, through different angles.

Finally, it appears that even if no blatant contradiction appears at this se-
mantic level, several major issues remain, if one expects to build a complete
vision-based definition of conflict:

1. Such as discussed in Section 3.1, a suitable n-ary (n > 2) generalization of
the distance is necessary. Moreover, this generalization should be insensitive
to permutations, to fit with the symmetry property;

2. One only considers outer conflict (thus, a suitable separation of inner and
outer conflict is mandatory), such as advocated in Section 3.2;

3. An exhaustive definition of all the differences between agreement and sim-
ilarity must be given, so that the distance is aggregated to another set of
measures accounting for these differences, such as it is outlined in Section 3.2
and detailed in Section 4.1;

4. The distance must be defined so that it has a semantic robust to permuta-
tions of the focal elements, in order to avoid situation such as illustrated in
the Example 4 (Section 4.2);

5. The combination rule must be adapted to fit a barycentric vision of the
consensus, such as described in Section 4.3.

Finally, most of these issues are real locks that can only be addressed in dedicated
works. According to the amount of works focused on the definition of a geomet-
ric and distance-based vision of conflict, the subject is definitely an interesting
question for the belief function community. However, its complete and rigorous
definition still requires several issues (at least, the five aforementioned) to be
solved beforehand. Should these issues be sorted out, it would be interesting to
confront a distance-based conflict to pre-existing definitions.
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