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The effect of measurement errors on the performance of the homogenously weighted 

moving average  ̅ monitoring scheme with estimated parameters 
 

Abstract 

Classical monitoring schemes are typically designed under the assumption of known process 

parameters, perfect measurements and normality. In real-life applications, these assumptions 

are often violated. Thus, their Phase II performances are negatively affected by both 

measurement errors and parameter estimation. In this paper, the performance of the 

homogenously weighted moving average (HWMA) scheme is investigated under the 

assumption of unknown process parameters with and without measurement errors using the 

characteristics of the run-length distribution through intensive simulations. The negative 

effect of measurement errors is reduced using multiple measurements sampling strategy. The 

effects of the Phase I sample size on the Phase II performance as well as the robustness to 

non-normality of the HWMA scheme are also investigated. Moreover, it is found that the 

negative effect of the measurement errors is higher as the smoothing parameter increases and 

the larger the Phase I sample size, the smaller the effect of measurement errors. Moreover, 

the Phase II performance of the HWMA  ̅ scheme is compared with the corresponding 

memory-type monitoring schemes under the effect of both parameter estimation and 

measurement errors. An illustrative example is given to demonstrate the implementation in 

real-life applications. 

 

Keywords: Homogenously Weighted Moving Average scheme; Linear covariate error 

model; Linearly increasing variance; Measurement error; Multiple measurements; Parameter 

estimation. 

 

1. Introduction 

Any efficient monitoring scheme needs to be able to distinguish between two sources of 

variation, i.e. the common (or chance) causes and the assignable (or special) causes of 

variation. When the process runs in the presence of common causes only, the process is 

considered to be in-control (IC); otherwise, the process is said to be out-of-control (OOC). In 

statistical process monitoring (SPM), when practitioners are interested in monitoring small-

to-moderate shifts in the process parameters, popular memory-type monitoring schemes such 

as the cumulative sum (CUSUM) or the exponentially weighted moving average (EWMA) 

can be used, see for instance the SPM books by [1-3]. While the majority of the SPM 

literature and the latter books discuss monitoring schemes based on simple random sampling 

(SRS), there are other memory-type schemes based on structured sampling strategies, like the 

ranked set sampling (RSS); see for instance [4-5]. Another memory-type scheme that is 

gaining some interest among SPM researchers is the generally weighted moving average 

(GWMA) schemes which is essentially an EWMA scheme with an additional adjustment 

design parameter (i.e. the GWMA scheme is slightly more complex than the EWMA 

scheme); see the review paper by [6]. However, [6] noted that, although the GWMA scheme 



has a better performance than the EWMA scheme, its statistical design is more complicated 

than that of the EWMA scheme.  

More recently, Abbas [7] developed a new memory-type scheme called the homogeneously 

weighted moving average (HWMA) monitoring scheme. The HWMA scheme is an 

improvement of the EWMA scheme in terms of the statistical design simplicity and OOC 

performance. That is, the recent and past observations used to compute the charting statistics 

of the EWMA scheme have a geometrically decreasing weight structure from the most recent 

observation to the previous ones. However, the HWMA scheme allocates a specific weight to 

the current observation and equal weights for all previous observations. In essence, the 

charting statistics of the HWMA control chart overcome the problem of varying weights in a 

geometrically decreasing manner that is associated with the EWMA chart (and by extension, 

the GWMA scheme).  

So far in the SPM literature, there are ten publications discussing the HWMA-type 

monitoring schemes, see [7-16]. That is, Abbas [7] proposed a new HWMA  ̅ scheme to 

monitor the process mean and derived its run-length properties. Next, [8] developed the 

HWMA  ̅ scheme that uses auxiliary information variable in the form of a regression 

estimator. Thereafter, [9] discussed the HWMA  ̅ scheme that uses structured sampling 

methods based on RSS. The double (and hybrid) HWMA  ̅ schemes which involve the use of 

two smoothing parameters were introduced by [10] and [11], respectively.  Next, [12] 

proposed the mixed HWMA-CUSUM scheme where the HWMA statistic is used as an input 

of the CUSUM scheme. Dawod et al. [13] proposed the HWMA scheme to monitor linear 

profiles using a Bayesian estimation approach.  A multivariate HWMA scheme for 

monitoring the process mean vector when parameters are either known or unknown are 

discussed in [14] and [15], respectively. Finally, [16] proposed two nonparametric HWMA 

schemes based on the sign and Wilcoxon signed-rank statistics for monitoring location 

parameters in the case of skewed and symmetric distributions, respectively.  

The majority of the monitoring schemes are typically based on the assumption of known 

process parameters (henceforth denoted as Case K). However, in many real-life applications, 

the process parameters are unknown (henceforth denoted as Case U). The Case U scenario 

requires monitoring schemes to be applied in a two-phase approach, i.e. Phase I and Phase II; 

see for instance [17-19]. In Phase I, monitoring schemes are implemented retrospectively in 

order to estimate the distribution parameters using an IC reference sample. However, in 

Phase II, monitoring schemes are implemented prospectively to continuously monitor any 



departures from an IC state using the parameters estimated in Phase I. It is well-known that 

parameter estimation significantly degrades the sensitivity of a monitoring scheme. 

Therefore, it is very important to investigate the performance of the existing and new 

monitoring schemes under the assumption of unknown process parameters. Other recent 

contributions to parameter estimation effect can be found in the review paper by [20].  

All the above mentioned HWMA  ̅ schemes assume that measurements on observations are 

exact and thus, only a single measurement on each observation is taken. However, exact 

measurements almost do not exist in real-life applications, because as stated in the review 

paper by [21]: “… wherever there is a human involvement, an exact measurement is a rare 

phenomenon in any manufacturing and service environment; hence a difference between the 

real quantities and the measured ones will always exist even with highly sophisticated 

advanced measuring instruments”. Therefore, in this paper, the performance of the HWMA  ̅ 

scheme is investigated under the Case U assumption, with and without measurement errors, 

when the underlying observations follow normal or non-normal distributions. The covariate 

error model with a constant and a linearly increasing variance are both used to model the 

measurement errors. In the review paper by [21], it is stated that the most used remedial 

approach to counteract measurement errors is the multiple measurements approach proposed 

by [22]; hence, in this paper, this strategy is also implemented. Multiple measurements 

approach involves taking at least two measurements (i.e.    2) for each sampled unit, which 

effectively reduces the effect of the measurement errors. For other recent works on 

measurement errors in the SPM context, see [23-31].  

The rest of this paper is organised as follows: In Section 2, the main properties of the HWMA  ̅ scheme without measurement errors under the Cases K and U scenarios are provided. 

Section 3 introduces the HWMA  ̅ scheme in Case U with measurement errors. The OOC 

performance of the HWMA scheme and the robustness to non-normality are studied in 

Section 4. Moreover, the OOC performance of the HWMA scheme is compared to those of 

the CUSUM, EWMA and GWMA schemes. An illustrative example based on a real-life 

application is given in Section 5 and some concluding remarks are presented in Section 6.  

 

2. Design of the HWMA  ̅ scheme 

2.1 Parameters known (Case K) 

Let         1, 2, …, and    1, 2, …,    be a set of samples of independent normal random 

variables, i.e.                   , where    is the IC mean value,    is the IC standard 



deviation and   is the magnitude of the shift in standard deviation units. When    0, the 

process is considered to be IC, which implies               . However, when    0 the 

process is OOC.  Let  ̅    ∑     ⁄      be the sample mean of the     subgroup. The 

plotting statistic of the HWMA  ̅ scheme (denoted as   ) is defined by      ̅         ̿     (1) 

with   ̿    ∑  ̅             

where   (0     1) is the smoothing constant and  ̿    is the mean of the previous     

subgroup sample means. The initial value of   ̿    (i.e.  ̿ ) is typically set to be equal to the 

target mean   . Abbas [7] showed that (1) can also be written as      ̅  ((      )  ̅    (      )  ̅      (      )  ̅  (      )  ̅  )  (2) 

From (2), it can be seen that the HWMA  ̅ statistic assigns weight   to the current sample 

and a weight       is homogeneously (or equally) distributed to the previous     

samples. Abbas [7] showed that the mean and variance of the plotting statistic in (1) or (2) are 

given by           

and (3) 

             {  
                                                                                        

respectively. Therefore, the time-varying lower and upper control limits (i.e.      and     ) 
of the HWMA  ̅ monitoring scheme are defined by 

     
{  
      √                                             

    √                                   

 

and (4) 



     
{  
      √                                            

    √                                   

 

respectively; where   is the control limits constant that is set to have an IC     

approximately equal to some pre-specified nominal IC     (i.e.     ). Thus, the HWMA  ̅ 

scheme gives a signal if the plotting statistic in (1) plots beyond the control limits defined in 

(4); that is, if         or        . In case the process has been running for a long time 

(i.e.    ), the term 
                 . Therefore, the control limits in (4) reduce to the 

following asymptotic ones 

            √           (5) 

and, in this case, the process is OOC if        or       . 

2.2 Parameters unknown (Case U) 

Since it is well-known that the estimation of the process parameters significantly degrades the 

performance of any monitoring scheme (see [17-20]), the investigation of the effect of 

parameter estimation on the performance of the HWMA  ̅ scheme is of great importance. In 

Case U, the process parameters are estimated in Phase I (using m reference samples each of 

size n) when the process is deemed to be IC. The unbiased estimators for    and    are 

defined by  ̂  ∑ ∑               
 

and (6) 

 ̂  √∑ ∑       ̅                      

 

respectively; where {   : k=1,…,m and i=1,…,n} is a sequence of IC Phase I observations, 

with  ̅    ∑     ⁄      and      √   (         )√        (       ) is an un-biasing constant, see [7]. 

Therefore, using Phase I estimates in (6), it follows that the time-varying control limits of the 

HWMA  ̅ scheme used to monitor the process mean in Phase II are given by 



     
{  
   ̂   √(   ̂   )                                              

 ̂   √   ̂            ̂                                

 

and (7) 

     
{  
   ̂   √   ̂                                                     
 ̂   √   ̂            ̂                                 

 

However, the Phase II asymptotic control limits of the HWMA  ̅ scheme are given by 

         ̂   √   ̂    (8) 

 

3. Design of the HWMA scheme in Case U under the effect of measurement errors 

 3.1 Covariate error model with a constant variance 

Assume that the true value of the quality characteristic      defined in Section 2 is only 

observed through a value {         t = 1,2,…;  i = 1,2,…, n; j = 1,…, r} described by the 

expression                                       , where A and B are two constants 

depending on the measurement system location error; see [22]. For the sake of simplicity, it is 

assumed that    0 and    1. Also,   denotes the number of measurements taken in each 

sampled subgroup unit and                 is a random error due to the measurement error 

that is distributed independently of     ; where     is the variance of the measurement system. 

Assuming that n observations from the sequence         at each sampling point have been 

collected, the mean   ̅      ∑∑        
   

 
      ∑     

       ∑∑       
   

 
    

needs to be calculated. Thus, the plotting statistic of the HWMA scheme in Case U with 

measurement errors (henceforth denoted by HWMA  ̅  scheme) is defined by        ̅          ̿       (9) 

where  ̿     is the mean of the previous     sample means and hence, (9) can be written as 



      ̅   ((      )  ̅     (      )  ̅       (      )  ̅   (      )  ̅   )  
The initial value of   ̿     (i.e.  ̿  ) is set to be equal to the estimated mean  ̂ . Thus, the 

expected value and variance of the plotting statistic     defined in (9) are          ̂   

and (10) 

               {  
       ̂    ̂                                                  (             )(  ̂    ̂    )           

Let      ̂  represents the standardized ratio of the measurement system variability to the 

process variability; and then          in (10) reduces to 

               {  
     ̂   (     )                                                
(   ̂           ̂        )(     )          

The value of   is equal to 1 when a standard single measurement is used per sampling unit. 

However, as   increases, the negative effect of the variance of the measurement error 

component is reduced; that is, as    , then 
     0. An optimal balance has to be found 

between   and the resources to realise a reasonable outcome – this point is addressed in 

Section 4.2.  

When  ̅  is from a perfect measurement system, then    = 0, so that     0; otherwise,    

0. The time-varying control limits of the HWMA  ̅  scheme with  -measurements are 

defined by: 

     
{  
   ̂    √   ̂   (     )                                              
 ̂    √(   ̂           ̂        )(     )                  

 

and  (11) 



     
{  
   ̂    √   ̂   (     )                                                 
 ̂    √(   ̂           ̂        )(     )                  

 

 where    is control limit width parameter of the HWMA  ̅  scheme with  -measurements. 

Since the term 
       ̂           when the process has been running for a while, the asymptotic 

control limits of the HWMA  ̅  scheme with  -measurements are defined by 

         ̂    √   ̂   (     )  (12) 

3.2 Covariate error model with a linearly increasing variance  

In some situations, the measurement error    should no longer be considered as being a 

constant but it should be considered as an increasing function of the mean of the variable     , 
i.e.         ̂ , where   and   are constants; and thus,               ̂     ̂       ̂  . One more time, for simplicity, assume A=0 and B=1, then the Phase II time-varying 

control limits of the HWMA  ̅  scheme with  -measurements and linearly increasing 

variance are defined by:  

     
{  
   ̂    √  ( ̂        ̂   )                                              

 ̂    √(             )( ̂        ̂   )                  

 

and (13) 

     
{  
   ̂    √  ( ̂        ̂   )                                              

 ̂    √(             )( ̂        ̂   )                 

 

Similarly, as    , then 
    ̂     0, which means as   increases, the negative effect of 

variance of the measurement error component is reduced. Next, the Phase II asymptotic 

control limits of the HWMA  ̅  scheme with  -measurements are defined by:  

         ̂    √  ( ̂        ̂   )  (14) 



To conserve space, in this paper, the focus is on the time-varying case. 

 

4. Performance of the HWMA  ̅  scheme in Case U with measurement errors 

4.1 Run-length metrics 

The average run-length (ARL), defined as the mean of the run-length (RL) distribution or the 

average number of rational subgroups plotted on a control chart before it gives a signal for 

the first time, is the most used RL metric in SPM literature. This metric reveals the degree of 

the sensitivity of a monitoring scheme towards specific shifts. To compute the RL properties 

(i.e. the ARL and the standard deviation of the RL (SDRL)), in this paper, the Monte Carlo 

simulations approach using SAS v9.4 are used. Note that in addition to the latter, the 

expected ARL (EARL) metric is also used to investigate the performance over a range of 

shifts. The EARL is mathematically defined by  

                ∑           
        (15) 

where      and      are the lower and upper bound of the shift ( ) parameter, respectively,        is the ARL value for a specific shift   and   represents the number of increments 

between      and     . Thus, the      values denoted by        ,        ,        ,        ,         and         are used to investigate the performance of the HWMA  ̅  

scheme for small (     ), moderate (     ), large (     ), small-to-moderate 

(     ), moderate-to-large (     ) and small-to-large (     ) shifts, 

respectively. 

4.2 Sensitivity analysis 

In this section, the effects of both parameter estimation and measurement errors on the 

performance of the HWMA  ̅  scheme (under the assumption of normality) are investigated 

in terms of the ARL and SDRL profiles for specific shifts and EARL profile for different 

ranges of shifts. Table 1 presents the ARL and EARL profiles of the HWMA  ̅  scheme for 

Case U when    20,    0.1, 0.5, 0.9 ,    0, 0.2, 0.5, 0.9  and    1 & 4 for a nominal      of 500. From Table 1, the following is observed: 

 Measurement errors have a negative effect on the sensitivity of the HWMA  ̅  

scheme, which means the higher the value of  , the higher the values of the      

profile. For instance, when  =0.1,  =1 and  =0.25, if    0, 0.2, 0.5 and 0.9, the 

HWMA  ̅  scheme is expected to give a signal on the 311
th

, 313
th

, 336
th

 and 371
th

 

sampling points, respectively.  



 When   is kept fixed, the HWMA  ̅  scheme is more sensitive to small values of  , 

see for example the         values, where  =0.1 yields the best performance than   

equal to 0.5 and 0.9, for each  . For small-to-moderate (i.e.        ), moderate-to-

large (i.e.        ) as well as from small-to-large (i.e.        ) shifts, the HWMA  ̅  scheme performs better for small shifts and small values of  . For instance, when  =0.5 and  =1, for    0.1, 0.5 and 0.9, the HWMA  ̅  scheme is expected to give 

the first signal on the 16
th

, 29
th

 and 78
th

 subgroups when  =1, respectively.  

 Multiple measurements have a positive impact on the sensitivity of the HWMA  ̅  

scheme. For instance, for  =0.1,  =0.9 and  =0.25, when  =1, the OOC ARL 

(denoted as     ) is equal to 371.62; however, when  =4, the      is reduced to 

336.03. This shows that a multiple measurements strategy reduces the negative effect 

of measurement errors. 

 The design parameter    decreases as   increases; which means, the larger the 

smoothing parameter, the narrower the control limits.  

<Insert Table 1 here> 

As Table 1 is only constructed for m = 20, other values of m   {20,40,100, } are considered 

in Figure 1. Note that m=  corresponds to the HWMA  ̅  scheme in Case K. It is observed 

that the lower the values of m, the higher the      values. Stated differently, an increase in 

the Phase I sample size leads to an improved Phase II OOC performance of the HWMA  ̅  

scheme. Thus, this shows that the HWMA  ̅  scheme is more sensitive when the process 

parameters are known; or stated differently, parameter estimation degrades Phase II OOC 

performance. Moreover, increasing r from 1 to 4 leads to an improved Phase II OOC 

performance since the      values are slightly reduced for all shift values.  

<Insert Figure 1 here> 

Next, in Figure 2, it is apparent that at any shift value, the higher the value of  , the poorer is 

the performance of the HWMA  ̅  scheme because the      are larger than the 

corresponding lower values of  . Stated differently, for the best performance in the HWMA  ̅  scheme, user are advised to use small values of  . Moreover, increasing r from 1 to 4 

leads to an improved performance since the      values are reduced for all shift values. 

<Insert Figure 2 here> 

The effect of increasing r on the ARL and SDRL profiles is illustrated in Figure 3. It is shown 

that, in general, as r increases the corresponding      and the OOC SDRL (denoted by 



     ) values decrease at a slow rate. Also, the sensitivity pattern of the       profiles is 

similar to the one of the     . 

<Insert Figure 3 here> 

Table 1 and Figures 1 to 3, show that when   and   are both large with a small value of m, 

the combined effect of measurement errors and parameter estimation significantly 

deteriorates the sensitivity of the HWMA  ̅  scheme. Hence, the smaller the values of   and  , with a large value of m, yields a better HWMA  ̅  scheme performance. Also, when   is 

kept fixed and    100, the HWMA  ̅  scheme performs better for small value of  ; 

however, for large shifts, the sensitivity of the HWMA  ̅  scheme increases in the interval 0     0.5 and decreases in the interval 0.5     1. Finally, when    0 and    100, the 

sensitivity of the HWMA  ̅  scheme increases in the interval 0     0.5 and decreases in 

the interval 0.5     1 regardless of the size of the mean shift; however, when    , it is 

more sensitive for small values of   regardless of the size of the shift in the process mean. 

For ease in studying the sensitivity of proposed scheme, the following comparison metrics are 

defined:  

i. As measurement errors are known to have a negative effect on the sensitivity of a 

monitoring scheme, it is therefore important to investigate the percentage decrease in 

the performance of the proposed scheme for specific   (   0) values compared to the 

case with perfect measurements (i.e.    0) when both   and   are fixed. Thus, the 

criterions quantifying the percentage decrease and its expected value are denoted as           and  ̅        , respectively, and they are computed using the following 

formulas:                                                    

and   

 ̅           ∑              
         

where      (     ) is the OOC ARL value of the HWMA  ̅  scheme for a specific 

shift when    0 and      (     ) is the OOC ARL value for a specific shift when    0.   

ii. Multiple measurements help to reduce the negative effect of measurement errors. For 

a specific   (   0) with 1-measurement (i.e.    1), there is a decrease in the 

performance of a monitoring scheme. However, if the values of   (where    0) and 



  are fixed and   increases (i.e.    1), they will be gain (or increase) in the 

performance compared to the situation where a single measurement is used under the 

same value of  . Thus, the percentage increase in the performance and its expected 

value denoted as           and  ̅        , respectively,  can be computed in a 

similar way using the following formula:               |                                   |       

and  

 ̅           ∑               
         

where      (     ) is the OOC ARL value of the HWMA  ̅  scheme for a specific 

shift when    1 and     (     ) is the OOC ARL value for a specific shift when    1.   

Figure 4 displays the           values when   and   are fixed for different values of   

while Figure 5 displays the           values when   and   are fixed. It is observed that the 

larger the value of  , the higher the decrease in the sensitivity of the HWMA  ̅  scheme. 

From Figure 4, it can be seen that in Case U, for small values of  , regardless of the level of 

measurement errors, the monitoring scheme under investigation reach a maximum decrease 

in its performance for a shift of size 0.5 standard deviation. For moderate values of  , the 

maximum decrease in the performance is reached for shift of one standard deviation.  For 

large values of  , the maximum decrease in the sensitivity of the HWMA  ̅  scheme is 

reached when   [1.75, 2]. From Figure 5, it can be seen that regardless of the value of  , the           value of the monitoring scheme under investigation is higher for large values of   

and it is more significant for higher level of measurement errors (see Figure 5 (c), (f) and (i)). 

<Insert Figures 4 and 5 here> 

In the design of statistical monitoring schemes with measurement errors, it is very important 

to investigate the number measurements per sampling time necessary to compensate the 

negative effect of measurement errors. In most of the cases the elimination of the effect of 

measurement errors is almost impossible because the measurement costs need to be reduced 

and large sample size should be avoided. Figure 6 presents the marginal           (i.e., the 

percentage decrease in the      value for one unit increase in the value of  ) of the HWMA  ̅  scheme when using different sets of measurements with    0.1. Figure 6 shows that in 

Case U, the marginal           decreases as the number of measurement increases. 



Therefore, for small level of measurement errors, it is advised to use 2 sets of measurements 

of size 5 because when  =3, the marginal           is below 1% which can be considered 

as insignificant. For moderate values of  , it is advised to use   equal to 3 or 4 and for large 

values of  , the use of   equal to 4 or 5 is advised. These recommendations hold for all values 

of  . 

<Insert Figure 6 here> 

Table 2 displays the performance of the HWMA  ̅  scheme for a linearly increasing 

population variance when    0, 1, 2, 3 (with  =0) and    0, 1, 2, 3 (with  =0) for  =0.1 

and with  =1 and ( =4 in parentheses). For   constant, it is observed that the sensitivity of the 

HWMA  ̅  scheme decreases as   increases whenever    0. For instance, when  =1 and  =1.25, then for    0, 1, 2, and 3, the HWMA  ̅  scheme gives a signal on the 7
th

, 13
th

, 18
th

 

and 24
th

 sampling points, respectively. Moreover, when 4 measurements are used (i.e.  =4 in 

parentheses), the HWMA  ̅  scheme gives a signal on the 7
th

, 8
th

, 10
th

 and 11
th

 sampling 

points when    0, 1, 2, and 3, respectively. Hence, increasing the number of measurements 

has a positive effect on the sensitivity of the HWMA  ̅  scheme by reducing the effect of 

measurement errors regardless of the degree of the linear increase in the process variance. 

Next, for   constant, it is similarly observed that the sensitivity of the HWMA  ̅  scheme 

decreases as   increases whenever    0. For instance, when  =1 and  =1.25, then for    

0, 1, 2, and 3, the HWMA  ̅  scheme gives a signal on the 7
th

, 13
th

, 18
th

 and 23
th

 subgroups, 

respectively. Note that when   increase, the HWMA  ̅  scheme improves in performance as 

the negative effect of measurement errors is reduced by taking multiple measurements. When  = =0, there is no measurement error in the measurement system; hence, there is no need to 

increase   as it yields no improvement in the performance of the monitoring scheme, i.e. the      are the same for any values of  . Finally, although not shown in Table 2, increasing   

has a similar effect in performance as that observed in Table 1; that is, the higher the value of 

the smoothing parameter the worse the performance gets for the linearly increasing variance 

scenario. 

<Insert Table 2 here> 

4.3 Robustness of HWMA  ̅  scheme 

A monitoring scheme is said to be IC robust if the IC characteristics of the run-length 

distribution are the same or significantly close across all continuous distributions. To check 

this, in Table 3, the      and      values are computed for some symmetrical and skewed 

distributions. The considered distributions are:  



(i) Standard normal distribution, i.e. N(0,1).  

(ii) Student’s t distribution with degrees of freedom    5, 10, 20; i.e. t(5), t(10), t(20). 

(iii) Gamma  distribution with parameters    1, 3, 10 and    1; i.e. GAM(1,1), 

GAM(3,1), GAM(10,1). 

(iv) Standard double exponential distribution with    0 and    1, denoted DEXP(0,1).  

For a fair comparison, the above distributions are transformed such that the mean and standard 

deviation are equal to 0 and 1, respectively. To check the IC robustness and OOC behavior of 

the proposed HWMA  ̅ scheme, the IC and OOC characteristics of the run-length distribution 

were computed using Monte Carlo simulations. To preserve writing space, Table 3 displays the 

attained     values only. For different values of m, it is apparent that the HWMA  ̅  scheme 

is not IC robust for some non-normal distributions. That is, based on the IC ARL values, the 

following findings can be observed from Table 3:  

 Regardless of the Phase I sample size, the proposed HWMA  ̅  scheme is IC robust 

under the normal distribution because the attained ARL is approximately equal to the 

nominal ARL.  

 Under the t(v) distributions, regardless of the Phase I sample size (including the Case K) 

the HWMA  ̅  scheme is not IC robust for small degrees of freedom (v) because the 

attained ARL is not equal to the nominal ARL. However, as v increases the HWMA  ̅  

scheme tends towards IC robustness. Additional simulations, not shown in Table 3, 

indicate that IC robustness is achieved when v is larger than 30. It is worth mentioning 

that the  (v) distribution (with    30) is approximately equal to the normal 

distribution. 

 Similar to the  (v) distribution, under the GAM(     distribution, the HWMA  ̅  

scheme is only IC robust when the shape parameter is large (i.e.,     ); however, it 

is not IC robust when     .  

 Under the standard DEXP(0,1) distribution, the HWMA  ̅  scheme is not IC robust. 

In general, it is observed from Table 3 that for different underlying distributions, the IC ARL 

values are not approximately the same and thus, the HWMA  ̅  scheme is not IC robust. 

Finally, all the distributions in Table 3 have a similar OOC performance for moderate-to-

large shifts, except for the standard DEXP(0,1) distribution which is observed to have the 

worst performance for all considered values of  . 

<Insert Table 3 here> 

4.4 Comparison with other memory-type schemes 



As far as we know, no GWMA  ̅  scheme to monitor the process mean under the effect of 

measurement errors does exist in the SPM literature for Cases K and U. The EWMA and 

CUSUM  ̅  schemes in Case K are discussed in [32] and [33], respectively; however, the 

Case U versions do not exist in the SPM literature. The latter three monitoring schemes in 

Case U are in part, discussed in this section. Thus, the proposed HWMA  ̅  scheme is 

compared to the CUSUM, EWMA and GWMA  ̅  schemes under the effect of both 

measurement errors and parameter estimation under the normality assumption. To compare 

the sensitivity of the competing schemes, the performance of each scheme is investigated 

when        (100, 5),    {1, 4} and    {0, 0.2, 0.5, 0.9}. Therefore, for an attained      of 500, it is found that the combinations of the design parameters of the CUSUM and 

EWMA  ̅  schemes are (   ,   ) = (0.125, 6.729) and (  ,   ) = (0.1, 2.938), respectively, 

and those of the GWMA  ̅  scheme are ( ,  ,   ) = (0.5, 0.9, 3.336) where       . 

These design parameters yield attained      values as close as possible to 500.  

Table 4 displays the ARL and EARL values of the HWMA, CUSUM, EWMA and GWMA  ̅  

schemes for different values of   and  . From this table, at each shift value or range of shift 

values, the best performing scheme is boldfaced. It can be seen that, regardless of the level of 

measurement error or the number of measurements, the HWMA  ̅  scheme outperforms the 

CUSUM, EWMA and GWMA  ̅   schemes under small mean shifts. The GWMA  ̅  scheme 

with small values of   is superior to both CUSUM and EWMA  ̅  schemes for very small 

shifts (i.e., 0     0.25). However, when    0.25, 3 , the EWMA  ̅  scheme (which is 

equivalent to the GWMA  ̅  scheme with   1) outperforms both the HWMA and CUSUM  ̅  schemes. For moderate and large shifts (see         and        ), as well as moderate-

to-large shifts (see        ), the EWMA  ̅  scheme performs better than the GWMA, 

CUSUM and HWMA  ̅  schemes. Next, with respect to the EARLs, the CUSUM  ̅  scheme 

seems to yield the worst OOC performance when compared to its memory-type competitors. 

For small-to-moderate and small-to-large shifts (see         and        ) as well as for 

small shifts only (see        ), the HWMA  ̅  scheme is superior to all its competing 

memory-type monitoring schemes. In essence, the latter deduction implies that the proposed 

HWMA  ̅  scheme is expected to yield better detection ability than its real-world 

competitors (i.e. CUSUM, EWMA and GWMA schemes) for most shift values in the process 

mean when a user is more interested in: (i) small shifts only, (ii) a range of small to moderate 

shifts, and (iii) a range of small to large shifts.    

<Insert Table 4 here> 



5. Illustrative example 

In order to illustrate the implementation of the HWMA  ̅  scheme with measurement error 

under the assumption of unknown process parameters, the data from [34] which is shown in 

Table 5 are used as the Phase II data. The dataset is based on a yogurt cup filling process 

where the quality characteristic         is the weight of each yogurt cup. In this example, it is 

assumed that the IC mean and the IC standard deviation are unknown and they are estimated 

from the Phase I sample of size 100 (i.e. m = 100). Hence, using (6) yields  ̂   124.90 ,    0.76,         0.9994 and   ̂  = 0.76/0.9994 = 0.7605 . An independent R&R study 

estimated the measurement standard deviation    = 0.24 and thus,   = 0.24/0.7605 = 0.3156. 

The quality practitioner in charge of this process decided to take, every hour, two sets of 

measurements, each of size 5 (i.e. r = 2 and n = 5). For a nominal      value of 500 and    

0.1, it is found that     3.32 yields an attained      of 501.26. Thus, when   = 2, the lower 

and upper control limits of the HWMA  ̅  scheme when    1 and 2 are calculated using 

(11) as follows: 

 

     
{  
             √               (            )                                                                              

           √(                                          )(            )             

(16a) 

(16b) 

and   

     
{  
             √               (            )                                                                             

           √(                                          )(            )                

(17a) 

(17b) 

For    , the rest of the time-varying control limits can also be calculated in a similar way as 

shown in Equations (16b) and (17b), respectively. For illustration purpose, the first three 

plotting statistics are calculated as follows:   ̅                                       and  ̿    ̂          ̅                                       and   ̿    ̅             ̅                                        and    ̿    ̅    ̅                           
so that,       ̅          ̿                                           ̅          ̿                                     



      ̅          ̿                                     
The rest of the plotting statistics of the HWMA  ̅  scheme with 2-measurements are 

empirically shown in Table 5 and graphically in Figure 7. It is observed that the HWMA  ̅  

scheme give an OOC signal for the first time on the 14
th

 subgroup. 

<Insert Table 5 here> 

<Insert Figure 7 here> 

6. Conclusion 

Most of the monitoring schemes are based on the assumption of Case K and perfect 

measurements. This paper proposes the HWMA scheme in Case U under the assumption of 

perfect and imperfect measurements. It is observed that the sensitivity of the HWMA scheme 

deteriorate significantly when the level of measurement error increases and the use of 

multiple measurements has a positive effect on the sensitivity. The negative effect of the 

measurement errors is more pronounced when there is a linearly increasing variance than 

when the error variance is constant. Note though, practitioners are not advised to use more 

than five measurements in the design of the HWMA scheme regardless of the level of the 

measurement error. Also, it is shown that the HWMA  ̅  scheme is not IC robust and higher 

values of the smoothing parameter lead to poor Phase II OOC performance. Moreover, as the 

Phase I sample size increases, the performance of the HWMA scheme in Phase II improves. 

In comparison to the CUSUM scheme, the HWMA scheme is found to be superior regardless 

of the size of the mean shift. In addition, the HWMA scheme is superior to the EWMA and 

GWMA schemes under small shifts; however, for moderate-to-large shifts, the converse is 

true. Therefore, given the fact that the HWMA scheme has a simpler design model and has a 

competitive performance compared to the EWMA and GWMA schemes, practitioners are 

recommended to rather use the HWMA scheme to monitor the process mean with or without 

measurement errors. 

Note that the HWMA scheme is designed under the effect of measurement errors only. 

Therefore, for future research, the combined effect of measurement errors and autocorrelation 

need to be investigated in both Cases K and U. So far, no HWMA-type scheme based on 

attributes data exist, this needs to be addressed. In this paper, an additive error model is 

implemented, for future research, a two- or three-component error model can also be 

investigated for the HWMA scheme; see for instance [35] where the two-component error 

model is implemented for the EWMA scheme. 
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Table 1: The     and      profiles of the HWMA  ̅  scheme in Case U when  =0,  =1, 

m=20, n=5,   *0.1,0.5,0.9+ and   *0,0.2,0.5,0.9+ with  =1 (and  =4 in parenthesis)   

 
  = 0.1   = 0.5   = 0.9 

Shift   = 0   = 0.2   = 0.5   = 0.9   = 0   = 0.2   = 0.5   = 0.9   = 0   = 0.2   = 0.5   = 0.9 

0.00 500.74 500.74 500.74 500.74 504.10 504.10 504.10 504.10 507.69 507.69 507.69 507.69 

0.25 311.14 
313.21 

(305.44) 

336.16 

(315.82) 

371.62 

(336.03) 
363.23 

369.05 

(360.63) 

385.32 

(367.39) 

418.20 

(380.59) 
414.79 

415.23 

(413.74) 

429.07 

(414.71) 

446.72 

(429.10) 

0.5 88.26 
92.25 

(88.39) 

118.82 

(96.08) 

178.38 

(115.74) 
150.76 

159.14 

(151.95) 

189.00 

(162.91) 

249.84 

(181.71) 
243.78 

246.99 

(243.3) 

278.81 

(250.80) 

327.88 

(268.16) 

0.75 26.54 
27.50 

(26.12) 
37.99 

(28.01) 
63.56 

(33.69) 
52.37 

55.52       
(53.72) 

72.51        
(56.82) 

121.30 
(68.89) 

118.85 
122.56 

(118.89) 
149.61 

(127.44) 
206.41 

(145.83) 

1.00 13.09 
13.57 

(13.22) 

16.47 

(13.86) 

26.79 

(15.89) 
20.56 

22.27        

(21.32) 

29.44     

(22.93) 

54.33        

(27.94) 
58.25 

60.88      

(59.23) 

78.51        

(62.46) 

121.36 

(75.04) 

1.25 8.46 
8.79         

(8.55) 
10.43       
(8.94) 

15.21 
(10.02) 

10.67 
11.23        

(10.80) 
14.65        

(11.57) 
26.14        

(14.10) 
29.84 

31.48    
(30.16) 

42.33        
(32.89) 

71.82 
(39.69) 

1.5 6.17 
6.39         

(6.23) 

7.47     

(6.52) 

10.55        

(7.21) 
6.54 

6.84         

(6.64) 

8.71         

(7.08) 

14.92        

(8.31) 
16.55 

17.65    

(16.72) 

23.75        

(18.22) 

42.13 

(22.32) 

1.75 4.81 
4.95         

(4.86) 

5.76         

(5.04) 

7.87         

(5.58) 
4.58 

4.76         

(4.59) 

5.89        

(4.85) 

9.55         

(5.63) 
9.91 

10.41    

(10.05) 

14.38        

(10.91) 

26.23      

(13.51) 

2.00 3.95 
4.05         

(3.98) 

4.66         

(4.11) 

6.29         

(4.50) 
3.44 

3.58         

(3.46) 

4.35         

(3.64) 

6.75         

(4.16) 
6.39 

6.75         

(6.43) 

9.27         

(7.03) 

16.97        

(8.60) 

2.25 3.33 
3.42         

(3.36) 

3.90         

(3.47) 

5.19         

(3.80) 
2.75 

2.85         

(2.76) 

3.40         

(2.90) 

5.04         

(3.27) 
4.38 

4.65         

(4.45) 

6.23         

(4.82) 

11.42        

(5.84) 

2.5 2.87 
2.96         

(2.90) 
3.36         

(3.00) 
4.39         

(3.27) 
2.29 

2.37         
(2.30) 

2.78         
(2.41) 

3.99         
(2.68) 

3.23 
3.41       

(3.26) 
4.46         

(3.50) 
8.13         

(4.25) 

2.75 2.51 
2.59         

(2.53) 

2.95         

(2.62) 

3.82         

(2.86) 
1.96 

2.02         

(1.97) 

2.34         

(2.05) 

3.29         

(2.27) 
2.50 

2.62         

(2.52) 

3.39         

(2.68) 

5.99         

(3.17) 

3.00 2.20 
2.27         

(2.22) 
2.61         

(2.30) 
3.36         

(2.53) 
1.72 

1.77         
(1.74) 

2.03         
(1.80) 

2.80         
(1.98) 

2.00 
2.11        

(2.03) 
2.65         

(2.16) 
4.49         

(2.52)         109.76 
111.63       

(108.29) 

127.36 

(113.44) 

160.09    

(125.34) 
146.73 

149.25 

(149.15) 

169.07 

(152.51) 

210.92     

(164.78) 
208.92 

210.67 

(209.54) 

234.00       

(213.85) 

275.59 

(229.53)         5.85 
6.05         

(5.91) 

7.08         

(6.15) 

9.98         

(6.88) 
6.31 

6.60         

(6.37) 

8.40 

(6.785) 

14.34        

(8.05) 
15.67 

16.57        

(15.84) 

22.43        

(17.26) 

39.29 

(21.03)         2.73 
2.81         

(2.75) 
3.21         

(2.85) 
4.19         

(3.14) 
2.18 

2.25         
(2.19) 

2.64         
(2.29) 

3.78         
(2.55) 

3.03 
3.20         

(3.07) 
4.18         

(3.29) 
7.51         

(3.95)         57.80 
58.84 

(57.10) 

67.22 

(59.80) 

85.03 

(66.08) 
76.52 

77.92    

(77.76) 

88.73        

(79.65) 

112.63 

(86.42) 
112.30 

113.62     

(112.69) 

128.22       

(115.56) 

157.44     

(125.28)         4.29 
4.43         

(4.33) 
5.14         

(4.50) 

7.09         
(4.97) 

 

4.24 
4.43         

(4.28) 
5.52         

(4.54) 
9.06         

(5.30) 
9.35 

9.89         
(9.45) 

13.31        
(10.28) 

23.40        
(12.49)         39.44 

40.16 

(38.98) 

45.88 

(40.81) 

58.09        

(45.09) 
51.74 

52.70     

(52.57) 

60.04     

(53.86) 

76.35       

(58.46) 
75.87 

76.81        

(76.15) 

86.87 

(78.14) 

107.46 

(84.84) 

 
    3.4733     3.2957     3.2253 

 

 

 

 

 

 

 

 

 

 



Table 2: The     and      profiles of the HWMA  ̅  scheme in Case U when (m,n)=(100,5),   *0,1,2,3+,   *0,1,2,3+,   =1 and (   )   (0.1, 3.320) for  =1 (and  =4 in parentheses)  

    = 0     = 0  

Shift   = 0   = 1   = 2    = 3   = 0   = 1   = 2    = 3 

0.00 498.45 
500.10       

(501.16) 
497.37       

(499.49) 
 500.00      
(500.22) 

498.14 
497.07 

(504.52) 
498.96 

(503.58) 
502.74 

(498.23) 

0.25 138.98 
242.28       

(171.32) 

297.41       

(195.76) 

336.46       

(220.06) 
135.46 

232.62 

(163.09) 

292.43 

(190.88) 

331.67 

(216.05) 

0.5 35.75 
69.70        

(43.71) 
103.98       
(51.94) 

140.82       
(60.49) 

35.07 
66.17 

(42.11) 
99.34 

(51.07) 
135.18 
(58.84) 

0.75 17.44 
32.15        

(21.17) 

46.79        

(24.77) 

62.07        

(28.26) 
16.96 

31.50 

(20.59) 

44.85 

(24.19) 

59.77 

(27.80) 

1.00 10.57 
19.28        

(12.83) 

27.42        

(14.97) 

35.68        

(17.09) 
10.32 

18.64 
(12.52) 

26.88 
(14.52) 

34.53 
(16.72) 

1.25 7.31 
13.09        
(8.76) 

18.63        
(10.21) 

24.00        
(11.71) 

7.04 
12.79 

(8.51) 

18.04 

(9.99) 

23.26 

(11.29) 

1.5 5.49 
9.61         

(6.51) 

13.56        

(7.57) 

17.45        

(8.59) 
5.26 

9.23 

(6.30) 

13.22 

(7.27) 

16.99 

(8.31) 

1.75 4.38 
7.42         

(5.16) 
10.44        
(5.90) 

13.32        
(6.69) 

4.14 
7.10 

(4.92) 
10.11 
(5.3) 

12.94 
(6.45) 

2.00 3.62 
6.01         

(4.24) 

8.28         

(4.83) 

10.55        

(5.43) 
3.41 

5.77 

(4.00) 

8.01 

(4.60) 

10.41 

(5.19) 

2.25 3.10 
5.03         

(3.59) 
6.94         

(4.08) 
8.70         

(4.54) 
2.88 

4.77 
(3.37) 

6.60 
(3.84) 

8.39 
(4.32) 

2.5 2.67 
4.31         

(3.11) 

5.86         

(3.50) 

7.31         

(3.94) 
2.50 

4.06 

(2.90) 

5.57 

(3.30) 

7.08 

(3.71) 

2.75 2.33 
3.76         

(2.73) 

5.05         

(3.10) 

6.30         

(3.44) 
2.20 

3.54 

(2.56) 

4.80 

(2.90) 

6.03 

(3.22) 

3.00 2.04 
3.34         

(2.42) 
4.44         

(2.75) 
5.51         

(3.06) 
1.97 

3.11 

(2.29) 

4.21 

(2.59) 

5.24 

(2.84)         50.68 
90.85        

(62.26) 

118.90       

(71.86) 

143.76    

(81.47) 
49.45 

87.23 

(59.58) 

115.88 

(70.17) 

140.29 

(79.85)         5.20 
9.03         

(6.16) 
12.73        
(7.13) 

16.33        
(8.10) 

4.96 
8.72 

(5.93) 
12.35 
(6.87) 

15.90 
(7.81)         2.54 

4.11         

(2.96) 

5.57         

(3.36) 

6.95         

(3.75) 
2.39 

3.87 

(2.78) 

5.30 

(3.16) 

6.69 

(3.52)         27.94 
49.94        

(34.21) 

65.82        

 (39.49) 

80.04        

(44.79) 
27.21 

47.98 
(32.76) 

64.11 
(38.52) 

78.09 
(43.83)         3.87 

6.57         

(4.56) 

9.15         

(5.24) 

11.64        

(5.92) 
3.68 

6.30 

(4.36) 

8.82 

(5.02) 

11.29 

(5.67)         19.47 
34.67        

(23.80) 

45.73        

(27.44) 

55.68        

(31.11) 
18.93 

33.28 

(22.76) 

44.51 

(26.73) 

54.29 

(30.40) 

 

 

 

 

 

 

 

 

 

 



Table 3: ARL profiles for the HWMA  ̅  monitoring scheme for different continuous distributions 

when    0.1 for a nominal      value of 500 

  Shift ( ) 

m    Distribution 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

20 3.4733 

N(0,1) 500.7 311.1 88.3 26.5 13.1 8.5 6.2 4.8 4.0 3.3 2.9 2.5 2.2 

t(5) 203.8 141.6 58.6 23.5 12.3 8.0 5.9 4.6 3.7 3.2 2.7 2.4 2.1 

t(10) 330.2 217.0 73.2 24.6 12.8 8.3 6.1 4.8 3.9 3.3 2.8 2.5 2.2 

t(20) 417.2 260.4 83.0 26.7 12.9 8.4 6.2 4.8 3.9 3.3 2.9 2.5 2.2 

GAM(1,1) 313.5 253.5 103.9 32.9 12.7 8.1 5.8 4.6 3.7 3.1 2.7 2.4 2.1 

GAM(3,1) 426.3 314.4 110.0 29.9 13.4 8.5 6.1 4.8 3.9 3.3 2.8 2.5 2.2 

GAM(10,1) 477.5 334.6 103.0 29.3 13.4 8.5 6.2 4.8 4.0 3.3 2.9 2.5 2.2 

DEXP(0,1) 220.3 183.3 108.8 52.8 26.5 15.9 10.8 8.1 6.4 5.3 4.5 3.9 3.4 

100 3.3200 

N(0,1) 498.5 139.0 35.8 17.4 10.6 7.3 5.5 4.4 3.6 3.1 2.7 2.3 2.0 

t(5) 237.7 101.6 32.9 16.3 9.9 6.9 5.2 4.1 3.5 2.9 2.5 2.2 1.9 

t(10) 370.5 123.7 34.8 17.0 10.4 7.2 5.4 4.3 3.6 3.1 2.6 2.3 2.0 

t(20) 437.8 132.9 35.4 17.3 10.5 7.3 5.5 4.4 3.6 3.1 2.7 2.3 2.0 

GAM(1,1) 292.5 82.7 29.6 15.4 9.6 6.6 5.0 4.0 3.4 2.9 2.5 2.2 1.9 

GAM(3,1) 411.6 107.0 33.2 16.7 10.3 7.1 5.3 4.3 3.5 3.0 2.6 2.3 2.0 

GAM(10,1) 472.4 122.1 34.5 17.2 10.6 7.3 5.5 4.4 3.6 3.1 2.7 2.3 2.1 

DEXP(0,1) 250.2 150.7 58.9 29.3 17.8 12.2 8.9 7.0 5.7 4.7 4.1 3.6 3.2 

          
(i.e. Case K) 

2.9380 

N(0,1) 499.3 81.2 28.4 14.9 9.3 6.5 5.0 4.0 3.3 2.8 2.5 2.1 1.9 

t(5) 276.4 78.1 28.6 15.0 9.4 6.6 5.0 4.0 3.3 2.8 2.5 2.1 1.9 

t(10) 395.7 80.5 28.6 15.0 9.4 6.6 5.0 4.0 3.3 2.8 2.5 2.1 1.9 

t(20) 451.9 80.8 28.5 14.9 9.4 6.6 5.0 4.0 3.3 2.8 2.5 2.1 1.9 

GAM(1,1) 298.6 66.7 27.6 15.0 9.5 6.7 5.1 4.0 3.4 2.9 2.5 2.2 2.0 

GAM(3,1) 399.7 71.3 27.9 14.9 9.4 6.6 5.0 4.0 3.4 2.9 2.5 2.2 1.9 

GAM(10,1) 466.1 75.5 28.1 14.9 9.4 6.6 5.0 4.0 3.3 2.9 2.5 2.2 1.9 

DEXP(0,1) 301.4 119.4 48.5 26.0 16.5 11.4 8.5 6.7 5.4 4.6 4.0 3.5 3.1 

 

  



Table 4: Performance comparison of the HWMA  ̅  scheme with the EWMA  ̅ , CUSUM  ̅  and GWMA  ̅  schemes in Case U when  =0.1, 

m=100, n=5,    {0, 0.2, 0.5, 0.9} for a nominal      value of 500 

Shift 

CUSUM  ̅  scheme EWMA  ̅   scheme GWMA  ̅  scheme HWMA  ̅  scheme     0.125 and     6.7289     2.9384 and    = 0.1     3.3356,    0.5 and   = 0.9     3.3200 and   = 0.1   = 0   = 0.2   = 0.5   = 0.9   = 0   = 0.2   = 0.5   = 0.9   = 0   = 0.2   = 0.5   = 0.9   = 0   = 0.2   = 0.5   = 0.9 

0.00 
503.24 499.77 

(501.90) 
498.07 

(501.77) 
502.76 

(500.25) 
495.71 492.42 

(500.87) 
501.15 

(499.63) 
495.15 

(499.04) 
498.96 499.63       

(508.96) 
494.92       

(499.94) 
497.89       

(502.55) 
498.45 501.17 

(498.72) 
501.76 

(500.13) 
500.92 

(499.21) 

0.25 
222.43 239.91 

(107.15) 
259.33 

(227.72) 
290.97 

(268.37) 
171.74 174.86 

(171.26) 
204.30 

(178.49) 
264.51 

(197.76) 
149.03 150.57       

(147.11) 
177.97       

(156.37) 
229.92       

(171.15) 
138.98 146.10 

(142.44) 

169.31 

(145.79) 

225.00 

(162.78) 

0.50 
46.79 55.28 

(49.55) 

61.70 

(54.29) 

81.21 

(63.23) 

37.36 38.99 

(38.09) 

48.42 

(40.03) 

74.58 

(45.99) 

39.17 40.53        

(39.27) 

47.97        

(41.37) 

68.96        

(45.83) 
35.75 36.88 

(35.86) 

43.85 

(37.73) 

63.22 

(42.68) 

0.75 
18.64 29.42 

(14.79) 

30.59 

(20.07) 

39.13 

(29.04) 
15.64 16.364 

(15.98) 

19.85 

(16.73) 

29.24 

(19.06) 

18.79 19.48        

(19.14) 

23.01        

(19.79) 

32.03        

(22.11) 

17.44 18.07 

(17.58) 

21.21 

(18.31) 

29.4 

(20.40) 

1.00 
18.56 21.68 

(12.22) 

29.04 

(14.99) 

37.33 

(18.08) 
9.11 9.44 

(9.20) 

11.26 

(9.67) 

16.06 

(10.78) 

11.39 11.99        

(11.51) 

13.87        

(12.01) 

19.22        

(13.39) 

10.57 10.95 

(10.72) 

12.78 

(11.14) 

17.68 

(12.41) 

1.25 
13.18 14.14 

(11.14) 
19.43 

(12.35) 
23.12 

(14.02) 
6.15 6.35 

(6.17) 

7.48 

(6.49) 

10.42 

(7.18) 

7.75 8.02         
(7.79) 

9.40         
(8.14) 

13.07        
(9.09) 

7.31 7.58 
(7.39) 

8.78 
(7.68) 

12.02 
(8.50) 

1.50 
11.69 11.94       

(8.57) 

12.74 

(9.92) 

14.67 

(10.99) 
4.52 4.64 

(4.54) 

5.43 

(4.74) 

7.45 

(5.27) 

5.62 5.85         

(5.68) 

6.85         

(5.94) 

9.46         

(6.61) 

5.49 5.66 

(5.53) 

6.53 

(5.76) 

8.85 

(6.37) 

1.75 
9.11 10.15    

(7.26) 

10.47        

(8.27) 

16.98 

(10.53) 
3.50 3.61 

(3.52) 

4.20 

(3.67) 

5.74 

(4.07) 

4.31 4.47         

(4.37) 

5.26         

(4.57) 

7.25         

(5.08) 

4.38 4.49 

(4.40) 

5.17 

(4.57) 

6.90 

(5.01) 

2.00 
8.66 9.25       

(6.76) 

9.94       

(8.05) 

13.62 

(9.84) 
2.83 2.91 

(2.85) 

3.38 

(2.96) 

4.55 

(3.27) 

3.44 3.55         

(3.49) 

4.18         

(3.63) 

5.72         

(4.02) 

3.62 3.73 

(3.64) 

4.24 

(3.78) 

5.58 

(4.12) 

2.25 
7.33 7.83        

(6.30) 
8.87         

(7.11) 
9.38 

(8.51) 
2.36 2.44 

(2.39) 

2.81 

(2.48) 

3.77 

(2.72) 

2.83 2.93         
(2.84) 

3.42         
(2.97) 

4.70         
(3.30) 

3.10 3.16 
(3.09) 

3.59 
(3.21) 

4.67 
(3.50) 

2.50 
6.92 7.25         

(5.61) 

7.56 

(6.90) 

9.18 

(8.03) 
2.03 2.08 

(2.04) 

2.39 

(2.12) 

3.19 

(2.31) 

2.38 2.45         

(2.39) 

2.85         

(2.49) 

3.87         

(2.76) 

2.67 2.75 

(2.69) 

3.11 

(2.78) 

4.02 

(3.02) 

2.75 
5.82 6.85         

(5.00) 

7.26         

(6.15) 

8.25 

(7.27) 
1.77 1.82       

(1.79) 

2.07 

(1.84) 

2.74      

(2.02) 

2.03 2.10         

(2.05) 

2.42         

(2.13) 

3.32         

(2.34) 

2.33 2.40 

(2.35) 

2.73 

(2.44) 

3.51 

(2.65) 

3.00 
5.70 6.07         

(4.26) 

6.37 

(4.53) 

7.10 

(5.55) 

1.58 1.62       

(1.59) 

1.84       

(1.64) 

2.40      

(1.78) 

1.77 1.83         

(1.79) 

2.11         

(1.86) 

2.88         

(2.04) 

2.04 2.12 

(2.06) 

2.42 

(2.14) 

3.13 

(2.35)         76.61 86.57 

(45.93) 

95.17 

(79.27) 

112.16 

(94.68) 

58.46 59.91 

(58.63) 

70.96 

(61.23) 

96.10 

(68.40) 

54.60 55.64        

(54.26) 

65.70        

(57.38) 

87.53        

(63.12) 

50.68 53.00 

(51.65) 

61.79 

(53.24) 

83.83 

(59.57)         10.66 11.37  

(8.43) 

13.15 

(9.65) 

17.10 

(11.15) 

4.25 4.38       

(4.27) 

5.12 

(4.47) 

7.04      

(4.95) 

5.28 5.47         

(5.33) 

6.43         

(5.57) 

8.87         

(6.20) 

5.20 5.37 

(5.24) 

6.18 

(5.45) 

8.34 

(6.00)         6.44 7.00         

(5.29) 

7.52         

(6.17) 

8.48      

(7.34) 

1.93 1.99       

(1.95) 

2.28 

(2.02) 

3.03      

(2.21) 

2.25 2.33         

(2.27) 

2.70         

(2.36) 

3.69         

(2.61) 

2.54 2.61 

(2.55) 

2.96 

(2.64) 

3.83 

(2.88)         43.63 48.97 

(27.18) 

54.16 

(44.46) 

64.63 

(53.01) 

31.35 32.15 

(31.45) 

38.04 

(32.85) 

51.57 

(36.67) 

29.94 30.56        

(29.80) 

36.06        

(31.48) 

48.20        

(34.66) 

27.94 29.18 

(28.45) 

33.98 

(29.35) 

46.08 

(32.78)         8.55 9.19         

(6.86) 

10.33 

(7.91) 

12.79 

(9.34) 

3.09 3.18       

(3.11) 

3.70     

(3.24) 

5.03      

(4.58) 

3.77 3.90         

(3.80) 

4.56         

(3.97) 

6.28         

(4.40) 

3.87 3.99 

(3.89) 

4.57 

(4.05) 

6.09       

(4.44)         31.24 34.98        

(19.88) 

38.61 

(31.70) 

45.91 

(37.79) 

21.55 22.09 

(21.62) 

26.12 

(22.57) 

35.39 

(25.18) 

20.71 21.15        

(20.62) 

24.94        

(21.77) 

33.37        

(23.98) 

19.47 20.32 

(19.81) 

23.64 

(20.44) 

32.00 

(22.82) 

 



Table 5: Illustration of the implementation of the HWMA  ̅  scheme using the yogurt cup filling data          
        

        
        

        
        

        
        

        
        

  ̅    ̿                   Signal 

1 124.9 125.9 125.2 124.6 124.8 124.8 125.9 124.8 124.1 124.4 124.94 124.90 124.90 124.78 125.02 No 

2 124.9 125.5 124.1 125.2 125.0 125.2 125.0 123.9 125.2 125.6 124.96 124.94 124.94 123.85 125.95 No 

3 125.1 125.2 125.4 122.9 125.4 125.1 124.8 125.3 122.4 125.4 124.70 124.95 124.93 124.16 125.65 No 

4 126.1 124.6 125.7 126.4 124.9 125.9 124.8 125.5 126.5 125.7 125.61 124.87 124.94 124.29 125.51 No 

5 125.8 122.6 124.1 126.1 124.9 125.7 122.6 123.5 126.3 125.0 124.66 125.05 125.01 124.37 125.43 No 

6 125.0 125.5 124.8 124.9 124.8 125.2 124.8 125.0 124.8 124.2 124.90 124.97 124.97 124.42 125.38 No 

7 124.2 125.8 125.4 126.4 125.1 124.6 125.3 125.5 126.2 125.2 125.37 124.96 125.00 124.46 125.34 No 

8 124.9 123.8 125.1 124.0 124.4 124.9 123.2 125.3 124.5 124.2 124.43 125.02 124.96 124.49 125.31 No 

9 125.9 124.4 126.3 124.9 125.2 125.8 124.8 125.7 125.2 125.1 125.33 124.95 124.98 124.51 125.29 No 

10 124.2 126.2 125.6 124.4 124.1 124.3 125.5 125.0 124.4 124.3 124.80 124.99 124.97 124.53 125.27 No 

11 123.7 123.4 124.7 123.1 123.1 123.6 123.3 124.8 123.1 122.8 123.56 124.97 124.83 124.55 125.25 No 

12 124.0 122.6 123.6 124.4 123.6 124.1 122.4 123.6 124.5 123.1 123.59 124.84 124.72 124.57 125.24 No 

13 122.0 123.9 123.7 124.3 121.9 122.5 124.0 124.1 124.4 122.9 123.37 124.74 124.60 124.58 125.22 No 

14 122.4 122.8 123.7 123.7 122.8 123.0 123.1 124.2 124.1 123.1 123.29 124.63 124.50 124.59 125.21 Yes 

15 123.9 124.1 123.4 123.1 124.5 123.6 124.5 122.9 123.1 125.1 123.82 124.54 124.46 124.60 125.20 Yes 

16 121.9 123.4 123.5 125.3 123.3 122.3 123.3 123.3 125.5 123.6 123.54 124.49 124.39 124.61 125.19 Yes 

17 123.3 123.6 124.2 123.4 123.5 122.9 123.5 123.8 123.6 123.4 123.52 124.43 124.34 124.62 125.19 Yes 

18 122.0 123.6 124.7 122.6 124.5 122.2 123.4 125.0 122.5 123.9 123.44 124.38 124.28 124.62 125.18 Yes 

19 124.0 123.1 123.9 122.6 124.2 123.9 123.4 124.5 122.8 123.5 123.59 124.32 124.25 124.63 125.17 Yes 

20 125.5 122.2 123.2 123.2 123.2 124.9 122.3 123.2 123.3 123.2 123.42 124.29 124.20 124.64 125.17 Yes 

 

 

 

 



 

  
r=1 r=4 

Figure 1:      profiles for the HWMA  ̅  scheme when  =0.1,  =0.5 and m {20,40,100, } 

 

 

  
r=1 r=4 

Figure 2:      profiles for the HWMA  ̅  scheme when m=100,  =0.5 and   {0.1,0.5,0.9} 

 

 

 

 

 

0,25 0,5 0,75 1 1,25 1,5 1,75 2

m=20 336,2 118,8 37,99 16,47 10,43 7,47 5,76 4,66

m=40 261 65,81 24,86 14,35 9,55 7,02 5,47 4,48

m=100 169,3 43,85 21,21 12,78 8,78 6,53 5,17 4,24

m=∞ 95,07 34,15 17,89 11,21 7,77 5,87 4,67 3,87
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(a)      (b)       

Figure 3:      and       profiles for the HWMA  ̅  scheme when m=100,  =0.9,  =0.9 and   {1,2,3,4,5} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,25 0,5 0,75 1 1,25 1,5 1,75 2

r = 1 421,5 275,2 161,5 92,68 55,85 34,33 21,92 14,64

r = 2 402,7 239,1 129,0 70,46 39,71 23,94 14,86 9,90

r = 3 391,7 225,3 118,1 60,99 34,84 20,56 12,96 8,56

r = 4 388,6 214,4 109,7 58,26 32,12 18,71 11,77 7,78

r = 5 385,0 209,7 107,3 55,61 30,49 17,91 11,15 7,36

0

50

100

150

200

250

300

350

400

450

A
R

L
1
 

Shift 

r = 1 r = 2 r = 3 r = 4 r = 5

0,25 0,5 0,75 1 1,25 1,5 1,75 2

r = 1 416,4 259,1 147,7 87,31 52,28 32,56 21 14,17

r = 2 401,9 256,3 144,7 81,06 44,80 26,18 14,87 9,85

r = 3 386,0 243,9 129,3 69,25 38,47 22,24 13,26 8,34

r = 4 378,9 202,3 102,6 54,3 30,54 18,26 11,49 7,69

r = 5 375,7 200,8 101,6 53,80 30,45 18,15 11,33 7,01
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Figure 4:           values of the HWMA  ̅  scheme for different values of   and   when        (100,5) 
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Figure 5:           values of the HWMA  ̅  scheme for different values of   and    0.1 

when       (100, 5) 
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Figure 6: Case U marginal             of the HWMA  ̅  scheme when    0.1 and   {0.2,0.5,0.9} 
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Figure 7: Illustrative example of the HWMA  ̅ 
 scheme using the yogurt cup filling data 

 

 

 

 

 

 

 

 

 

 

Figure 1:      profiles for the HWMA  ̅  scheme when  =0.1,  =0.5 and 
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