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The effect of measurement errors on the performance of the homogenously weighted moving average ̅ monitoring scheme with estimated parameters

Introduction

Any efficient monitoring scheme needs to be able to distinguish between two sources of variation, i.e. the common (or chance) causes and the assignable (or special) causes of variation. When the process runs in the presence of common causes only, the process is considered to be in-control (IC); otherwise, the process is said to be out-of-control (OOC). In statistical process monitoring (SPM), when practitioners are interested in monitoring smallto-moderate shifts in the process parameters, popular memory-type monitoring schemes such as the cumulative sum (CUSUM) or the exponentially weighted moving average (EWMA) can be used, see for instance the SPM books by [START_REF] Montgomery | Statistical Quality Control: A Modern Introduction[END_REF][START_REF] Qiu | Introduction to Statistical Process Control[END_REF][START_REF] Aslam | Introduction to Statistical Process Control[END_REF]. While the majority of the SPM literature and the latter books discuss monitoring schemes based on simple random sampling (SRS), there are other memory-type schemes based on structured sampling strategies, like the ranked set sampling (RSS); see for instance [START_REF] Noor-Ul-Amin | Enhancing the performance of exponential weighted moving average control chart using paired double ranked set sampling[END_REF][START_REF] Awais | An EWMA chart for monitoring the process mean[END_REF]. Another memory-type scheme that is gaining some interest among SPM researchers is the generally weighted moving average (GWMA) schemes which is essentially an EWMA scheme with an additional adjustment design parameter (i.e. the GWMA scheme is slightly more complex than the EWMA scheme); see the review paper by [START_REF] Mabude | Generally weighted moving average monitoring schemes -Overview and Perspectives[END_REF]. However, [START_REF] Mabude | Generally weighted moving average monitoring schemes -Overview and Perspectives[END_REF] noted that, although the GWMA scheme has a better performance than the EWMA scheme, its statistical design is more complicated than that of the EWMA scheme.

More recently, Abbas [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF] developed a new memory-type scheme called the homogeneously weighted moving average (HWMA) monitoring scheme. The HWMA scheme is an improvement of the EWMA scheme in terms of the statistical design simplicity and OOC performance. That is, the recent and past observations used to compute the charting statistics of the EWMA scheme have a geometrically decreasing weight structure from the most recent observation to the previous ones. However, the HWMA scheme allocates a specific weight to the current observation and equal weights for all previous observations. In essence, the charting statistics of the HWMA control chart overcome the problem of varying weights in a geometrically decreasing manner that is associated with the EWMA chart (and by extension, the GWMA scheme).

So far in the SPM literature, there are ten publications discussing the HWMA-type monitoring schemes, see [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF][START_REF] Adegoke | Efficient homogeneously weighted moving average chart for monitoring process mean using an auxiliary variable[END_REF][START_REF] Nawaz | Monitoring the process location by using new ranked set sampling based memory control charts[END_REF][START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF][START_REF] Adeoti | A hybrid homogeneously weighted moving average control chart for process monitoring[END_REF][START_REF] Abid | A mixed HWMA-CUSUM mean chart with an application to manufacturing process[END_REF][START_REF] Dawod | Efficient linear profile schemes for monitoring bivariate correlated processes with applications in the pharmaceutical industry[END_REF][START_REF] Adegoke | A multivariate homogeneously weighted moving average control chart[END_REF][START_REF] Abbas | On the efficient monitoring of multivariate processes with unknown parameters[END_REF][START_REF] Raza | On designing distribution-free homogeneously weighted moving average control charts[END_REF]. That is, Abbas [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF] proposed a new HWMA ̅ scheme to monitor the process mean and derived its run-length properties. Next, [START_REF] Adegoke | Efficient homogeneously weighted moving average chart for monitoring process mean using an auxiliary variable[END_REF] developed the HWMA ̅ scheme that uses auxiliary information variable in the form of a regression estimator. Thereafter, [START_REF] Nawaz | Monitoring the process location by using new ranked set sampling based memory control charts[END_REF] discussed the HWMA ̅ scheme that uses structured sampling methods based on RSS. The double (and hybrid) HWMA ̅ schemes which involve the use of two smoothing parameters were introduced by [START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF] and [START_REF] Adeoti | A hybrid homogeneously weighted moving average control chart for process monitoring[END_REF], respectively. Next, [START_REF] Abid | A mixed HWMA-CUSUM mean chart with an application to manufacturing process[END_REF] proposed the mixed HWMA-CUSUM scheme where the HWMA statistic is used as an input of the CUSUM scheme. Dawod et al. [START_REF] Dawod | Efficient linear profile schemes for monitoring bivariate correlated processes with applications in the pharmaceutical industry[END_REF] proposed the HWMA scheme to monitor linear profiles using a Bayesian estimation approach. A multivariate HWMA scheme for monitoring the process mean vector when parameters are either known or unknown are discussed in [START_REF] Adegoke | A multivariate homogeneously weighted moving average control chart[END_REF] and [START_REF] Abbas | On the efficient monitoring of multivariate processes with unknown parameters[END_REF], respectively. Finally, [START_REF] Raza | On designing distribution-free homogeneously weighted moving average control charts[END_REF] proposed two nonparametric HWMA schemes based on the sign and Wilcoxon signed-rank statistics for monitoring location parameters in the case of skewed and symmetric distributions, respectively.

The majority of the monitoring schemes are typically based on the assumption of known process parameters (henceforth denoted as Case K). However, in many real-life applications, the process parameters are unknown (henceforth denoted as Case U). The Case U scenario requires monitoring schemes to be applied in a two-phase approach, i.e. Phase I and Phase II; see for instance [START_REF] Mehmood | On the performance of ̅ control chart for known and unknown parameters supplemented with runs rules under different probability distributions[END_REF][START_REF] Xl | Conditional design of the CUSUM median chart for the process position when process parameters are unknown[END_REF][START_REF] Mehmood | Generalized skewness correction structure of ̅ control chart for unknown process parameters and skewed probability distributions[END_REF]. In Phase I, monitoring schemes are implemented retrospectively in order to estimate the distribution parameters using an IC reference sample. However, in Phase II, monitoring schemes are implemented prospectively to continuously monitor any departures from an IC state using the parameters estimated in Phase I. It is well-known that parameter estimation significantly degrades the sensitivity of a monitoring scheme. Therefore, it is very important to investigate the performance of the existing and new monitoring schemes under the assumption of unknown process parameters. Other recent contributions to parameter estimation effect can be found in the review paper by [START_REF] Does | On the design of control charts with guaranteed conditional performance under estimated parameters[END_REF].

All the above mentioned HWMA ̅ schemes assume that measurements on observations are exact and thus, only a single measurement on each observation is taken. However, exact measurements almost do not exist in real-life applications, because as stated in the review paper by [START_REF] Maleki | Measurement errors in statistical process monitoring: A literature review[END_REF]: "… wherever there is a human involvement, an exact measurement is a rare phenomenon in any manufacturing and service environment; hence a difference between the real quantities and the measured ones will always exist even with highly sophisticated advanced measuring instruments". Therefore, in this paper, the performance of the HWMA ̅ scheme is investigated under the Case U assumption, with and without measurement errors, when the underlying observations follow normal or non-normal distributions. The covariate error model with a constant and a linearly increasing variance are both used to model the measurement errors. In the review paper by [START_REF] Maleki | Measurement errors in statistical process monitoring: A literature review[END_REF], it is stated that the most used remedial approach to counteract measurement errors is the multiple measurements approach proposed by [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF]; hence, in this paper, this strategy is also implemented. Multiple measurements approach involves taking at least two measurements (i.e.

2) for each sampled unit, which effectively reduces the effect of the measurement errors. For other recent works on measurement errors in the SPM context, see [START_REF] Cheng | VSSI median control chart with estimated parameters and measurement errors[END_REF][START_REF] Tang | The performance of the adaptive EWMA median chart in the presence of measurement error[END_REF][START_REF] Riaz | Auxiliary information based mixed EWMA-CUSUM mean control chart with measurement error[END_REF][START_REF] Shongwe | A combined mixed-s-skip sampling strategy to reduce the effect of autocorrelation on the ̅ scheme with and without measurement errors[END_REF][START_REF] Saha | Side-sensitive modified group runs charts with and without measurement errors for monitoring the coefficient of variation[END_REF][START_REF] Tran | Monitoring coefficient of variation using one-sided run rules control charts in the presence of measurement errors[END_REF][START_REF] Asif | Hybrid exponentially weighted moving average control chart with measurement error[END_REF][START_REF] Noor-Ul-Amin | Performance of maximum EWMA control chart in the presence of measurement error using auxiliary information[END_REF][START_REF] Nguyen | On the effect of the measurement error on Shewhart and EWMA control charts[END_REF].

The rest of this paper is organised as follows: In Section 2, the main properties of the HWMA ̅ scheme without measurement errors under the Cases K and U scenarios are provided.

Section 3 introduces the HWMA ̅ scheme in Case U with measurement errors. The OOC performance of the HWMA scheme and the robustness to non-normality are studied in Section 4. Moreover, the OOC performance of the HWMA scheme is compared to those of the CUSUM, EWMA and GWMA schemes. An illustrative example based on a real-life application is given in Section 5 and some concluding remarks are presented in Section 6. 
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where (0 1) is the smoothing constant and ̿ is the mean of the previous subgroup sample means. The initial value of ̿ (i.e. ̿ ) is typically set to be equal to the target mean . Abbas [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF] showed that (1) can also be written as
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From ( 2), it can be seen that the HWMA ̅ statistic assigns weight to the current sample and a weight is homogeneously (or equally) distributed to the previous samples. Abbas [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF] showed that the mean and variance of the plotting statistic in (1) or ( 2 ). Thus, the HWMA ̅ scheme gives a signal if the plotting statistic in (1) plots beyond the control limits defined in [START_REF] Noor-Ul-Amin | Enhancing the performance of exponential weighted moving average control chart using paired double ranked set sampling[END_REF]; that is, if or . In case the process has been running for a long time (i.e.

), the term . Therefore, the control limits in (4) reduce to the following asymptotic ones
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and, in this case, the process is OOC if or .

Parameters unknown (Case U)

Since it is well-known that the estimation of the process parameters significantly degrades the performance of any monitoring scheme (see [START_REF] Mehmood | On the performance of ̅ control chart for known and unknown parameters supplemented with runs rules under different probability distributions[END_REF][START_REF] Xl | Conditional design of the CUSUM median chart for the process position when process parameters are unknown[END_REF][START_REF] Mehmood | Generalized skewness correction structure of ̅ control chart for unknown process parameters and skewed probability distributions[END_REF][START_REF] Does | On the design of control charts with guaranteed conditional performance under estimated parameters[END_REF]), the investigation of the effect of parameter estimation on the performance of the HWMA ̅ scheme is of great importance. In Case U, the process parameters are estimated in Phase I (using m reference samples each of size n) when the process is deemed to be IC. is an un-biasing constant, see [START_REF] Abbas | Homogeneously weighted moving average control chart with an application in substrate manufacturing process[END_REF].

Therefore, using Phase I estimates in [START_REF] Mabude | Generally weighted moving average monitoring schemes -Overview and Perspectives[END_REF], it follows that the time-varying control limits of the HWMA ̅ scheme used to monitor the process mean in Phase II are given by
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However, the Phase II asymptotic control limits of the HWMA ̅ scheme are given by
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3. Design of the HWMA scheme in Case U under the effect of measurement errors

Covariate error model with a constant variance

Assume that the true value of the quality characteristic defined in Section 2 is only observed through a value { t = 1,2,…; i = 1,2,…, n; j = 1,…, r} described by the expression , where A and B are two constants depending on the measurement system location error; see [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF]. For the sake of simplicity, it is assumed that 0 and 1. Also, denotes the number of measurements taken in each sampled subgroup unit and is a random error due to the measurement error that is distributed independently of ; where is the variance of the measurement system.

Assuming that n observations from the sequence at each sampling point have been collected, the mean
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needs to be calculated. Thus, the plotting statistic of the HWMA scheme in Case U with measurement errors (henceforth denoted by HWMA ̅ scheme) is defined by
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where ̿ is the mean of the previous sample means and hence, (9) can be written as
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The initial value of ̿ (i.e. ̿ ) is set to be equal to the estimated mean ̂ . Thus, the expected value and variance of the plotting statistic defined in (9) are ̂ and (10)
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Let ̂ represents the standardized ratio of the measurement system variability to the process variability; and then in [START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF] 
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The value of is equal to 1 when a standard single measurement is used per sampling unit.

However, as increases, the negative effect of the variance of the measurement error component is reduced; that is, as , then 0. An optimal balance has to be found between and the resources to realise a reasonable outcomethis point is addressed in Section 4.2.

When ̅ is from a perfect measurement system, then = 0, so that 0; otherwise, 0. The time-varying control limits of the HWMA ̅ scheme with -measurements are defined by:
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where is control limit width parameter of the HWMA ̅ scheme with -measurements.

Since the term ̂ when the process has been running for a while, the asymptotic control limits of the HWMA ̅ scheme with -measurements are defined by
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Covariate error model with a linearly increasing variance

In some situations, the measurement error should no longer be considered as being a constant but it should be considered as an increasing function of the mean of the variable , i.e. ̂ , where and are constants; and thus, ̂ ̂ ̂ . One more time, for simplicity, assume A=0 and B=1, then the Phase II time-varying control limits of the HWMA ̅ scheme with -measurements and linearly increasing variance are defined by:
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Similarly, as , then ̂ 0, which means as increases, the negative effect of variance of the measurement error component is reduced. Next, the Phase II asymptotic control limits of the HWMA ̅ scheme with -measurements are defined by:
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To conserve space, in this paper, the focus is on the time-varying case.

Performance of the HWMA ̅ scheme in Case U with measurement errors 4.1 Run-length metrics

The average run-length (ARL), defined as the mean of the run-length (RL) distribution or the average number of rational subgroups plotted on a control chart before it gives a signal for the first time, is the most used RL metric in SPM literature. This metric reveals the degree of the sensitivity of a monitoring scheme towards specific shifts. To compute the RL properties (i.e. the ARL and the standard deviation of the RL (SDRL)), in this paper, the Monte Carlo simulations approach using SAS v9.4 are used. Note that in addition to the latter, the expected ARL (EARL) metric is also used to investigate the performance over a range of shifts. The EARL is mathematically defined by

∑ ( 15 
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where and are the lower and upper bound of the shift ( ) parameter, respectively, is the ARL value for a specific shift and represents the number of increments between and . Thus, the values denoted by , , , , and are used to investigate the performance of the HWMA ̅ scheme for small ( ), moderate ( ), large ( ), small-to-moderate ( ), moderate-to-large ( ) and small-to-large ( ) shifts, respectively.

Sensitivity analysis

In this section, the effects of both parameter estimation and measurement errors on the performance of the HWMA ̅ scheme (under the assumption of normality) are investigated in terms of the ARL and SDRL profiles for specific shifts and EARL profile for different ranges of shifts. Table 1 presents the ARL and EARL profiles of the HWMA ̅ scheme for Case U when 20, 0.1, 0.5, 0.9 , 0, 0.2, 0.5, 0.9 and 1 & 4 for a nominal of 500. From Table 1, the following is observed:

 Measurement errors have a negative effect on the sensitivity of the HWMA ̅ scheme, which means the higher the value of , the higher the values of the profile. For instance, when =0.1, =1 and =0.25, if 0, 0.2, 0.5 and 0.9, the HWMA ̅ scheme is expected to give a signal on the 311 th , 313 th , 336 th and 371 th sampling points, respectively.

 When is kept fixed, the HWMA ̅ scheme is more sensitive to small values of , see for example the values, where =0.1 yields the best performance than equal to 0.5 and 0.9, for each . For small-to-moderate (i.e.

), moderate-tolarge (i.e. ) as well as from small-to-large (i.e.

) shifts, the HWMA ̅ scheme performs better for small shifts and small values of . For instance, when =0.5 and =1, for 0.1, 0.5 and 0.9, the HWMA ̅ scheme is expected to give the first signal on the 16 th , 29 th and 78 th subgroups when =1, respectively.

 Multiple measurements have a positive impact on the sensitivity of the HWMA ̅ scheme. For instance, for =0.1, =0.9 and =0.25, when =1, the OOC ARL (denoted as ) is equal to 371.62; however, when =4, the is reduced to 336.03. This shows that a multiple measurements strategy reduces the negative effect of measurement errors.  The design parameter decreases as increases; which means, the larger the smoothing parameter, the narrower the control limits.

<Insert Table 1 here>

As Table 1 is The effect of increasing r on the ARL and SDRL profiles is illustrated in Figure 3. It is shown that, in general, as r increases the corresponding and the OOC SDRL (denoted by

) values decrease at a slow rate. Also, the sensitivity pattern of the profiles is similar to the one of the .

<Insert Figure 3 here> Table 1 and Figures 1 to 3, show that when and are both large with a small value of m, the combined effect of measurement errors and parameter estimation significantly deteriorates the sensitivity of the HWMA ̅ scheme. Hence, the smaller the values of and , with a large value of m, yields a better HWMA ̅ scheme performance. Also, when is kept fixed and 100, the HWMA ̅ scheme performs better for small value of ; however, for large shifts, the sensitivity of the HWMA ̅ scheme increases in the interval 0 0.5 and decreases in the interval 0.5 1. Finally, when 0 and 100, the sensitivity of the HWMA ̅ scheme increases in the interval 0 0.5 and decreases in the interval 0.5 1 regardless of the size of the mean shift; however, when , it is more sensitive for small values of regardless of the size of the shift in the process mean.

For ease in studying the sensitivity of proposed scheme, the following comparison metrics are defined:

i. As measurement errors are known to have a negative effect on the sensitivity of a monitoring scheme, it is therefore important to investigate the percentage decrease in the performance of the proposed scheme for specific ( 0) values compared to the case with perfect measurements (i.e. 0) when both and are fixed. Thus, the criterions quantifying the percentage decrease and its expected value are denoted as and ̅ , respectively, and they are computed using the following formulas:

and

̅ ∑
where ( ) is the OOC ARL value of the HWMA ̅ scheme for a specific shift when 0 and ( ) is the OOC ARL value for a specific shift when 0.

ii. Multiple measurements help to reduce the negative effect of measurement errors. For a specific ( 0) with 1-measurement (i.e. 1), there is a decrease in the performance of a monitoring scheme. However, if the values of (where 0) and are fixed and increases (i.e. 1), they will be gain (or increase) in the performance compared to the situation where a single measurement is used under the same value of . Thus, the percentage increase in the performance and its expected value denoted as and ̅ , respectively, can be computed in a similar way using the following formula:

| | and ̅ ∑
where ( ) is the OOC ARL value of the HWMA ̅ scheme for a specific shift when 1 and ( ) is the OOC ARL value for a specific shift when 1.

Figure 4 displays the values when and are fixed for different values of while Figure 5 displays the values when and are fixed. It is observed that the larger the value of , the higher the decrease in the sensitivity of the HWMA ̅ scheme.

From Figure 4, it can be seen that in Case U, for small values of , regardless of the level of measurement errors, the monitoring scheme under investigation reach a maximum decrease in its performance for a shift of size 0.5 standard deviation. For moderate values of , the maximum decrease in the performance is reached for shift of one standard deviation. For large values of , the maximum decrease in the sensitivity of the HWMA ̅ scheme is reached when [1.75, 2]. From Figure 5, it can be seen that regardless of the value of , the value of the monitoring scheme under investigation is higher for large values of and it is more significant for higher level of measurement errors (see Figure 5 (c), (f) and (i)).

<Insert Figures 4 and5 here>

In the design of statistical monitoring schemes with measurement errors, it is very important to investigate the number measurements per sampling time necessary to compensate the negative effect of measurement errors. In most of the cases the elimination of the effect of measurement errors is almost impossible because the measurement costs need to be reduced and large sample size should be avoided. Figure 6 presents the marginal (i.e., the percentage decrease in the value for one unit increase in the value of ) of the HWMA ̅ scheme when using different sets of measurements with 0.1. Figure 6 shows that in Case U, the marginal decreases as the number of measurement increases.

Therefore, for small level of measurement errors, it is advised to use 2 sets of measurements of size 5 because when =3, the marginal is below 1% which can be considered as insignificant. For moderate values of , it is advised to use equal to 3 or 4 and for large values of , the use of equal to 4 or 5 is advised. These recommendations hold for all values of .

<Insert Figure 6 here> Table 2 displays the performance of the HWMA ̅ scheme for a linearly increasing population variance when 0, 1, 2, 3 (with =0) and 0, 1, 2, 3 (with =0) for =0.1

and with =1 and ( =4 in parentheses). For constant, it is observed that the sensitivity of the HWMA ̅ scheme decreases as increases whenever 0. For instance, when =1 and =1.25, then for 0, 1, 2, and 3, the HWMA ̅ scheme gives a signal on the 7 th , 13 th , 18 th and 24 th sampling points, respectively. Moreover, when 4 measurements are used (i.e. =4 in parentheses), the HWMA ̅ scheme gives a signal on the 7 th , 8 th , 10 th and 11 th sampling points when 0, 1, 2, and 3, respectively. Hence, increasing the number of measurements has a positive effect on the sensitivity of the HWMA ̅ scheme by reducing the effect of measurement errors regardless of the degree of the linear increase in the process variance.

Next, for constant, it is similarly observed that the sensitivity of the HWMA ̅ scheme decreases as increases whenever 0. For instance, when =1 and =1.25, then for 0, 1, 2, and 3, the HWMA ̅ scheme gives a signal on the 7 th , 13 th , 18 th and 23 th subgroups, respectively. Note that when the HWMA ̅ scheme improves in performance as the negative effect of measurement errors is reduced by taking multiple measurements. When = =0, there is no measurement error in the measurement system; hence, there is no need to increase as it yields no improvement in the performance of the monitoring scheme, i.e. the are the same for any values of . Finally, although not shown in Table 2, increasing has a similar effect in performance as that observed in Table 1; that is, the higher the value of the smoothing parameter the worse the performance gets for the linearly increasing variance scenario.

<Insert Table 2 here>

Robustness of HWMA ̅ scheme

A monitoring scheme is said to be IC robust if the IC characteristics of the run-length distribution are the same or significantly close across all continuous distributions. To check this, in Table 3, the and values are computed for some symmetrical and skewed distributions. The considered distributions are:

(i) Standard normal distribution, i.e. N(0,1).

(ii) Student's t distribution with degrees of freedom 5, 10, 20; i.e. t [START_REF] Awais | An EWMA chart for monitoring the process mean[END_REF], t [START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF], t [START_REF] Does | On the design of control charts with guaranteed conditional performance under estimated parameters[END_REF].

(iii) Gamma distribution with parameters 1, 3, 10 and 1; i.e. GAM(1,1), GAM [START_REF] Aslam | Introduction to Statistical Process Control[END_REF][START_REF] Montgomery | Statistical Quality Control: A Modern Introduction[END_REF], GAM [START_REF] Abid | A double homogeneously weighted moving average control chart for monitoring of the process mean[END_REF][START_REF] Montgomery | Statistical Quality Control: A Modern Introduction[END_REF].

(iv) Standard double exponential distribution with 0 and 1, denoted DEXP(0,1).

For a fair comparison, the above distributions are transformed such that the mean and standard deviation are equal to 0 and 1, respectively. To check the IC robustness and OOC behavior of the proposed HWMA ̅ scheme, the IC and OOC characteristics of the run-length distribution were computed using Monte Carlo simulations. To preserve writing space, Table 3 the HWMA ̅ scheme is not IC robust for small degrees of freedom (v) because the attained ARL is not equal to the nominal ARL. However, as v increases the HWMA ̅ scheme tends towards IC robustness. Additional simulations, not shown in Table 3, indicate that IC robustness is achieved when v is larger than 30. It is worth mentioning that the (v) distribution (with 30) is approximately equal to the normal distribution.  Similar to the (v) distribution, under the GAM( distribution, the HWMA ̅ scheme is only IC robust when the shape parameter is large (i.e., ); however, it is not IC robust when .

 Under the standard DEXP(0,1) distribution, the HWMA ̅ scheme is not IC robust.

In general, it is observed from Table 3 that for different underlying distributions, the IC ARL values are not approximately the same and thus, the HWMA ̅ scheme is not IC robust.

Finally, all the distributions in Table 3 have a similar OOC performance for moderate-tolarge shifts, except for the standard DEXP(0,1) distribution which is observed to have the worst performance for all considered values of .

<Insert Table 3 here>

Comparison with other memory-type schemes

As far as we know, no GWMA ̅ scheme to monitor the process mean under the effect of measurement errors does exist in the SPM literature for Cases K and U. The EWMA and CUSUM ̅ schemes in Case K are discussed in [START_REF] Maravelakis | EWMA chart and measurement error[END_REF] and [START_REF] Maravelakis | Measurement error on the CUSUM control chart[END_REF], respectively; however, the Case U versions do not exist in the SPM literature. The latter three monitoring schemes in Case U are in part, discussed in this section. Thus, the proposed HWMA ̅ scheme is compared to the CUSUM, EWMA and GWMA ̅ schemes under the effect of both measurement errors and parameter estimation under the normality assumption. To compare the sensitivity of the competing schemes, the performance of each scheme is investigated when (100, 5), {1, 4} and {0, 0.2, 0.5, 0.9}. Therefore, for an attained of 500, it is found that the combinations of the design parameters of the CUSUM and EWMA ̅ schemes are ( , ) = (0.125, 6.729) and ( , ) = (0.1, 2.938), respectively, and those of the GWMA ̅ scheme are ( , , ) = (0.5, 0.9, 3.336) where .

These design parameters yield attained values as close as possible to 500. values, the best performing scheme is boldfaced. It can be seen that, regardless of the level of measurement error or the number of measurements, the HWMA ̅ scheme outperforms the CUSUM, EWMA and GWMA ̅ schemes under small mean shifts. The GWMA ̅ scheme with small values of is superior to both CUSUM and EWMA ̅ schemes for very small shifts (i.e., 0 0.25). However, when 0.25, 3 , the EWMA ̅ scheme (which is equivalent to the GWMA ̅ scheme with 1) outperforms both the HWMA and CUSUM ̅ schemes. For moderate and large shifts (see and ), as well as moderateto-large shifts (see ), the EWMA ̅ scheme performs better than the GWMA, CUSUM and HWMA ̅ schemes. Next, with respect to the EARLs, the CUSUM ̅ scheme seems to yield the worst OOC performance when compared to its memory-type competitors.

For small-to-moderate and small-to-large shifts (see and ) as well as for small shifts only (see ), the HWMA ̅ scheme is superior to all its competing memory-type monitoring schemes. In essence, the latter deduction implies that the proposed HWMA ̅ scheme is expected to yield better detection ability than its real-world competitors (i.e. CUSUM, EWMA and GWMA schemes) for most shift values in the process mean when a user is more interested in: (i) small shifts only, (ii) a range of small to moderate shifts, and (iii) a range of small to large shifts.

<Insert Table 4 here>

Illustrative example

In order to illustrate the implementation of the HWMA ̅ scheme with measurement error under the assumption of unknown process parameters, the data from [START_REF] Costa | Effect of measurement error and autocorrelation on the ̅ chart[END_REF] which is shown in Table 5 are used as the Phase II data. The dataset is based on a yogurt cup filling process where the quality characteristic is the weight of each yogurt cup. In this example, it is assumed that the IC mean and the IC standard deviation are unknown and they are estimated from the Phase I sample of size 100 (i.e. m = 100). Hence, using (6) yields ̂ 124.90 , 0.76, 0.9994 and ̂ = 0.76/0.9994 = 0.7605 . An independent R&R study estimated the measurement standard deviation = 0.24 and thus, = 0.24/0.7605 = 0.3156.

The quality practitioner in charge of this process decided to take, every hour, two sets of measurements, each of size 5 (i.e. r = 2 and n = 5). For a nominal value of 500 and 0.1, it is found that 3.32 yields an attained of 501.26. Thus, when = 2, the lower and upper control limits of the HWMA ̅ scheme when 1 and 2 are calculated using [START_REF] Adeoti | A hybrid homogeneously weighted moving average control chart for process monitoring[END_REF] as follows:

{ √ ( ) √( ) ( ) (16a) (16b) 
and

{ √ ( ) √( ) ( ) (17a) (17b)
For , the rest of the time-varying control limits can also be calculated in a similar way as shown in Equations ( 16b) and (17b), respectively. For illustration purpose, the first three plotting statistics are calculated as follows:

̅ and ̿ ̂ ̅ and ̿ ̅ ̅ and ̿ ̅ ̅ so that, ̅ ̿ ̅ ̿ ̅ ̿
The rest of the plotting statistics of the HWMA ̅ scheme with 2-measurements are empirically shown in Table 5 and graphically in Figure 7. It is observed that the HWMA ̅ scheme give an OOC signal for the first time on the 14 th subgroup.

<Insert Table 5 here> <Insert Figure 7 here>

Conclusion

Most of the monitoring schemes are based on the assumption of Case K and perfect measurements. This paper proposes the HWMA scheme in Case U under the assumption of perfect and imperfect measurements. It is observed that the sensitivity of the HWMA scheme deteriorate significantly when the level of measurement error increases and the use of multiple measurements has a positive effect on the sensitivity. The negative effect of the measurement errors is more pronounced when there is a linearly increasing variance than when the error variance is constant. Note though, practitioners are not advised to use more than five measurements in the design of the HWMA scheme regardless of the level of the measurement error. Also, it is shown that the HWMA ̅ scheme is not IC robust and higher values of the smoothing parameter lead to poor Phase II OOC performance. Moreover, as the Phase I sample size increases, the performance of the HWMA scheme in Phase II improves.

In comparison to the CUSUM scheme, the HWMA scheme is found to be superior regardless of the size of the mean shift. In addition, the HWMA scheme is superior to the EWMA and GWMA schemes under small shifts; however, for moderate-to-large shifts, the converse is true. Therefore, given the fact that the HWMA scheme has a simpler design model and has a competitive performance compared to the EWMA and GWMA schemes, practitioners are recommended to rather use the HWMA scheme to monitor the process mean with or without measurement errors.

Note that the HWMA scheme is designed under the effect of measurement errors only.

Therefore, for future research, the combined effect of measurement errors and autocorrelation need to be investigated in both Cases K and U. So far, no HWMA-type scheme based on attributes data exist, this needs to be addressed. In this paper, an additive error model is implemented, for future research, a two-or three-component error model can also be investigated for the HWMA scheme; see for instance [START_REF] Abbasi | Exponentially weighted moving average chart and two-component measurement error[END_REF] where the two-component error model is implemented for the EWMA scheme. The and profiles of the HWMA ̅ scheme in Case U when (m,n)=(100,5), *0,1,2,3+, *0,1,2,3+, =1 and ( ) (0.1, 3.320) for =1 (and =4 in parentheses) 5 and = 0.9 3.3200 and = 0.1 = 0 = 0.2 = 0.5 = 0.9 = 0 = 0.2 = 0.5 = 0.9 = 0 = 0.2 = 0.5 = 0.9 = 0 = 0.2 = 0.5 = 0.9 profiles for the HWMA ̅ scheme when m=100, =0.5 and {0.1,0.5,0.9}
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Figure 3:

and profiles for the HWMA ̅ scheme when m=100, =0.9, =0.9 and {1,2,3,4,5} 

  , the time-varying lower and upper control limits (i.e. and )of the HWMA ̅ monitoring scheme are defined by is the control limits constant that is set to have an IC approximately equal to some pre-specified nominal IC (i.e.

  scheme. Thus, this shows that the HWMA ̅ scheme is more sensitive when the process parameters are known; or stated differently, parameter estimation degrades Phase II OOC performance. Moreover, increasing r from 1 to 4 leads to an improved Phase II OOC performance since the values are slightly reduced for all shift values.<Insert Figure1here> Next, in Figure2, it is apparent that at any shift value, the higher the value of , the poorer is the performance of the HWMA ̅ scheme because the are larger than the corresponding lower values of . Stated differently, for the best performance in the HWMA ̅ scheme, user are advised to use small values of . Moreover, increasing r from 1 to 4 leads to an improved performance since the values are reduced for all shift values.<Insert Figure2 here>
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 12596 Figure 1:profiles for the HWMA ̅ scheme when =0.1, =0.5 and m {20,40,100, }
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 7 Figure 7: Illustrative example of the HWMA ̅ scheme using the yogurt cup filling data
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 4567 Figure 4: values of the HWMA ̅ scheme for different values of and when (100, 5) Figure 5: values of the HWMA ̅ scheme for different values of and 0.1 when (100, 5) Figure 6: Case U marginal of the HWMA ̅ scheme when 0.1 and {0.2,0.5,0.9} Figure 7: Illustrative example of the HWMA ̅ scheme using the yogurt cup filling data

  displays the attained values only. For different values of m, it is apparent that the HWMA ̅ scheme is not IC robust for some non-normal distributions. That is, based on the IC ARL values, the following findings can be observed from Table 3:  Regardless of the Phase I sample size, the proposed HWMA ̅ scheme is IC robust under the normal distribution because the attained ARL is approximately equal to the nominal ARL.  Under the t(v) distributions, regardless of the Phase I sample size (including the Case K)

Table 4

 4 

displays the ARL and EARL values of the HWMA, CUSUM, EWMA and GWMA schemes for different values of and . From this table, at each shift value or range of shift

Table 1 :

 1 The

				and	profiles of the HWMA ̅ scheme in Case U when =0, =1,
		m=20, n=5,	*0.1,0.5,0.9+ and		*0,0.2,0.5,0.9+ with =1 (and =4 in parenthesis)
				= 0.1				= 0.5				= 0.9	
	Shift	= 0	= 0.2	= 0.5	= 0.9	= 0	= 0.2	= 0.5	= 0.9	= 0	= 0.2	= 0.5	= 0.9
	0.00	500.74	500.74	500.74	500.74	504.10	504.10	504.10	504.10	507.69	507.69	507.69	507.69
	0.25	311.14	313.21 (305.44)	336.16 (315.82)	371.62 (336.03)	363.23	369.05 (360.63)	385.32 (367.39)	418.20 (380.59)	414.79	415.23 (413.74)	429.07 (414.71)	446.72 (429.10)
	0.5	88.26	92.25 (88.39)	118.82 (96.08)	178.38 (115.74)	150.76	159.14 (151.95)	189.00 (162.91)	249.84 (181.71)	243.78	246.99 (243.3)	278.81 (250.80)	327.88 (268.16)
	0.75	26.54	27.50 (26.12)	37.99 (28.01)	63.56 (33.69)	52.37	55.52 (53.72)	72.51 (56.82)	121.30 (68.89)	118.85	122.56 (118.89)	149.61 (127.44)	206.41 (145.83)
	1.00	13.09	13.57 (13.22)	16.47 (13.86)	26.79 (15.89)	20.56	22.27 (21.32)	29.44 (22.93)	54.33 (27.94)	58.25	60.88 (59.23)	78.51 (62.46)	121.36 (75.04)
	1.25	8.46	8.79 (8.55)	10.43 (8.94)	15.21 (10.02)	10.67	11.23 (10.80)	14.65 (11.57)	26.14 (14.10)	29.84	31.48 (30.16)	42.33 (32.89)	71.82 (39.69)
	1.5	6.17	6.39 (6.23)	7.47 (6.52)	10.55 (7.21)	6.54	6.84 (6.64)	8.71 (7.08)	14.92 (8.31)	16.55	17.65 (16.72)	23.75 (18.22)	42.13 (22.32)
	1.75	4.81	4.95 (4.86)	5.76 (5.04)	7.87 (5.58)	4.58	4.76 (4.59)	5.89 (4.85)	9.55 (5.63)	9.91	10.41 (10.05)	14.38 (10.91)	26.23 (13.51)
	2.00	3.95	4.05 (3.98)	4.66 (4.11)	6.29 (4.50)	3.44	3.58 (3.46)	4.35 (3.64)	6.75 (4.16)	6.39	6.75 (6.43)	9.27 (7.03)	16.97 (8.60)
	2.25	3.33	3.42 (3.36)	3.90 (3.47)	5.19 (3.80)	2.75	2.85 (2.76)	3.40 (2.90)	5.04 (3.27)	4.38	4.65 (4.45)	6.23 (4.82)	11.42 (5.84)
	2.5	2.87	2.96 (2.90)	3.36 (3.00)	4.39 (3.27)	2.29	2.37 (2.30)	2.78 (2.41)	3.99 (2.68)	3.23	3.41 (3.26)	4.46 (3.50)	8.13 (4.25)
	2.75	2.51	2.59 (2.53)	2.95 (2.62)	3.82 (2.86)	1.96	2.02 (1.97)	2.34 (2.05)	3.29 (2.27)	2.50	2.62 (2.52)	3.39 (2.68)	5.99 (3.17)
	3.00	2.20											

Table 2 :
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Table 3 :

 3 ARL profiles for the HWMA ̅ monitoring scheme for different continuous distributions when 0.1 for a nominal value of 500

	Shift ( )

Table 4 :

 4 Performance comparison of the HWMA ̅ scheme with the EWMA ̅ , CUSUM ̅ and GWMA ̅ schemes in Case U when =0.1,

			m=100, n=5,	{0, 0.2, 0.5, 0.9} for a nominal	value of 500
		CUSUM ̅ scheme	EWMA ̅ scheme	GWMA ̅ scheme	HWMA ̅ scheme
	Shift	0.125 and	6.7289	2.9384 and	= 0.1	3.3356,	0.

Table 5 :

 5 Illustration of the implementation of the HWMA ̅ scheme using the yogurt cup filling data

	̅	̿	Signal

(f) 0.9 and 0.5 (g) 0.2 and 0.9 (h) 0.5 and 0.9 (i) 0.9 and 0.9