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Abstract. Non-linear filtering approaches allow to obtain decomposi-
tions of images with respect to a non-classical notion of scale. The associ-
ated inverse scale space flow can be obtained using the classical Bregman
iteration applied to a convex, absolutely one-homogeneous regularizer.
In order to extend these approaches to general energies with non-convex
data term, we apply the Bregman iteration to a lifted version of the func-
tional with sublabel-accurate discretization. We provide a condition for
the subgradients of the regularizer under which this lifted iteration re-
duces to the standard Bregman iteration. We show experimental results
for the convex and non-convex case.

1 Motivation and Introduction

We consider variational image processing problems with energies of the form

F (u) :=

∫
Ω

ρ(x, u(x)) dx︸ ︷︷ ︸
H(u)

+

∫
Ω

η(∇u(x)) dx︸ ︷︷ ︸
J(u)

,
(1)

where the integrand η : Rd 7→ R of the regularizer is non-negative and convex,
and the integrand ρ : Ω×Γ 7→ R of the data term H is proper, non-negative and
possibly non-convex with respect to u. We assume that the domain Ω ⊂ Rd is
open and bounded and that the range, or label space, Γ ⊂ R is compact.

Such problems are common in image reconstruction, segmentation, and
motion estimation [1, 28]. We are mainly concerned with three distinct problem
classes. Whenever we are working with the total variation regularizer, we use
the abbreviation TV-(1). If the data term is furthermore given by

ρ(x, u(x)) =
λ

2
(u(x)− f(x))2 (2)

for some input f and λ > 0 we use the abbreviation ROF-(1). For data term (2)
and arbitrary convex, absolute one-homogeneous regularizer η we write OH-
(1).

Consider the so-called inverse scale space flow (ISS) [21, 4, 3] equation

∂sp(s) = f − u(s, ·), p(s) ∈ ∂J(u(s, ·)), p(0) = 0, (3)
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Figure 1: Scale-space of solutions for non-convex depth estimation.
Applying the sublabel-accurate lifting approach [18] to the non-convex prob-
lem of depth estimation results in a convex problem to which the Bregman
iteration [21] can be applied. In addition to the final depth map (left), the
Bregman iteration generates a scale space of solutions with increasing spatial
detail, as can be seen from the two horizontal sections (center, right).

where J is assumed to be convex and absolutely one-homogeneous. The evolu-
tion u : [0, T ]×Ω→ R starts at u(0, ·) = mean(f) and p(s) is forced to lie in the
subdifferential of the term J . E.g., for total variation regularization J = TV,
the flow u(s, ·) progressively incorporates details of finer scales contained in
the input image f as s increases; for s → ∞ the flow converges to the input
image.

By considering the derivative us, one can even define a non-linear decompo-
sition of the input f [5, 12] based on the solution u of the inverse scale space flow
and derive non-linear filters. Similar ideas have been developed for variational
models of the form OH-(1) and gradient flow formulations [4, 2, 11, 3, 10].

For problems in the class OH-(1), the inverse scale space flow can be un-
derstood [4] as a continuous limit of the so-called Bregman iteration [21]. For
both the data term H and regularizer J being non-negative and convex (!) the
Bregman iteration is defined as:

Algorithm 1: Bregman iteration

Initialize p0 = 0 and repeat for k = 1, 2, ...

uk ∈ arg min
u
{H(u) + J(u)− 〈pk−1, u〉}, (4)

pk ∈ ∂J(uk). (5)

In case of the ROF-(1) problem the subgradient pk can be chosen explic-
itly as pk = pk−1 − λ(uk − f). Further extensions include the split Bregman
method for `1-regularized problems [13] and the linearized Bregman iteration
for compressive sensing and sparse denoising [6, 22].

However, applying the Bregman iteration to variational problems with non-
convex data term H is not trivial since the well-definedness of the iterations as
well as the convergence results in [21] rely on the convexity of the data term.
In [14], the Bregman iteration was used to solve a non-convex optical flow
problem, however, the approach relies on an iterative reduction to a convex
problem using first-order Taylor approximations.

In this work, we aim to apply the Bregman iteration to energies with a non-
convex data term such as the non-convex stereo matching problem (Fig. 1 and
Fig. 3). In order to do so, we follow a lifting approach: Instead of minimizing
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the non-convex problem
inf
u∈U
{H(u) + J(u)} (6)

over some suitable (discrete or function) space U we solve a lifted problem

inf
u∈U
{H(u) + J(u)} (7)

over a larger space U but with convex energies H,J . The Bregman iteration
can then be performed on the convex problem (7):

Algorithm 2: Lifted Bregman iteration

Initialize p0 = 0 and repeat for k = 1, 2, ...

uk ∈ arg min
u∈U
{H(u) + J(u)− 〈pk−1,u〉}, (8)

pk ∈ ∂J(uk). (9)

This allows to extend the Bregman iteration to non-convex data terms.
Of course it raises the question whether the iterates of Alg. 1 and Alg. 2 are
related, and whether the lifted method still generates a scale space in practice.
In the following, we will investigate these questions.

Outline and Contribution. In section 2 we summarize the sublabel-accurate
relaxation approach for problems of the form TV-(1) as presented in [18]. In
section 3 we derive conditions under which the original and lifted Bregman iter-
ation are equivalent. These conditions are in particular met by the anisotropic
TV. In section 4 we validate these findings experimentally by comparing the
original and lifted iteration on the convex ROF-(1) problem and present first
numerical results on the non-convex stereo matching problem.

Related Work. In a fully discrete setting with discretized domain and finite
range Γ, Ishikawa and Geiger proposed first lifting strategies for the labeling
problem [16, 15]. Later the relaxation of the labeling problem was studied in
a spatially continuous setting with binary [9, 8] and multiple labels [30, 17].

Our work is based on methods for scalar but continuous range Γ with first-
order regularization in the spatially continuous setting [24, 23]: The feasible
set of scalar-valued functions u : Ω → Γ is embedded into the convex set of
functions v : Ω× Γ→ [0, 1] by associating each function u with the character-
istic function of the subgraph, i.e., 1u(x, z) := 1 if u(x) > z and 0 otherwise.
To extend the energy F in (1) for Γ = R onto this larger space, a lifted convex
functional F is defined:

F(v) := sup
φ∈K

∫
Ω×Γ

〈φ,Dv〉, (10)

where Dv denotes the distributional derivative of v. With η∗ denoting the
pointwise conjugate of the regularizer, the admissible dual vector fields are
given by

K := {(φx, φt) ∈C0(Ω× R;Rd × R) :

φt(x, t) + ρ(x, t) ≥ η∗(φx(x, t)), ∀(x, t) ∈ Ω× R}.
(11)
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In [23] the authors show that F (u) = F(1u) holds for any u ∈W 1,1. Moreover,
if the non-convex set {1u : u ∈W 1,1} is relaxed to the convex set

C := {v ∈BVloc(Ω× R, [0, 1]) :

v(x, t) = 1 ∀t ≤ min(Γ), v(x, t) = 0 ∀t > max(Γ)},
(12)

any minimizer of the lifted problem infv∈C F(v) can be transformed into a
global minimizer of the original nonconvex problem infu∈W 1,1 F(1u) by thresh-
olding.

In practice, the discretization of the label space Γ during the implementa-
tion process leads to artifacts and the quality of the solution strongly depends
on the number and positioning of the chosen discrete labels. Therefore, it
is advisable to employ a sublabel-accurate discretization [18], which allows to
preserve information about the data term in between discretization points, re-
sulting in smaller problems. In [19] the authors point out that this approach
is closely linked to the approach in [23] when a combination of piecewise linear
and piecewise constant basis functions is used for discretization.

More recent developments in the field of functional lifting include an exten-
sion to the sublabel-accurate lifting approach to arbitrary convex regularizers
[20] and a connection to Dynamical Optimal Transport and the Benamou-
Brenier formulation that also allows to incorporate higher-order regularization
[29].

Notation. We denote the extended real line as R := R ∪ {±∞}. Given a
function f : Rn 7→ R the conjugate f∗ : Rn 7→ R is defined as [26, Ch. 11]

f∗(u∗) := sup
u∈Rn

{〈u∗, u〉 − f(u)}. (13)

If f has a proper convex hull, both the conjugate and biconjugate are proper,
lower semi-continuous and convex. The indicator function of a set C is defined
as δC(x) := 0 if x ∈ C and +∞ otherwise. Whenever u denotes a vector, we
use subscripts uk to indicate an iteration or sequence, and superscripts uk to
indicate the k-th value of the vector.

2 Sublabel-Accurate Lifting Approach

For reference, we provide a short summary of the lifting approach with sublabel-
accurate discretization for TV-(1) problems using the notation from [18]. The
approach comprises three steps:

Lifting of the label space. First, we choose L labels γ1 < γ2 < ... < γL such
that Γ = [γ1, γL]. These labels decomposese the label space Γ into l := L − 1
sublabel spaces Γi := [γi, γi+1]. Any value in Γ can be written as

γαi := γi + α(γi+1 − γi), (14)

for some i ∈ {1, 2, ..., l} and α ∈ [0, 1]. The lifted representation of such a value
in Rl is defined as

1αi := α1i + (1− α)1i−1, (15)

where 1i ∈ Rl is the vector of i ones followed by l− i zeroes. The – non-convex
– lifted label space is given as Γ := {1αi ∈ Rl|i ∈ {1, 2, ..., l}, α ∈ [0, 1]}. Any
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lifted value u(x) = 1αi ∈ Γ can be mapped uniquely to the equivalent value in
the unlifted label space by applying

u(x) = γ1 +

l∑
i=1

ui(x)(γi+1 − γi). (16)

We refer to such functions u as sublabel-integral.

Lifting of the data term. Next, a lifted formulation of the data term is
derived that in effect approximates the energy locally convex between neigh-
boring labels. For the possibly non-convex data term of (1), the lifted – yet
still non-convex – representation for fixed x ∈ Ω is defined as ρ : Rl 7→ R,

ρ(u) := inf
i∈{1,...,l},α∈[0,1]

{
ρ(γαi ) + δ1αi (u)

}
. (17)

Note that the domain is Rl and not just Γ. Outside of the lifted label space
Γ the lifted representation ρ is set to ∞. Applying the definition of Legendre-
Fenchel conjugates twice to the integrand of the data term results in a relaxed
– and convex – data term:

H(u) =

∫
Ω

ρ∗∗(x,u(x))dx. (18)

For explicit expressions of ρ∗∗ in the linear and non-linear case we refer to [18,
Prop. 1, Prop. 2].

Lifting of the total variation regularizer. Lastly, a lifted representation of
the (isotropic) total variation regularizer is established, building on the theory
developed in the context of multiclass labeling approaches [17, 7]. For fixed
x ∈ Ω the lifted – and non-convex – integrand φ : Rl×d 7→ R is defined:

φ(g) := inf
1≤i≤j≤l,α,β∈[0,1]

|γαi − γ
β
j | · ‖v‖2 + δ(1αi −1βj )v>(g). (19)

Applying the definition of Legendre-Fenchel conjugates twice to the lifted in-
tegrand of the regularizer results in a relaxed – and convex – regularization
term:

TV (u) :=

∫
Ω

φ∗∗(Du), (20)

where Du is the distributional derivative in the form of a Radon measure. For
isotropic TV, it can be shown that for g ∈ Rl×d,

φ∗∗(g) = sup
q∈Kiso

〈q, g〉, (21)

Kiso =
{
q ∈ Rl×d

∣∣ ‖qi‖2 ≤ γi+1 − γi, ∀i = 1, ..., l
}
. (22)

For more details we refer to [18, Prop. 4] and [7]. Unfortunately isotropic TV
in general does not allow to prove global optimality for the discretized system.
Therefore we also consider the lifted anisotropic (L1) TV, by replacing (22)
with

Kan =
{
q ∈ Rl×d

∣∣ ‖qi‖∞ ≤ γi+1 − γi, ∀i = 1, ..., l
}

(23)

=
⋂

j=1,...,d

{
q ∈ Rl×d

∣∣ ‖qi,j‖2 ≤ γi+1 − γi, ∀i = 1, ..., l
}
. (24)
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Together, the previous three sections allow us to formulate a version of the
problem of minimizing the lifted energy (10) over the relaxed set (12) that is
discretized in the label space Γ:

inf
u∈BV(Ω,Γ)

∫
Ω

ρ∗∗(x,u(x)) +

∫
Ω

φ∗∗(Du). (25)

Once the non-convex set Γ is relaxed to its convex hull, we obtain a fully
convex lifting of problem TV-(1) similar to (7), which can now be spatially
discretized.

3 Equivalency of the Lifted Bregman Iteration

This chapter addresses the question under which conditions Alg. 1 and Alg. 2
are equivalent. We stipulate a sufficient condition on the subgradients used in
the Bregman iteration and prove in chapter 4 that this condition is met in case
of the anisotropic TV regularizer. The key idea is to note that the Bregman
iteration amounts to extending the data term by a linear term, and that the
sum of the separately relaxed terms is point-wise equal to the relaxation of
their sum. Note that this additivity does not hold for general sums.

The following considerations are formal due to the mostly pointwise argu-
ments; we leave a rigorous investigation in the function space to future work.
However, they can equally be understood in the spatially discrete setting with
finite Ω, where arguments are more straightforward. For readability, we con-
sider a fixed x ∈ Ω and omit x in the arguments.

Proposition 1. Assume ρ1, ρ2, h : Γ 7→ R with

ρ2(u) := ρ1(u)− h(u), h(u) := pu, p ∈ R, (26)

where ρ1 and ρ2 should be understood as two different data terms in (1). Define

γ̃ :=
(
γ2 − γ1, . . . , γL − γl

)>
(27)

Then, for the lifted representations ρ1,ρ2,h : Rl 7→ R in (17), it holds

ρ∗∗2 (u) = ρ∗∗1 (u)− h∗∗(u) = ρ∗∗1 (u)− 〈pγ̃,u〉. (28)

Proof of Proposition 1. The proof is slightly technical and we only sketch it.
By definition of the Fenchel conjugate and after some transformations, ρ∗2
becomes

ρ∗2(v) = sup
j∈{1,...,l},β∈[0,1]

{
〈1βj ,v + pγ̃〉 − ρ1(γβj )

}
. (29)

Applying the definition of the Fenchel conjugate once again eventually leads
to

ρ∗∗2 (u) = ρ∗∗1 (u)− 〈pγ̃,u〉. (30)

Comparing this to [18, Prop. 2] we see that 〈pγ̃,u〉 = h∗∗(u).
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The following proposition shows that Alg. 1 and Alg. 2 are equivalent as
long as we base the iteration on subgradients pk−1 and pk−1 in the subdiffer-
ential of J(uk−1) and J(uk−1) that are linked in a particular way.

Proposition 2. Assume that the minimization problems (4) in the original
Bregman iteration have unique solutions. Moreover, assume that in the lifted
iteration, the solutions uk of (8) in each step satisfy u(x) ∈ Γ, i.e., are
sublabel-integral. If at every point x the chosen subgradients pk−1 ∈ ∂J(uk−1)
and pk−1 ∈ ∂J(uk−1) satisfy

pk−1(x) = pk−1(x)γ̃ (31)

with γ̃ as in (27), then the lifted iterates uk correspond to the iterates uk of
the classical Bregman iteration (4) according to (16).

Proof of Proposition 2. We define the extended data term

H̃(u) :=

∫
Ω

ρ(x, u(x))− p(x)u(x) dx, (32)

which incorporates the linear term of the Bregman iteration. Using Prop. 1,
we reach the following lifted representation:

H̃(u) =

∫
Ω

ρ∗∗(x,u(x))− 〈p(x)γ̃,u(x)〉dx. (33)

Hence the lifted version of (4) is

arg min
u∈U
{H(u) + J(u)− 〈pk−1γ̃,u〉} . (34)

Comparing this to (8) shows that the minimization problem in the lifted it-
eration is the lifted version of (4) if the subgradients pk−1 ∈ ∂J(uk−1) and
pk−1 ∈ ∂J(uk−1) satisfy pk−1 = pk−1γ̃. In this case, since we have assumed
that the solution of the lifted problem (8) is sublabel-integral, it can be asso-
ciated via (16) with the solution of the original problem (4), which is unique
by assumption.

Thus, under the condition of the proposition, the lifted and unlifted Breg-
man iterations are equivalent.

4 Numerical Discussion and Results

In this section, we consider the spatially discretized problem on a finite dis-
cretized domain Ωh with grid spacing h. In particular, we will see that the
subgradient condition in Prop. 2 can be met in case of anisotropic TV and how
such subgradients can be obtained in practice.

Finding a subgradient. The discretized, sublabel-accurate relaxed total
variation is of the form

Jh(∇uh) = max
qh:Ωh→Rk×d

∑
x∈Ωh

〈qh(x),∇uh(x)〉 − δK(qh(x))

 , (35)
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withK defined by (22) or (23) and∇ denoting the discretized forward-difference
operator. By standard convex analysis ([25, Thm. 23.9], [26, Cor. 10.9], [26,
Prop. 11.3]) we can show that if qh is a maximizer of (35), then ph := ∇>qh is
a subgradient of Jh(∇uh). Thus, the step of choosing a subgradient (9) boils
down to phk = ∇>qhk and for the dual maximizer qhk−1 of the last iteration we
implement (8) as:

uhk = arg min
uh:Ωh 7→Rl

max
qhk :Ωh 7→K

∑
x∈Ωh

(ρh)∗∗(x,uh(x)) + 〈qhk − qhk−1,∇uh〉. (36)

Transforming the subgradient. In Prop. 2 we formulated a constraint
on the subgradients for which the original and lifted Bregman iteration are
equivalent. While this property is not necessarily satisfied if the subgradient
phk−1 is chosen according to the previous paragraph, we will now show that
any such subgradient can be transformed into another valid subgradient that
satisfies condition (31).

Consider a pointwise sublabel-integral solution uhk with subgradient

phk := ∇>qhk ∈ ∂Jh(uhk) for qhk(·) ∈ K being a maximizer of (35). We de-
fine a pointwise transformation: For fixed xm ∈ Ωh and uhk(xm) = 1αi , let
(qhk(xm))i ∈ Rd denote the i-th row of qhk(xm) corresponding to the i-th label
as prescribed by uhk(xm) = 1αi . Both in the isotropic and anisotropic case the
transformation

q̃hk(xm) :=
(qhk(xm))i

γi+1 − γi
γ̃ (37)

returns an element of the set K, i.e., Kiso or Kan. In the anisotropic case we can
furthermore show that q̃hk also maximizes (35) and therefore the transformation
gives a subgradient p̃hk := ∇>q̃hk ∈ ∂J

h(uhk) of the desired form (31):

Proposition 3. Consider the anisotropic TV-regularized case (23). Assume
that the iterate uhk is sublabel-integral. Moreover, assume that phk := ∇>qhk is a

subgradient in ∂Jh(uhk) and define q̃hk pointwise as in (37). Then p̃hk := ∇>q̃hk
is also a subgradient and furthermore of the form

p̃hk = phk γ̃
h, (38)

where phk is a subgradient in the unlifted case, i.e., phk ∈ ∂Jh(uhk).

Proof of Proposition 3. In the anisotropic case the spatial dimensions are un-
coupled, therefore w.l.o.g. assume d = 1. Consider two neighboring points
xm and xm+1 with uhk(xm) = 1αi and uhk(xm+1) = 1βj . Applying the forward
difference operator gives

∇uhk(xm) =
1

h


(0i−1, 1− α, 1j−i−2, β, 0l−j)

>, i < j,

(0i−1, β − α, 0l−i)
>, i = j,

(0j−1, β − 1, −1i−j−2, −α, 0l−j)
>, i > j.

(39)

Maximizers qhk(xm) ∈ Kan of the dual problem (35) are exactly all vectors

qhk(xm) =


(∗ ∗ ∗, γi+1 − γi, ..., γj+1 − γj , ∗ ∗ ∗)>, i < j,

(∗ ∗ ∗, sgn(β − α)(γi+1 − γi), ∗ ∗ ∗)>, i = j,

(∗ ∗ ∗, γj − γj+1, ..., γi − γi+1, ∗ ∗ ∗)>, i > j.

(40)
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k = 1 k = 2 k = 3 k = 4 k = 50

Figure 2: Equivalency of classical and lifted Bregman on a convex
problem. On the convex ROF-(1) problem with anisotropic TV, with a näıve
implementation, the classical Bregman iteration as in Alg. 1 (top row) and the
lifted generalization as in Alg. 2 (middle row) show clear differences. If the
lifted subgradients are transformed as in Prop. 2, the lifted iterates (bottom
row) are visually indistinguishable from the classical iteration. However, the
lifted version also allows to transparently handle nonconvex energies (Fig. 3).

The elements marked with ∗ can be chosen arbitrarily as long as
qhk(xm) ∈ Kan. Due to this special form, the transformation (37) leads to

q̃hk(xm) = ±γ̃ depending on the case. Crucially, this transformed vector is
another equally valid choice in (40) and therefore (37) returns another valid
subgradient p̃hk = ∇>q̃hk .

In order to show that phk = ∇>qhk for qhk (·) = ±1 is a subgradient in
the unlifted setting we use the same arguments. To this end, we use the
sublabel-accurate notation with L = 2. The “lifted” label space is Γ = [0, 1],
independently of the actual Γ ⊂ R; see [18, Prop. 3]. Then with uhk(xm) = γαi
and uhk(xm+1) = γβj (corresponding to 1αi and 1βj from before), applying the

forward difference operator∇uhk(xm) = 1
h (γβj −γαi ) shows that dual maximizers

are qhk (xm) = sgn(γβj − γαi )|Γ| = ±1. It can be seen that the algebraic signs

coincide pointwise in the lifted and unlifted setting. Thus phk in (38) is of the
form phk = ∇>qhk and in particular a subgradient in the unlifted setting.

Convex energy with artificial data. We compare the results of the original
and lifted Bregman iteration for the ROF-(1) problem with λ = 20, synthetic
input data and anisotropic TV regularizer. In the lifted setting, we compare
implementations with and without transforming the subgradients as in (37).
The results shown in Fig. 2 clearly support the theory: Once subgradients
are transformed as in Prop. 2, the iterates agree with the classical, unlifted
iteration.

A subtle issue concerns points where the minimizer of the lifted energy is
non-sublabel-integral, i.e., cannot be easily identified with a solution of the
original problem. This impedes the recovery of a suitable subgradient as in
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k = 1 k = 8 k = 21 k = 60 Input

Figure 3: Lifted Bregman on stereo matching problem with isotropic
TV. TV-(1) problem with data term (41). This problem is non-convex and
non-linear in u. At k = 1 the solution is a coarse approximation of the depth
field. As the iteration advances, details are progressively recovered. Although
the problem is not of the form OH-(1) classically associated with the ISS flow,
the results show a qualitative similarity to a nonlinear scale space for this
non-convex problem.

(16), which leads to diverging Bregman iterations. We found this issue to
occur in particular with isotropic TV discretization, which does not satisfy a
discrete version of the coarea formula – which is used to prove in the continuous
setting that solutions of the original problem can be recovered by thresholding
– but is also visible to a smaller extent around the boundaries of the objects
in Fig. 2.

Non-convex stereo matching with real-world data. Let us demon-
strate the applicability of the lifted Bregman iteration on a non-convex stereo-
matching problem for depth estimation. We use TV-(1) with data term

ρ(x, u(x)) =

∫
W (x)

∑
d=1,2

h(∂xdI1((y1, y2 + u(x)))− ∂xdI2((y1, y2))), (41)

where W (x) denotes a patch around x and h(α) := min{α, β} is a truncation
with threshold β > 0. This data term is non-convex and non-linear in u.
We apply the lifted Bregman iteration on three data sets [27] with L = 5
labels, iso-tropic TV regularizer and untransformed subgradients. For results
see Fig. 1, 3 (Motorbike: λ = 20, k = 30; Umbrella: λ = 10; Backpack:
λ = 25). We also ran the experiment with an anisotropic TV regularizer
as well as transformed subgradients. Overall, the behavior was similar, but
transforming the subgradients led to more pronounced jumps. Interestingly,
even in this non-convex case the solution of the lifted Bregman iteration also
strongly reminds of an ISS flow: The first solution is a smooth estimation; as
the iteration continues, finer structures are added. This behavior is also visible
in the progression of the profiles in Fig. 1.

Conclusion. We proposed a combination of the Bregman iteration and a
lifting approach with sublabel-accurate discretization in order to extend the
Bregman iteration to non-convex energies. If a certain form of the subgradients
can be ensured – which can be shown to be the case with the convex ROF-(1)
problem and anisotropic TV – the iterates agree in theory and in practice.
In the future, it will be interesting to see if such methods can lead to the
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development of scale space transformations and nonlinear filters for arbitrary
nonconvex data terms.
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