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The reconstruction of sound sources by using inverse methods is known to be prone to estimation

errors due to measurement noise, model mismatch, and poor conditioning of the inverse problem.

This paper introduces a solution to map the estimation errors together with the reconstructed sound

sources. From a Bayesian perspective, it initializes a Gibbs sampler with the Bayesian focusing

method. The proposed Gibbs sampler is shown to converge within a few iterations, which makes it

realistic for practical purposes. It also turns out to be very flexible in various scenarios. One pecu-

liarity is the capability to directly operate on the cross-spectral matrix. Another one is to easily

accommodate sparse priors. Eventually, it can also account for uncertainties in the microphone

positions, which reinforces the regularization of the inverse problem.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5138930
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I. INTRODUCTION

The recovery of acoustic sources, be it for localization or

identification purposes, is of prime importance in various fields

of acoustics. This topic has been active in research for several

decades, with new algorithms being regularly published in an

effort to constantly push forward the limits of the reconstruc-

tion. A persistent issue of many state of the art methods is that

they must be content with point estimates, without indication

of their inherent uncertainty. On the one hand, this prevents

the user from assessing the reliability of the results. This situa-

tion is critical as the reconstruction of source distributions is

an inherently ill-posed inverse problem without guarantee of

the existence, uniqueness, and stability of a solution.1,2 On the

other hand, knowing the uncertainty in the results is also a pre-

requisite to allowing comparisons between competitive meth-

ods. Solutions to accompany the reconstruction of sources

together with their inherent uncertainties are therefore needed.

The present paper aims at assessing uncertainties due to

estimation errors produced from the presence and interaction

of measurement noise, model mismatch, and poor condition-

ing of the inverse problem. To the best of the authors’

knowledge, the analysis of estimation errors induced in

inverse methods dedicated to the identification of sound

sources has been rarely addressed. This is notwithstanding

the vast literature that exists in other related fields, such as in

geophysics inversion,3–5 structural dynamics,6,7 and under-

water acoustics, where the concern is more related to the

environmental uncertainties that affect the propagation—and

therefore the subsequent inversion.8–12 In contrast, this work

is concerned with the reconstruction of distributions of sound

sources—i.e., pressure, velocity, intensity—which marks

both conceptual and technical differences with other

approaches found in related fields (e.g., Refs. 13–15).

Contrary to the situation with direct measurement meth-

ods—such as sound intensity—whose estimation errors are

well covered in the literature (see, e.g., Refs. 16–18), the

propagation of errors (i.e., the effect of the errors on the

uncertainty of the inversion) in inverse methods such as

NAH, ESM, HELS19 remains mathematically difficult.

Reference 20 investigated propagation of uncertainties in

NAH by using first-order perturbation and arrived at expres-

sions of the variance and bias of the source estimations under

different configurations. However, this type of approach—

also known as the delta method in statistics21—is known to

underestimate the actual level of uncertainties since it

ignores higher-order terms. In addition, it rapidly becomes

intractable when nonlinear transform are involved, unless

rough approximations are used—for instance, the effect of

regularization or the statistical tests introduced later in Sec.

IV would be tedious to set up with this approach.

An interesting class of inverse methods that naturally

provides the posterior probability density functions (PDFs)

of the estimates—i.e., the PDFs conditioned on the data—is

based on Bayesian inference.2,22,23 This turns especially use-

ful since all estimators of position—such as the mean value

or the maximum a posteriori estimate (MAP)—as well as of

statistical dispersion—such as standard deviations or confi-

dence intervals—can theoretically be deduced from posterior

PDFs. In the present context, this was shown, for instance, in

the Bayesian focusing method introduced in Ref. 24 and fur-

ther exploited in Ref. 25 to set up confidence intervals on the

regularization parameter.

In theory, Bayesian inference makes it possible to prop-

agate uncertainties in all quantities of interest in the inverse
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problems, yet closed-form expressions are not always avail-

able or do not generally coincide with known PDFs. In such

instances, it becomes necessary to resort to numerical techni-

ques, such as the Markov Chains Monte Carlo (MCMC)

algorithm, to directly sample in the posterior PDF.

The aim of this paper is to explore such a solution based

on Bayesian inference using the Gibbs sampler,26,27 one pop-

ular MCMC algorithm. As far as the authors know, this has

never been addressed before in the present context, although

it appears in related fields concerned with uncertainties.28–32

As far as the reconstruction of source distributions is of con-

cern, Ref. 33 actually introduced a Gibbs sampler, yet more

as an inferential mechanism than as a means to assess statis-

tical dispersion in the results. A similar remark applies to

Ref. 34 which makes use of a particle filter, a special form of

a sequential Gibbs sampler.

The paper first shows in Sec. III that a Gibbs sampler is

easily set up in the Bayesian setting introduced in Ref. 24. In

particular, an original version is provided that directly takes

as an input the cross-spectral matrix (CSM). This consider-

ably reduces the amount of data to be recorded when mea-

suring time-stationary acoustical fields. It is also necessary

with commercial data acquisition systems that can only

record the CSM.

This paper further proposes a Gibbs sampler with rapid

convergence provided that it is initialized with the results of

the Bayesian focusing method24 and its hyperparameters are

tuned with the empirical Bayesian method of Ref. 25. This is

necessary to make it a realistic solution in practice, since

MCMC algorithms are otherwise computationally intensive

methods.

Providing uncertainties on the spatial distributions of

the sources also opens new questions as for their representa-

tion. The paper proposes some solutions in Sec. IV. The first

one is to set up a threshold on the source coefficients com-

puted from the statistical dispersion of the Markov chains

and to display only the significant results. The second one is

to map the coefficient of determination together with the

source distribution, so as to return a degree of confidence

between 0 and 100% as a function of space.

Finally, the present work also demonstrates some inter-

esting byproducts of the Gibbs sampler, that illustrates its

high flexibility. First, it is easily amenable to handle non-

homogeneous errors on the sensors, a configuration referred

to as heteroscedastic. This turns out to be useful, for exam-

ple, to detect the presence of defective sensors. Second, it is

able to recover sparse sources by exploiting the heterosce-

dasticity of the source coefficients. This is equivalent to

adopting a non-Gaussian prior in the Bayesian inference, in

the same vein as in Ref. 35, for instance, yet with a different

algorithmic solution. It may also be related to a relevance

vector machine (RVM).36 Third, the Gibbs sampler easily

includes parametric uncertainties in the propagator, which

pertains to model mismatch errors.20,37 Although this is not

the main focus of the paper, the concept is rapidly illustrated

with uncertainties in the positions or in the selection of the

sensors. The Gibbs sampler is then shown to provide

increased regularization in the inverse problem, even in the

case of mistuned hyperparameters.

The main novelties introduced in the paper are briefly as

follows.

• The first one is to propose a methodology for assessing

uncertainties in the reconstruction of sound sources and,

in particular, to map them together with the reconstructed

sources.
• As a means to achieve this objective, the second novelty is

a Gibbs sampler that directly operates on the CSM, a char-

acteristic that is crucial to making the approach feasible in

some industrial scenarios.
• The CSM-based Gibbs sampler can also easily handle

sparse priors and regularize the inversion in the case of

sensor position uncertainties.

The following notations are used throughout the docu-

ment. Vectors are denoted by bold lower-case letters (e.g.,

p); unless otherwise stated, the elements of a vector are

assumed arranged columnwise. Matrices are denoted by bold

upper-case letters (e.g., A). Symbol H stands for the trans-

pose conjugate of a matrix or a vector. IN stands for the iden-

tity matrix with dimension N and is simply noted I when

there is no possible confusion. ek is the kth column of I.

IM�N (M � N) stands for the identity matrix IM truncated to

its N first columns, i.e., IM�N ¼ fe1;…; eNg with dimðekÞ
¼ M. The notation dgfakg stands for the diagonal matrix

composed of diagonal elements ak. trfAg is the trace of

matrix A. Operator vecfAg vectorizes matrix A by stacking

is columns one underneath the other. Curly braces around an

indexed elements means that the whole set of elements, for

all values of the index, is considered: for instance, if

i 2 f1;…; Ig, then faig is short for fai; i ¼ 1;…; Ig. When

needed, random variables will be denoted by upper-case let-

ters and their realizations by lower-case letters (e.g., the ran-

dom variable X takes a value x). The expected value of the

random variable X is denoted by the operator EfXg. Square

brackets are used to denote a PDF (e.g., ½x� denotes the PDF

of the random variable X evaluated at x). The notation ½xjy�
stands for the conditional PDF of X given Y¼ y evaluated at

X¼ x. The complex-valued Gaussian PDF of a random vec-

tor X with mean value l, covariance matrix X, and evaluated

at x is noted NCðx; l;XÞ or simply NCðl;XÞ. The inverse

Gamma PDF of a random variable X with shape parameter

a, scale parameter b, and evaluated at x is noted IGðx; a; bÞ
or simply IGða; bÞ.

The paper is organized as follows. Section II first sets up

the direct problem and formulates its inversion as a Bayesian

inference. Next, Sec. III introduces the Gibbs sampler and its

extension based on the CSM. Section IV then introduces

techniques for post-processing the results of the Gibbs sam-

pler and for displaying uncertainties. Finally, Sec. V illus-

trates the proposed methodology on numerical and lab

experiments.

II. PROBABILISTIC MODELING OF THE INVERSE
PROBLEM

This section introduces a solution to the inverse prob-

lem, together with its variables, and proceeds to its layout by

means of a hierarchical Bayesian model.
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A. Parameterization of the direct problem

The general scenario considered in this paper involves

an array of M microphones that delivers pointwise measure-

ments of the acoustic pressures at positions rm; m
¼ 1;…;M. The pressure signals are seen as realizations of

stationary and ergodic stochastic processes in time. All

acoustical variables are expressed in the frequency domain,

at a frequency f, after application of the Fourier transform to

a series of snapshots i ¼ 1;…; I. The snapshots are designed

to be independent and, in virtue of the signal stationarity,

they are also identically distributed. The Fourier coefficient

of the acoustic pressure assigned to snapshot i and micro-

phone m reads pm;i (for the sake of simplicity, the explicit

dependence on f is dropped out from the notation). The col-

lection of Fourier coefficients, for all microphones at snap-

shot i, is arranged in vector pi 2 C
M

. The cross-spectral

matrix (CSM) is then defined as

Spp ¼
1

I

XI

i¼1

pip
H
i : (1)

The sensed acoustic field is assumed to be radiated by a

set of sources, seen as stochastic processes statistically sta-

tionary in time, whose distribution is described by the vector

of coefficients qi 2 C
K

. The radiated pressure at the micro-

phones then reads

pi ¼ Hqi þ ni (2)

where H stands for the transfer matrix and ni for additive

errors accounting for all uncontrolled sources of errors (e.g.,

measurement noise, instrumentation noise, modeling errors).

The noise process ni is assumed stationary. Equation (2) is

directly given in its matrix form as it comes out after discre-

tizing the integral formulation of the direct problem. The

interpretation of the source coefficients qki’s will thus

depend on how the discretization is performed. For instance,

in the ESM method, the quantity qki will be the source

strength of the kth monopole, and in NAH it will be the

amplitude of the kth plane wave. For simplicity, index k will

refer to a spatial position in the rest of the paper.

The aim of the present paper is to infer the source coeffi-

cients qi from the measured CSM Spp. In this view, a proba-

bilistic approach based on a hierarchical Bayesian model is

set up.

B. Bayesian hierarchical inference

The inverse problem includes the unknowns qi. They

are first assigned prior PDFs that reflect the range of possible

values the experimenter expect them to take before incorpo-

rating the experimental data. Next, once experimental data

are available, the posterior PDF of the unknown variables

are deduced from experimental data using Bayes’ theorem,

from which point estimates and measures of statistical dis-

persion (e.g., variance, intervals) can be eventually inferred.

Since the Bayesian method used herein has been intro-

duced previously,24,25,35 it is only briefly summarized.

1. Likelihood

The first ingredient in the Bayesian formulation is the

likelihood function, defined from the PDF of the data given all

other parameters including the unknown source coefficients.

According to model (2), the latter is of the same type as the

PDF of the additive error ni. There are at least two reasons that

justify a Gaussian distribution here. First, the noise errors

result from the summation of a multitude of sources and are

therefore subjected to the central limit theorem. Second, ni

being a Fourier coefficient, it converges quickly to a complex

Gaussian even if the original PDF of the signal in the time

domain is not Gaussian.38 By definition of errors, their mean is

zero—otherwise it would be an explanatory variable in the

model. In the present work, since no dependence structure is a
priori known for the errors in space, the covariance matrix is

taken diagonal with elements b2
m; m ¼ 1;…;M. Finally, since

the snapshots are independent and identically distributed,

the conditional PDF of the noise is ½fnigjfb2
mg�

¼ PI
i¼1NCðni; 0; dgfb2

mgÞ. Consequently, the likelihood

function reads

½fpigjfqig; fb2
mg� ¼ PI

i¼1NCðpi; Hqi; dgfb2
mgÞ: (3)

2. Hyperpriors in the likelihood

Since in general the variances b2
m’s at microphones m

¼ 1;…;M are also unknown hyperparameters, they are

themselves assigned a prior PDF in the form of an inverse

gamma law, ½b2
m� ¼ IGðb2

m; ab; bbÞ, with given shape and

scale parameters ab and bb. The choice of an inverse gamma

law, apart from being flexible enough, is motivated by sim-

plicity. On the one hand, it preserves a positive support (b2
m

� 0) and, on the other hand, it is conjugated with the

Gaussian26,27 (conjugacy will substantially simplify the

inference in the posterior PDF in Sec. III A). Other choices

are obviously possible at this stage, yet they might not result

in significantly different inferential results as long as the

prior is set “vague” enough (i.e., with a large variance). The

general case with heterogeneity of variances in space will be

referred to as heteroscedastic. The particular case when all

variances are assumed equal, b2
m ¼ b2; 8m, will be referred

to as homoscedastic.

3. Source priors

The next and essential ingredient in the Bayesian formu-

lation is the prior PDF on the source coefficients qi. There

are several possibilities at this juncture depending on the

problem at hand. A relevant choice should reflect the user’s

knowledge or expectation on the sources before the data are

observed. A common prior PDF is the complex Gaussian,

which is the less informative PDF according to the maxi-

mum entropy principle39 when nothing else than the

expected mean value and the covariance of the source coeffi-

cients is a priori known. In the present work, the mean is

taken equal to zero since the phase of the Fourier coefficients

is not known in advance. In the absence of further knowl-

edge about spatial dependence, the covariance matrix is

J. Acoust. Soc. Am. 146 (6), December 2019 Antoni et al. 4949



taken diagonal with elements a2
k ; k ¼ 1;…;K. Therefore,

and since snapshots are independent and identically

distributed,

fqigjfa2
kg

� �
¼ PI

i¼1NCðqi; 0; dgfa2
kgÞ: (4)

a. Homoscedasticity and heteroscedasticity of the

sources in space. The particular case where all variances

are assumed equal, a2
k ¼ a2; 8k, will be referred to as homo-

scedasticity of the sources. It tends to diffuse the power of

the sound sources densely and uniformly all over the source

domain. In inverse problems, where one expects to recover

sources that are sparsely distributed in space with high con-

centrations of energy in narrow regions of space, one should

allow the individual variances a2
k to take different values.

This case is referred to as heteroscedasticity of the sources.

To see this, let us consider the prior PDF averaged in space

with respect to variances a2
k ,

qi½ � ¼
XK

k¼1

qija2
k

� �
� 1

K
: (5)

This produces a new space-invariant prior PDF, ½qi�, in the

form a scaled mixture of Gaussians (SMoG) with uniform

weights 1=K. An SMoG prior enforces the spatial sparsity of

the reconstructed sources by compelling most of them to

switch off and allowing only a few to remain active.

b. Hyperpriors. Eventually, for the same reasons as for

the errors variances, the prior PDF of the variances ½a2
k � is

taken in the form of an inverse Gamma law,

½a2
k � ¼ IGða2

k ; aa; baÞ, with given shape and scale parameters

aa and ba. The values of the latter will directly control the

degree of spatial sparsity induced in Eq. (5). Incidentally, the

limit of the sum (5) when the grid fk ¼ 1;…;Kg tends to a

continuum is

qi½ � ¼
ð
NCðqi; 0; vÞIGðv; aa; baÞdv; (6)

which is recognized as a multivariate complex Student-t, a

prior PDF that enforces highly sparse sources (see, e.g.,

Ref. 35).

4. Model uncertainties

Finally, the transfer matrix H can also be assigned

unknown parameters h with a given PDF ½h�. In the present

paper, h will be considered as a vector of nuisance parame-

ters that model some uncontrolled uncertainties in the trans-

fer functions, yet without interest in their exact value. This

will turn out useful in Sec. III C to reflect uncertainty in the

position of the sensors or to perform a random selection of a

subset of sensors. More generally, h could also model ran-

dom uncertainties in the propagation medium (e.g., Refs. 8,

and 11), yet this is outside the scope of the present work.

Since all the aforementioned probabilities are interlaced,

they define a Bayesian hierarchical model where the

parameters of a PDF are themselves seen as random varia-

bles which are assigned PDFs in a higher level. This is illus-

trated in Fig. 1(a).

C. MAP estimation (Bayesian focusing)

The principle of the Bayesian focusing method of

Ref. 24 is now briefly resumed since it is used in this work

to initialize a Gibb’s sampler [Fig. 1(b)]. It consists of find-

ing the MAP estimate based on the likelihood introduced in

Eq. (3) with homoscedastic errors, a complex Gaussian prior

with homoscedastic sources, and without the uncertainty h.

The inverse problem then finds the closed-form solution

q̂i ¼ Arg max
qi

½qijâ2; b̂
2
; fpig�

¼ Arg max
qi

½pijqi; b̂
2� qijâ2
� �

¼ HHHþ ðb̂2
=â2ÞIK

� ��1

HHpi; (7)

where, according to a technique known as empirical Bayes,

the unknown hyperparameters a2 and b2 are replaced by

their MAP estimates on the marginalized posterior,

ðâ2; b̂
2Þ ¼ Arg max

ða2;b2Þ
a2; b2jfpig
� �

¼ Arg max
ða2;b2Þ

a2; b2
� �

�
ð
fpigjfqig; b2
� �

fqigja2
� �

dfqig: (8)

Reference 25 gives details to solve Eq. (8) using one-

dimensional optimization. In addition, Ref. 35 proposes an

iterative version of the Bayesian focusing method to find the

MAP estimate in the case of a SMoG prior PDF that enforces

spatial sparsity.

III. BAYESIAN INFERENCE WITH THE GIBBS
SAMPLER

Based on the Bayesian hierarchical formulation intro-

duced in Sec. II, the object is to infer the full posterior PDF

½fqig; fb2
mg; fa2

kgjfpig�

¼
ð
½fqig; fb2

mg; fa2
kg; hjfpig� h½ �dh (9)

of all unknown variables, with marginalization over the nui-

sance variable h, from which point estimates (e.g., mean val-

ues) as well as statistical dispersion (e.g., variances) of the

source coefficients qi will ultimately be deduced. There are

generally no closed-form solutions for the latter, yet one can

resort to Monte Carlo numerical techniques to directly sam-

ple in the posterior PDF (9). The Gibbs sampler is a popular

MCMC algorithm to do so, which is particularly well suited

to the hierarchical method of Fig. 1.

A. Standard Gibbs sampler

The principle of the Gibbs sampler is to create a Markov

chain that has the posterior PDF (9) as its stationary

4950 J. Acoust. Soc. Am. 146 (6), December 2019 Antoni et al.



distribution. This is accomplished by iterating successive

draws from the conditional distributions ½qijrest�; ½b2
mjrest�;

½a2
k jrest�, where “jrest” means conditioned to all other varia-

bles (as listed in Fig. 1). The hierarchy between the random

variables actually leads to some simplifications in the

expression of the PDFs, due to the dependencies between the

nodes in the graphical model of Fig. 1. Specifically, let x½n�

denote the value that random variable X takes at the nth iter-

ation of the Gibbs sampler and let symbol  mean “sample

from”; then, by representing direct dependencies only, the

sketch of the algorithm given in the case of heteroscedastic

errors and sources is as follows:

• h½n�  ½h�,
• q
½n�
i  ½qijfb2

mg
½n�1�; fa2

kg
½n�1�; h½n�; fpig�,

• b2;½n�
m  ½b2

mjfqig
½n�; h½n�; fpig�,

• a2;½n�
k  ½a2

k jfqig
½n��.

Note that variables updated in the previous steps are sys-

tematically used in the next step (index n instead of n – 1).

The proposed sequence of scans is arbitrary and can be mod-

ified, even during the iterations.41 Using the prior PDFs

introduced in Sec. II B, the above conditional PDFs can now

be related to known distributions which are easy to sample

(superscripts n and n – 1 are momentarily dropped to sim-

plify the notation).

Namely, one has for the source coefficients ½qijrest� pro-

portional to a Gaussian NCðqi; lqi
;XqÞ with

lqi
¼ Bpi

B ¼ XqHðhÞHdgfb�2
m g

Xq ¼ HðhÞHdgfb�2
m gHðhÞ þ dgfa�2

k g
� ��1

8>>><
>>>: (10)

(see Appendix A).

In addition, under the heteroscedastic configuration,

½b2
mjrest� is proportional to an inverse Gamma IGðb2

m; ab þ I;
bb þ bpost

bm
Þ with bpost

bm
¼
PI

i¼1jeH
mðpi �HqiÞj

2
. As for the

homoscedastic configuration, ½b2jrest� is found proportional

to IGðb2; ab þMI; bb þ
PM

m¼1bpost
bm
Þ.

Similarly, for heteroscedastic sources, ½a2
k jrest� is found

proportional to IGða2
k ;aaþI;babpost

ak
Þ with bpost

ak
¼
PI

i¼1jeH
k qij

2

and, for homoscedastic sources, ½a2jrest�/IGða2;aaþKI;

baþ
PK

k¼1bpost
ak
Þ.

Algorithm 1 based on these equations is given hereafter.

B. CSM-based Gibbs sampler

This section introduces a modification of the above

Gibbs algorithm that aims at significantly lowering its com-

putational cost. A limitation of algorithm 1 (Table I) is to

rapidly become over costly in scenarios with long time

records, since it involves as many Markov chains as they are

FIG. 1. (Color online) (a) Bayesian hierarchical model of the inverse problem using plate notation (Ref. 40). Circles indicate random variables and hyperpara-

meters. The square in the lowest level identifies the data. Filled-in areas indicate fixed values. The letter in the lower right corner of a plate indicates the num-

ber of repetitions of the enclosed variable. (b) Initialization of the Gibbs sampler with the MAP solution of Bayesian focusing (Ref. 24) and the

hyperparameters estimated from empirical Bayesian regularization (Ref. 25).

TABLE I. (Algorithm 1) Standard Gibbs sampler.

1: Initialize b2;½0�
m ; a2;½0�

k , and q
½0�
i

2: n 1

3: repeat

4: h½n�  ½h�
5: Compute l½n�qi

and X½n�q

6: q
½n�
i  NCðqi; l

½n�
qi
;X½n�q Þ

7: Compute b
post;½n�
ak

8: if heteroscedastic errors then

9: b2;½n�
m  IGðb2

m; ab þ I; bb þ b
post;½n�
bm

Þ
10: else if homoscedastic errors then

11: b2;½n�  IGðb2
m; ab þMI; bb þ

PM
m¼1 b

post;½n�
bm

Þ
12: end if

13: Compute b
post;½n�
ak

14: if heteroscedastic sources then

15: a2;½n�
k  IGða2

k ; aa þ KI; ba þ
PK

k¼1 b
post;½n�
ak Þ

16: else if homoscedastic sources then

17: a2;½n�  IGða2; aa þ I; ba þ b
post;½n�
ak Þ

18: end if

19: n nþ 1

20: until convergence
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snapshots I. In addition, it involves the evaluation of all the

Fourier coefficients from the measured time frames, fpig
I
i¼1

in Eq. (10), thus requiring large storage capacity. As a matter

of fact, several data acquisition systems do not even record

the set of Fourier coefficients, but only the CSM of Eq. (1).

Therefore, there is a need for a version of the Gibbs sampler

that takes the CSM as its input. This is also motivated by the

fact that, under the stationary Gaussian model of the mea-

surements, the CSM is a “sufficient” statistic that contains

all the information required to solve the inverse problem.

The idea of the CSM-based Gibbs sampler is based on

recognizing that the source coefficients qi only intervene

quadratically in the Gibbs sampler, through the quantities

Sqq ¼ ð1=IÞ
PI

i¼1qiq
H
i and Spq ¼ ð1=IÞ

PI
i¼1piq

H
i . To see

this, let us rephrase Eq. (10) as

qi ¼ lqi
þX1=2

q ni where ni � NCð0; IKÞ: (11)

Substituting the above in the expression of Sqq, one has

Sqq ¼
1

I

XI

i¼1

lqi
lH

qi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Oð1Þ

þX1=2
q

1

I

XI

i¼1

nin
H
i

 !
XH=2

q|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oð1Þ

þ 1

I

XI

i¼1

lqi
nH

i XH=2
q þX1=2

q nil
H
qi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oð1=IÞ

(12)

where Oð1=IÞ [Oð1Þ] means that a quantity grows, in the

root means square sense, proportionally to 1=I (1) with the

number of snapshots I. Substituting lqi
by its expression

(10), the first term in the right-hand side of Eq. (11) is

BSppBH, the second one converges to X1=2
q IKXH=2

q ¼ Xq and

the last one converges to zero since it involves the averagePI
i¼1 pin

H
i =I of independent random variables pi and ni.

Therefore, the following approximation holds:

Sqq ’ BSppBH þ 1

I
X1=2

q WXH=2
q ; (13)

where W is a random matrix following a complex Wishart

PDF WCðI; IRÞ.42 In other words, Sqq, which initially fol-

lowed a noncentral complex Wishart PDF, has been replaced

by a central complex Wishart PDF plus an offset. Similarly,

Spq ’ SppBH (14)

and

1

I

XI

i¼1

ðpi �HqiÞðpi �HqiÞ
H ’ PSppPH þWpp=I (15)

with P ¼ IM �HB and Wpp ¼ ðHX1=2
q ÞWðHX1=2

q Þ
H

(see

Appendix B). Putting all these results together, the CSM-

based Gibbs sampler consists in iterating the following suc-

cessive draws listed in algorithm 2 (Table II) where bpost
bm

¼ eH
mðI � PSppPH þWppÞem and bpost

ak
¼ I � eH

k Sqqek:
It is noteworthy that the reduction in complexity is of a

factor I as compared to algorithm 1, which is substantial

when I is large. Besides, the generation of random Wishart

matrices comes with an efficient algorithm based on the

Bartlett decomposition.43

C. Sensor marginalization and sensor dropout

As explained in Sec. II B, the inclusion of unknown

parameters h makes it possible to marginalize the posterior

PDF over nuisance parameters [see Eq. (9)]. Among the

many perspectives that this approach offers, the present

paper focuses on uncertainties in the sensor positions. The

motivation is practical: while the inverse problem is known

to be extremely sensitive to small perturbations in the data

(without regularization it would try to fit the data exactly by

allowing large departures in the source coefficients), it has to

be solved with sensor positions that are always provided

with limited precision. Hence, it is expected that taking this

uncertainty into account will implicitly regularize the inver-

sion. The idea is reminiscent of the theory developed in Ref.

44 and is introduced here as a conjecture that will be experi-

mentally verified in Sec. V. It is compliant with the discrep-

ancy principle, which states that the amount of

regularization in the inverse problem should be tuned so as

to match the uncertainty in the measurements.

Two strategies are proposed. The first one is to encode

each sensor position rm with a random error hm around its

expected (or “nominal”) value r0
m, i.e., rm ¼ r0

m þ hm. For

convenience, hm might be distributed like a zero mean

Gaussian. The random variables fhmgM
m¼1 can additionally

be made dependent in order to model uncertainties in the

position of the array, such as uncontrolled rotations and

translations (see, e.g., Ref. 45). The Green functions in

matrix HðfhmgÞ are then constantly updated with random

draws of hm in the iterations of the Gibbs sampler. This strat-

egy will be referred to as “sensor marginalization.”

The second strategy follows a similar goal, yet from a

different perspective reminiscent to cross-validation.1 It

TABLE II. (Algorithm 2) CSM-based Gibbs sampler.

1: Initialize b2;½0�
m ; a2;½0�

k and S½0�qq

2: n 1

3: repeat

4: h½n�  ½h�
5: W½n�  WCð0; IRÞ
6: Compute B½n� and X½n�q

7: S½n�qq ¼ B½n�SppðB½n�ÞH þ ðX½n�q Þ
1=2ðW½n�=IÞðX½n�q Þ

H=2

8: Compute b
post;½n�
bm

9: if heteroscedastic errors then

10: b2;½n�
m  IGðb2

m; ab þ I; bb þ b
post;½n�
bm

Þ
11: else if homoscedastic errors then

12: b2;½n�  IGðb2; ab þMI; bb þ
PM

m¼1 bpost
bm
Þ

13: end if

14: Compute b
post;½n�
ak

15: if heteroscedastic sources then

16: a2;½n�
k  IGða2

k ; aa þ I; bb þ b
post;½n�
ak Þ

17: else if homoscedastic sources then

18: a2;½n�  IGða2; aa þ KI; bb þ
PK

k¼1 bpost
ak
Þ

19: end if

20: n nþ 1

21: until convergence
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aims at constraining the solution of the inverse problem to

be almost invariant with respect to the distribution of the

sensors. After all, if one sensor is removed from the array,

the reconstructed source distribution is ideally expected to

remain the same. This scenario is easily simulated in the

Gibbs sampler by randomly removing a subsetM of M0 sen-

sors (M0 � M) from the array at each iteration. The

fhmgM
m¼1 are then random indicator variables used to sample

M0 rows of matrix H, to be removed at iteration n, with

replacement at iteration nþ 1. In the case of heteroscedastic

errors, the values of b2;½n�
m ; m 2 M corresponding to the

removed sensors are either not updated (i.e., b2;½n�
m ¼ b2;½n�1�

m )

or replaced by the average of the other variances [i.e.,

b2;½n�
m ¼

P
k 62Mb2;½n�

k =ðM �M0Þ]. This strategy will be

referred to as “sensor dropout.”

Simulations verify that the two proposed strategies return

very similar results. The first one requires the setting of the

variance r2
h, whereas the second one requires the setting of

the number M0 of sensors to drop out. However, sensor drop-

out is computationally less demanding since it does not

require the re-evaluation of the Green functions in matrix H at

each iteration of the Gibbs sampler and it involves the manip-

ulation of matrices of dimension M �M0 instead of M.

D. Initialization

Being based on a random exploration of the posterior

PDF (9), it is important to properly initialize the Gibbs sam-

pler in the regions of highest probabilities so as to accelerate

its convergence to the stationary PDF (9).

Since lqi
in Eq. (10) corresponds to the MAP estimate

given in Eq. (7), it is recommended to initialize the Markov

chains with the latter. In turn, the values of b2 and a2 (homo-

scedastic assumption at initialization) are well initialized

with the estimates returned by the empirical Bayesian regu-

larization criterion (8). This is illustrated in Fig. 1(b). By

way of an example, let â2 be the empirical Bayes estimate of

a2. Then aa and ba can be set so that the prior PDF ½a2jaa; ba�
has its mode centered on â2 and a standard deviation equal

to a given multiple (or fraction) of â2. Note that having accu-

rate values of b2 and a2 at initialization is crucial in order to

properly regularize the inversion involved in the calculation

of X½1�q in algorithm 1 or 2 and therefore prevents numerical

divergence of the algorithm from the onset.

Intensive simulations have shown that the Gibbs sam-

pler so initialized can then converge after only a few itera-

tions (see, for instance, Fig. 3 in Sec. V). This reduces the

burn-in, i.e., the number of samples burnt for reaching

convergence.

IV. POST-PROCESSING OF THE RESULTS

A. Propagation of errors

One of the definite advantages of MCMC algorithms is

to evaluate uncertainties in any estimate. For instance, the

statistical dispersion of any function f ðqiÞ of the source coef-

ficients is assessed by evaluating f ðq½n�i Þ on the samples

fq½n�i g of the Markov chain. Algorithm 1 immediately returns

this when drawing samples from ½qijrest� and algorithm 2

indirectly returns it by means of Eq. (11).

Again, if quadratic quantities only are of interest, it is

more efficient to draw samples S½n�qq rather than q
½n�
i . This

involves sampling a noncentral complex Wishart matrix

with noncentrality parameter I � BSppBH . Although possi-

ble,46 it may be more convenient to approximate Sqq as in

Eq. (13) and to sample the central complex Wishart PDF

WCð0; IRÞ by taking advantage of the Bartlett decomposi-

tion.43 For example, several quadratic quantities of interest,

such as acoustic intensity and acoustic power, can be formu-

lated as a scalar value Q ¼ cHSqqd for some vectors c and d.

Then, one has the following samples:

Q n½ � ¼ cHB n½ �SppðB n½ �ÞHd|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q0

þ cHðX n�1½ �
q Þ1=2ðW n½ �=IÞðX n�1½ �

q ÞH=2
d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qr

; (16)

where W½n� � WCð0; IRÞ; Q½n�0 returns the central value of

the chain fQ½n�g (notwithstanding variability in the Markov

chain fB½n�g) and Q½n�r reflects the stochastic errors of the

estimation. Algorithm 2 directly outputs the above two quan-

tities. If point estimates are of concern, it might be conve-

nient to replace the chain fQ½n�g by its average over

iterations, hQ½n�i ¼ N�1
PN

n¼1Q½n�, where care must be taken

to start the summation after the burn-in samples correspond-

ing to the transient part of the chain before it has reached

convergence.

B. Imaging the errors

Imaging the uncertainties, e.g., estimation errors, of the

reconstructed source distribution is a challenging task since

it involves a representation of high-dimension quantities.

A first and natural solution is to display only quantities

which are statistically significant and otherwise to clip insig-

nificant coefficients. The proper approach to do so would

require setting up a statistical test to check whether the mean

value of the source coefficient qki at “position” k is statisti-

cally nil (null hypothesis) or not, based on the estimated

source power

Pk ¼
1

I

XI

i¼1

hjq n½ �
ki j

2i

¼ eH
k hS n½ �

qqiek ¼ eH
k B n½ �SppðB n½ �ÞHek|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P0;k

þ eH
k ðX n�1½ �

q Þ1=2ðW n½ �=IÞðX n�1½ �
q ÞH=2

ek|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pr;k

(17)

obtained by setting c ¼ d ¼ ek in Eq. (16). Here, a simplified

approach is proposed by introducing an empirical threshold

on Pk defined as the posterior quantile on the reconstructed

source distribution under the null hypothesis. It is proved in

Appendix C that an approximation to the ð1� pÞ posterior

quantile on P0;k is
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P0;k;1�p ¼ Pr;k �
v2

2I;1�p

2I
� 1

� �
; (18)

with v2
2I;1�p the quantile of the chi-squared with 2I degrees

of freedom. All source coefficients below the above bound

are simply clipped or, equivalently, not displayed. As illus-

trated in Sec. V, this solution might be good enough for prac-

tical purposes.

The second solution is to display a map of the coeffi-

cient of determination of the source coefficients qi on the

source domain, together with the map of the reconstructed

source distribution. The coefficient of determination is

defined as

Rk ¼
P0;k

P0;k þ Pr;k
2 0; 1½ � (19)

and is interpreted as the fraction of power explained by the

reconstructed source at position k. The value of Rk indicates

the degree of confidence in the result on a scale from 0 to 1.

It results from Eq. (18) that an approximation to the ð1� pÞ
posterior quantile under the null hypothesis is

Rk;1�p ¼ 1� 2I

v2
2I;1�p

: (20)

C. Test of homoscedasticity of the errors in space

The Gibbs sampler has been shown to be flexible

enough to easily handle homoscedastic or heteroscedastic

errors. In practice, it may be useful to check which of the

two configurations is most realistic given the measured data.

A statistical test is again easily set up based on the samples

of the Markov chains. It follows the lines of Lindley’s

method47 applied to the Bayesian analysis of variance (see,

e.g., Ref. 48).

The principle consists in checking whether the squared

distance between the M chains is significantly different from

the variance within the chains. Care should be taken to prop-

erly pre-process the Markov chain samples in order to meet

the assumptions of the test. First, the logarithmic transforma-

tion fXn;mg ¼ f ln ðb2;½n�
m Þg is applied to Gaussianize the data.

Next, the effective sample size Neff ¼ N=ð1þ 2
P

n> 0qnÞ
(with qn the normalized autocovariance of fXn;mg) is calcu-

lated in order to account for sequential correlation in the

chain.26 Then, it is proved in Appendix D that the hypothesis

of homoscedasticity of errors is rejected if the F-ratio

F ¼ MðNeff � 1ÞNeff

M � 1

XM

m¼1

j �Xm � �X j2

XM

m¼1

XN

n¼1

jXn;m � �Xmj2
; (21)

with �Xm ¼ ð1=NÞ
PN

n¼1Xn;m and ��X ¼ ð1=MÞ
PM

m¼1
�Xm is

found greater than FM�1;MðNeff�1Þ;1�p, the ð1� pÞ quantile of

the Fisher distribution with M – 1 and MðNeff � 1Þ degrees

of freedom.

V. EXPERIMENTAL RESULTS

This section demonstrates the potential of the proposed

CSM-based Gibbs sampler through a few experiments. First,

a numerical experiment is considered to illustrate the techni-

cal aspects. Next, the feasibility of the approach is validated

on real measurements. The latter experiment also considers

errors due to uncertainty in the sensor positions.

A. Numerical experiment

In order to ease the interpretation of the results, a simple

one-dimensional setup is considered. The source distribution

consists of two pistons located at x1 ¼ �0:5 m and x2 ¼ 0:5
m, both with diameter of 0.5 m and driven by two indepen-

dent white Gaussian noises with RMS values of 1 and 0.2 m/

s, respectively. The analysis is carried out in a frequency

band centered at f¼ 1000 Hz. The sound field is captured

with an uniform linear array (ULA) composed of M¼ 20

microphones, with spacing 0.1 m and range distance z¼ 0.5

m to the source plane. The experimental setup is schemed in

Fig. 5(a). The SNR is set to 20 dB on all microphones and

the number of snapshots used in the estimation of the CSM

is I¼ 200. In modelling the inverse problem, the source dis-

tribution is expanded on the canonical basis, so that each

source coefficient qik represents an elementary source

strength at “position” k, with a total of K¼ 61 coefficients.

With the present experimental setup, this results in a

severely ill-posed problem. As observed from Picard’s plot1

in Fig. 2, it appears that only 11 out of 20 of the projected

data jymj2 ¼ uH
mSppum are above the eigenvalues s2

m obtained

from the singular value decomposition H ¼
PM

m¼1s2
mumvH

m

of the transfer matrix H; the largest gap between jymj2 and

s2
m is about 6 orders of magnitude. Clearly the inverse prob-

lem would not be solvable without regularization. The

source and the errors variances are assumed homoscedastic

and heteroscedastic, respectively. The Gibbs sampler is ini-

tialized from the outputs of Bayesian focusing, as explained

in Sec. III D. It is run for at least 100 iterations. The Markov

chains of the Gibbs sampler are displayed in Fig. 3. The

chains quickly converge to their stationary distribution after

only a few iterations thanks to the good initialization pro-

vided by Bayesian focusing. It is also seen that the Markov

chains of the variances b2;½n�
m are well clustered, which indi-

cates that homoscedasticity should be accepted. This obser-

vation is further confirmed by displaying the histograms of

FIG. 2. (Color online) Picard plot comparing the projected data jymj2
¼ uH

mSppum (black bullets) with the eigenvalues s2
m (orange circles), where

H ¼
PM

m¼1s2
mumvH

m is the singular value decomposition of the transfer matrix H.
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the errors variances in Fig. 4(a). The F-ratio of Eq. (21) is

1.1 (with Neff ¼ 130), to be compared to a 0.95 posterior

quantile of 1.6 under the null hypothesis.

The reconstructed source distribution is displayed by

means of quantity P0;k defined in Eq. (18) in Fig. 5(a),

together with the MAP returned by Bayesian focusing and

the 0.95 posterior quantile given by Eq. (18). As expected,

P0;k almost coincides with the MAP estimate. Yet, the Gibbs

sampler indicates that most of the estimated source coeffi-

cients stay below the 0.95 posterior quantile when I¼ 200

snapshots are used, which is similarly confirmed by the coef-

ficient of determination Rk in Fig. 5(b). The conclusion is

therefore that the reconstruction of the second piston is not

statistically significant and should be interpreted with

caution. One remedy is to increase the number of snapshots,

e.g., to I¼ 2000, which then lowers the threshold below the

level of the source coefficients pertaining to the second

piston.

For the sake of comparison, the same experiment is also

run with a standard deviation of the noise five times as large

on the fifth microphone. Figure 4(b) shows that the Gibbs

sampler easily detects the presence of non-homogeneous

errors. The F-ratio of Eq. (21) is now 171.4, to be compared

to the same 0.95 posterior quantile of 1.6 as before, under

the null hypothesis. In this case, the best solution is simply

to remove the measurement coming from the defective

microphone.

Eventually, comparisons are made on the numerical

data between the results of the CMS-based and the standard

Gibbs samplers. Let PCMS
0;k ; Pstd

0;k, and Ptrue
0;k stand for the

source distribution estimated from the CMS-based Gibbs

sampler, the standard Gibbs sampler, and the true distribu-

tion, respectively. The relative mean difference, DI

¼
PK

k¼1jPCMS
0;k � Pstd

0;kj
PK

k¼1Ptrue
0;k , is displayed in Fig. 6 for

FIG. 3. Markov chains of (a) the source variance a2;½n�, (b) the errors vari-

ance on the microphones b2;½n�
m ; m ¼ 1;…; 20, and (c) the spectra of the

source coefficients S
½n�
qkqk ; k ¼ 1;…; 61.

FIG. 4. (Color online) Histograms of the errors variances log10ðb2;½n�
m Þ for

microphones m ¼ 1;…; 20 with 1-standard-error-of-the-mean interval in

pink (light gray), 1-standard-deviation interval in blue (dark gray), and aver-

age value in red (dash). (a) Homoscedastic and (b) heteroscedastic scenarios.

FIG. 5. (a) (Color online) Reconstructed source distribution P0;k (RMS val-

ues). The dashed black line shows the theoretical distribution made of two

pistons driven by incoherent signals and the black circles show the array of

microphones. The thick orange curve and the thin red curve are the MCMC

(homoscedastic sources) and MAP estimates, respectively. The gray curves

are the thresholds given by the 0.95 posterior quantile under the null hypoth-

esis with I¼ 200 and 2000 snapshots. (b) Coefficient of determination Rk

corresponding to (a) with its threshold given by the 0.95 posterior quantile

under the null hypothesis.
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increasing numbers of snapshots I. It is seen that DI asymp-

totically decreases to zero when I grows, as expected. The

mean difference is remarkably small even for low values of

I, about 1 : 1000 the true distribution. It is much smaller than

the bias (not shown in the figure) and is two magnitudes

lower than the standard deviation of the posterior of P0;k

(dotted line). The latter is in turn almost identical for the two

algorithms, with a difference of the same order as DI.

A last numerical experiment is carried out with the

diameter of the two pistons becoming infinitesimal so as to

simulate two (incoherent) point sources. The inverse prob-

lem is solved with heteroscedasticity of the source coeffi-

cients in order to enforce the recovery of spatially sparse

sources. The working frequency is f¼ 1500 Hz and the dis-

tance range z¼ 0.05 m so as to place the inversion in a diffi-

cult configuration. Figure 7 illustrates the reconstructed

source distribution. Bayesian focusing without sparsity

enforcement is clearly unable to properly retrieve the two

point sources, whereas the MCMC estimate P0;k shows a

remarkable result in this respect.

B. Lab experiment

The proposed CMS-based Gibbs sampler is now illus-

trated using experimental measurements. The experimental

setup shown in Fig. 8 is comprised of three small acoustical

sources produced by the expansion of air at the outlet of

three tubes connected to a common compression chamber.

The latter is excited with white noise up to 5 kHz. A uniform

rectangular array (URA) with M ¼ 6� 5 microphones is

placed at a range distance z¼ 0.2 m parallel to the source

plane. The spacing between the microphones is 0.1 m. Then

aim is to reconstruct the distribution of acoustical intensity,

I 0;k at “position” k in the source plane, as returned by Eq.

(16) by properly setting c and d and averaging the N¼ 50

last samples of the Markov chain. The CSM is computed

with I¼ 100 snapshots with a frequency resolution of 1 Hz.

As in the numerical experiment, the results of Bayesian

focusing together with Bayesian empirical regularization ini-

tialize the Gibbs sampler. The number of iterations is kept

limited to N¼ 100 with a burn-in of 50 samples in order to

not inflate the overall computational burden.

For the sake of completeness, models with homoscedas-

tic and heteroscedastic sources are compared. For both of

them, the statistical test of Sec. IV C indicated that the

hypothesis of homoscedastic errors could be accepted based

on an 0.95 posterior quantile. The results are first displayed

at the working frequency f¼ 1850 Hz, where the PSDs of the

pressure signals show a peak of high energy. Only the source

coefficients above the 0.95 posterior quantile under the null

hypothesis given by Eq. (18) are displayed. The correspond-

ing threshold on the coefficient of determination is equal to

1.39. The reconstructed acoustical intensity I 0;k for the two

FIG. 6. Relative mean difference DI (black line) between the estimates of

P0;k from the CMS-based and the standard Gibbs samplers as a function of

the number of snapshots I used in the algorithms, together with the standard

deviation of the posterior of P0;k (dotted line).

FIG. 7. (Color online) Reconstructed source distributions P0;k (RMS values)

in the case of two incoherent point sources marked by the red circles. The

black circles show the array of microphones. The thick orange curve and the

thin red curve are the MCMC (heteroscedastic sources) and MAP (without

sparse prior) estimates, respectively. The gray curve is the threshold given

by the 0.95 posterior quantile under the null hypothesis.

FIG. 8. (Color online) Experimental setup showing the generation of the acous-

tical sources and their sensing with an URA (black circles stand the micro-

phone positions and red dots for the discretization of the source domain).
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models is displayed in Fig. 9, together the coefficient of

determination Rk. It is seen that the three sources are well

reconstructed, yet since the heteroscedastic model enforces

spatial sparsity, it ends up in better spatial resolution, with

estimated distributions close to point sources. The coefficient

of determination also indicates good confidence in the

results, even if the heteroscedastic model is accompanied by

a slightly lower coefficient of determination outside the

source support sets [see Fig. 9(d)].

Next, the reconstruction of the acoustical intensity is

attempted at frequency f¼ 1270 Hz corresponding to a dip of

energy in the PSDs of the pressure signals. The result is dis-

played in Fig. 10(a) together with the coefficient of determi-

nation in Fig. 10(b). The latter clearly indicates low

confidence: the maximum value of Rk reaches 0.145 and

stays below the 0.95 posterior quantile equal to 1.38 under

the null hypothesis. Therefore, it is safe to simply ignore the

estimation at this frequency.

FIG. 9. (Color online) Reconstructed acoustical intensity I0;k (left column, in W/m2) in the source plane and coefficient of determination Rk (right column) at

f¼ 1800 Hz for (a), (b) homoscedastic and (c), (d) heteroscedastic sources.

FIG. 10. (Color online) (a) Reconstructed acoustical intensity I0;k (W/m2) in the source plane and (b) coefficient of determination Rk at f¼ 1270 Hz (homosce-

dastic sources).
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Finally, the algorithm is run for 2500 frequency lines in

the excited frequency range from 500 to 3000 Hz. The acous-

tical power of each source is then estimated by integrating

the acoustical intensity I 0;k in a circular region around its

center, for each frequency f. The so obtained acoustical

power spectra psðf Þ, s¼ 1, 2, 3 are displayed in Fig. 11

together with their credible intervals computed from 0.5 and

0.95 quantiles of the noncentral chi-squared

I r;k

2I
� v2

2IðdÞ (22)

with noncentrality parameter d ¼ I � I 0;k=I r;k. These intervals

show regions where the estimates are less reliable, in particular

below 750 Hz where the excitation is low. At the same time,

they are much narrower than the variations in the spectra, which

can be reliably interpreted as resonances of the tube connected

to the compression chamber. It is emphasized at this stage that

obtaining intervals on the acoustical power spectra (in dB scale)

is easily obtained from the Markov chains, as explained in Sec.

IV A. In contrast, obtaining them from other means such as ana-

lytical expressions would be much more tedious, or even impos-

sible in general without approximation when the result of

interest is transformed through a nonlinear operation.

Another result that can hardly be obtained by other

means is the total statistical dispersion due to all sources of

uncertainties in the inverse problem, including those relating

to the estimation of hyperparameters such as a2
k and b2

m. This

is demonstrated here by comparing the histograms of the

acoustical power spectra psðf Þ, s¼ 1, 2, 3 at f¼ 1850 Hz

obtained from the Markov chains fS½n�qqg; fa2;½n�g; fb2;½n�g
with the histograms obtained from the chain fS½n�qqg, wherein

the values of a2 and b2 have been replaced by their average

over all iterations. As seen in Fig. 12, the first strategy only

can account for all sources of errors, thus leading to wider

histograms than the second strategy. The difference is espe-

cially noticeable at frequencies where regularization is

strong, thus with high values of b2 and of its variance.

Being severely ill-posed, the present inverse problem

eventually illustrates well the benefit of the marginalization

or dropout strategies of Sec. III C. With this end in view, the

Gibbs sampler is run with hyperparameters a2 and b2 pur-

posely fixed to mistuned values so as to quickly produce an

unstable estimate, as depicted in Fig. 13(a). Yet, this is easily

fixed by dropping microphones randomly (here 2 out of 20),

FIG. 11. (Color online) Acoustical power spectra psðf Þ of the three sources

s¼ 1, 2, 3 obtained from the Markov chains with their 95% credible intervals.

FIG. 12. (Color online) Histogram of the acoustical power spectra psðf Þ of

the three sources s¼ 1, 2, 3 at f¼ 1850 Hz. The red (light gray) histograms

are obtained from the three Markov chains fS½n�qqg; fa2;½n�g; fb2;½n�g of the

Gibbs sampler and the blue (dark gray) one from the first chain only with

frozen values of a2 and b2. (Histograms computed with Hamming kernel

smoothing with bandwidth equal to 100 units.)

FIG. 13. (Color online) (a) Reconstructed acoustical intensity I0;k (W/m2) at f ¼ 1850 Hz with hyperparameters a2 and b2 kept fixed to mistuned values in the

Markov chains. (b) Same as in (a) with microphone dropout.
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as seen in Fig. 13(b). A nearly similar result is obtained by

assigning a small random error around the sensor positions.

However, the price to pay for this robust regularization is

necessarily a loss in the spatial resolution.

VI. CONCLUSION

This paper has investigated a solution, based on running

Markov chains of a cross-spectral-matrix-based Gibbs sam-

pler, to assess estimation errors involved in the reconstruc-

tion sound sources. The Gibbs sampler can converge within

a few iterations when initialized with Bayesian focusing,

which makes it a realistic tool in spite of its high computa-

tional cost. This suggests using it as a post-processing tool,

subsequent to Bayesian focusing.

In addition, this paper has proposed means to display the

estimation errors. One solution that seems particularly rele-

vant is to map the coefficient of determination, as a function

of space, together with the reconstructed source distribution.

The Gibbs sampler designed in this paper has shown

great flexibility to accommodate various scenarios. In partic-

ular, it can easily handle non-homogeneous errors on the

sensors, enforce the sparsity of the reconstructed sources, or

regularize the inverse problem against uncertainties in the

sensor positions. This opens new prospects to be further

investigated in future research.
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APPENDIX A: STANDARD GIBBS SAMPLER

1. Expression of [qijrest]

Using Bayes rule, one has

qijrest
� �

¼ ½qijfb2
mg; fa2

kg; h; fpig�
/ ½pijfb2

mg; h; fqig� qijfa2
kg

� �
/ NCðpi; HðhÞqi; dgfb2

mgÞNC qi; 0; dgfa2
kg

	 

:

(A1)

The above product of Gaussians is itself proportional to

the Gaussian NCðqi; lqi
;XqÞ defined in Eq. (10) (see, e.g.,

Ref. 49).

2. Expression of ½b2
mjrest � in the heteroscedastic case

½b2
mjrest�¼ ½b2

mjfqig;h;fpig�
/ ½fpigjb2

m;h;fqig�½b2
m�

¼PI
i¼1NCðpi;HðhÞqi;dgfb2

mgÞIGðb2
m;ab;bbÞ:

(A2)

Thanks to the conjugacy of the inverse Gamma with the

Gaussian, the above product is itself proportional to the

inverse Gamma IGðb2
m; ab þ I; bb þ bpost

bm
Þ with bpost

bm
as

defined in Sec. III A.

3. Expression of ½b2jrest � in the homoscedastic case

b2jrest
� �

¼ b2jfqig; h; fpig
� �

/ PI
i¼1NCðpi; HðhÞqi; b

�2IMÞ
�PM

m¼1IGðb2; ab; bbÞ

/ IG b2; ab þMI; bb þ
XM

m¼1

bpost
bm

 !
: (A3)

4. Expression of ½a2
k jrest � in the heteroscedastic case

a2
k jrest

� �
¼ a2

k jfqig; h; fpig
� �

/ fqigjfa2
kg

� �
a2

k

� �
¼ PI

i¼1NC qi; 0; dgfa2
kg

	 

IGða2

k ; aa; baÞ

/ IG a2
k ; aa þ I; ba þ bpost

ak

� �
(A4)

with bpost
ak

as defined in Sec. III A and where the last line

again results from the conjugacy of the inverse Gamma prior

with the Gaussian.

5. Expression of ½a2jrest � in the homoscedastic case

a2jrest
� �

¼ a2jfqig; h; fpig
� �

/ PI
i¼1NC qi; 0; a2IK

	 

PK

k¼1IGða2; aa; baÞ

/ IG a2; aa þ KI; ba þ
XK

k¼1

bpost
ak

 !
: (A5)

APPENDIX B: CSM-BASED GIBBS SAMPLER

Proof of Eq. (14),

Spq ¼
1

I

XI

i¼1

piq
H
i ¼

1

I

XI

i¼1

piðlqi
þX1=2

q niÞH

¼ 1

I

XI

i¼1

pip
H
i BH þ 1

I

XI

i¼1

pin
H
i XH=2

q ; (B1)

where the first term on the right-hand side is recognized as

SppBH and the second one is seen to converge to zero since

the random variables pi and ni are independent.

Proof of Eq. (15),

1

I

XI

i¼1

ðpi �HqiÞðpi �HqiÞ
H

¼ 1

I

XI

i¼1

pip
H
i þHqiq

H
i HH � piq

H
i HH �Hqip

H
i

	 

¼ Spp þHSqqHH � SpqHH �HSH

pq: (B2)

The rest of the proof is to substitute expressions (13) and

(14) for Sqq and Spq.
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APPENDIX C: THRESHOLD ON SOURCE
DISTRIBUTION

Let us momentarily consider the case where B and Xq

are known. Then, the posterior PDF of qki ¼ eH
k qi given B

and Xq is the complex Gaussian with mean eH
k Bpi and

covariance eH
k X1=2

q WXH=2
q ek. In turn, the quadratic average

of the source coefficients has the posterior PDF

1

I

XI

i¼1

jqkij2jSpp;B;Xq

" #
¼ 1

2I
v2

2IðdkÞeH
k Xqek (C1)

with v2
2IðdkÞ the noncentral chi-squared distribution with 2I

degrees of freedom and noncentrality parameter dk ¼ eH
k

BSppBHek. Under the null hypothesis, dk ¼ 0 and the above

PDF then involves a standard chi-squared distribution. In

this case, the ð1� pÞ posterior quantile on
PI

i¼1jqkij2=I is

v2
2I;1�peH

k Xqek=ð2IÞ. This defines a threshold under which

one expects a fraction ð1� pÞ of the values to fall. The last

step is to use these results as approximations when B and Xq

are unknown. The proper way to deal with this situation

would be to marginalize the posterior with respect to these

variables. Instead, a technique known as empirical Bayes is

used, which consists in replacing them by their posterior

means. Then
PI

i¼1jqkij2=I is replaced by Pk as given in

Eq. (17) and the threshold by ðv2
2I;1�p=ð2IÞÞeH

k hðX1=2
q Þ

½n�
W½n�

ðXH=2
q Þ

½n�iek.

APPENDIX D: TEST OF HOMOSCEDASTICITY OF
ERRORS

Since the posterior PDF of Xn;m is Gaussian with mean

independent of index m under the null hypothesis, the aver-

age �Xm ¼ ð1=NÞ
PN

n¼1Xn;m is also a posteriori Gaussian with

a mean l and a variance r2=Neff . Similarly, the overall aver-

age ��X ¼ ð1=MÞ
PM

m¼1
�Xm is a posteriori Gaussian with mean

l and a variance r2=ðMNeff Þ. Thus, the sum of squaresPM
m¼1j �Xm � ��Xj2, which reflects the squared distance

between the chains, is distributed like ðr2=Neff Þv2
M�1. In

addition, the sum of the squares
PM

m¼1

PN
n¼1jXn;m � �Xmj2,

which reflects the variance within the chains, is distributed

like r2 � v2
MðNeff�1Þ. Therefore, the F-ratio given by Eq. (21)

follows a Fisher distribution FM�1;MðNeff�1Þ. The null hypoth-

esis is thus rejected if F > FM�1;MðNeff�1Þ;1�p.
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