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a b s t r a c t

The diagnosis of gearboxes plays a crucial role in the maintenance of wind turbine. Considering critical
elements e i.e. gears and bearings e of gear set, the effective and exact identification of fault sources is
appealing yet challenging in complex mechanical systems. Although rotating machine signals are
perfectly modelled as cyclostationary (CS) processes, very few researches have so far tried to refine single
CS component of interest from a mixture of multi sources; thus the efficacy of classical vibrodiagnostic
tool (e.g. envelope analysis) can be greatly enhanced in a wide variety of situations, e.g. poly-
cyclostationary cases in wind turbine gearboxes. As such, this paper exploits the statistical behavior of
CS signals using a stochastic model based on a periodic variance to extract more specific information
from the data themselves. In particular, a statistical indicator is proposed to assess the strength of CS
components as well as a full-band time-dependent filter to recover the pure CS signals in the time
domain. This proves very useful in many situations where the characteristic components of gears and/or
bearings are embedded in heavy background noise that jeopardize their detection in practical applica-
tions. The derivation of the proposed scheme is described in detail. Its effectiveness is finally demon-
strated with both synthetic and experimental examples.

© 2019 Published by Elsevier Ltd.
1. Conventions

Vibration-based source separation is the issue of extracting in-
dividual but physically different sources from vibration measure-
ments: periodic, random stationary and random nonstationary
[1,2]. Themixtures can be supposed to be additive, multiplicative or
convolutive, depending on the physical nature of the application.

The connections between the source contributions handled in
the paper are schemed in Fig. 1.

For a complex system such as awind turbine gearbox, it is highly
recommended to separate only one signal of interest (SOI) ewhich
implies cyclostationarity e in an iterative way, rather than trying to
handle all sources at once. The strategy is based on the assumption
of stationary speed fluctuations, while recognizing deterministic
, jerome.antoni@insa-lyon.fr
(purely periodic) and random (quasi-cyclostationary) signals as
being first- and second-order cyclostationary ones in presence of
additive interactions. It is emphasized that the other sources may
be either stationary or cyclostationary as long as their cyclic fre-
quencies are different from that of the source to be extracted.
2. Introduction

Wind energy presents one of the most important resources for
human being thanks to its properties of cleanliness and renew-
ability. As widely known, since wind is generated by temperature
differences between air masses, wind turbines are typically
installed in rough hard-to-reach places where hostile weather and
high waves make the maintenance task rather challenging and
expensive [3].

The topic on fault diagnosis and condition monitoring of wind
turbines has attracted growing interest in the scientific community
as mentioned in many review articles [4e8]. Gearboxes and gen-
erators are main but fragile parts in drive trains due to the issues of
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Nomenclature

t time variable (in s)
t time-lag (in s)
f spectral (or carrier) frequency (in Hz)
Df frequency resolution in f (in Hz)
fk k-th discrete frequency (in Hz)
a cyclic (or modulation) frequency (in Hz)
xðtÞ signal of interest
Px signal power
PxðtÞ mean instantaneous power
Pxðf Þ power spectral density
Pxðt; f ;Df Þ instantaneous power spectrum
xDf ðt; f Þ filtered signal in the frequency band ½f � Df = 2; f þ

Df =2�
WVxðt; f Þ Wigner-Ville spectrum
AIPS Averaged Instantaneous Power Spectrum

DFT Discrete Fourier Transform
STFT Short-Time Fourier Transform
SES Squared Envelope Spectrum
w½n� data window (function of time index n)
XSTFT ði; f Þ STFT coefficient at time index i and frequency f
L signal length
Nw window length in STFT
R block shift in STFT
K total number of blocks used in spectral estimates
Fs sampling frequency
tn n-th discrete time instant (in s)
T cyclic period of a cyclostationary signal (in s)
a cyclic (or modulation) frequency (in Hz)
amax maximum analyzed cyclic frequency (in Hz)
Rxðtn;tÞ instantaneous autocorrelation function of signal x
Sxða; f Þ Spectral Correlation of signal x
SSESx ðaÞ Squared Envelope Spectrum of signal x
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high impact and mechanical strength, and thus foremost causes of
wind turbine downtime [9,10]. Furthermore, bearings cause more
than 50% of faults on gearboxes, and therefore 50% of all costs
associated to these faults [4]. Consequently, the conditioning
monitoring of wind turbine bearings has also become a priority to
limit premature failures.

Bearings are vulnerable yet essential components of wind tur-
bines as well as in other rotating machines widely serving in heavy
industry, such as aerospace, automotive and transmission systems.
Typical bearing defects are caused by cracks, breakages, spalls or
uneven wear (pitting, scuffing, abrasion, erosion), often located on
the matting surface of the inner race, the outer race or the rolling
elements. As the rolling element strikes a defect, the ensuing vi-
bration signal typically consists of a series of repetitive transients
occurring at a specific rate called “bearing characteristic fre-
quency”. Intuitively, each transient resembles a damped impulse
response with specific frequency content corresponding to the
excited structural resonances, periodically triggering fault signa-
ture because of the inherent operation of a machine.

Therefore, fault detection involves a process of signal demodu-
lation. The prevailing method in the modern literature is surely the
squared envelope spectrum (SES). The envelope spectrum is amean
to demodulate a nonstationary signal e of possible random nature,
in particular cyclostationary e and identify periodic modulations
related with the bearing characteristic frequencies [11]. While, the
fact that the SES of the raw signal is rarely a good diagnostic
Fig. 1. Structure of vibration sig
indicator when used without pre-processing, because it is highly
sensitive to the presence of background noise and other interfering
components [12e14]. Thus, this issue has been addressed and has
led to the use of the SES in combination with different pre-
processing tools apt to identify the optimal demodulation band,
for instance rooted on the spectral kurtosis e computed with the
fast kurtogram e as an effective measure of the ‘impulsiveness’
hidden in a signal [15,16]. A recent extension of the kurtogram,with
similar goal but refined properties, is the infogram [17e19]. Many
wavelet filtering method have been developed by introducing a
band pass filter around the resonance frequency of the bearing
signature [20e22]. Other approaches e possibly used in conjunc-
tion with the latter ones e are based on first denoising the signals
by various techniques before computing the SES [23e26]. In sum-
mary, the success of the diagnosis of complex systems primarily
depends on the validity of source separation (or extraction) process.
By this means, the following analysis will be significantly robust in
harsh situations without need of pre-processing step.

As a research hotspot, cyclostationary (CS) processes, whose
statistics (e.g. the auto-correlation function) varies periodically as a
function of time, has been employed in a large amount of fruitful
researches for mechanical fault diagnosis [27,28], such as bearings
[12,29], gears [30] and so forth [31,32]. Additionally, a great interest
has been given to source separation of processes induced by CS
properties. Of particular interest is the way of filtering the original
signals, that indicates how to decipher the nature of
nals handled in the paper.
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cyclostationarity, such as linear periodically time-varying filters
(LPTV) [33], SUBspace BLind EXtraction (SUBLEX) [34], cyclic
Wiener filter [35], averaged instantaneous power spectrum (AIPS)
[36,37] and time-varying filters [25,38], etc. However, it seems that
so far researchers have preferred to employ analytical approaches
(aforementioned methods) to separate CS signals (bearing or gear
faults), rather than data-driven ones which imply learning the
signal structure from the data.

In this paper, a novel stochastic model, whose aim is to extract a
CS SOI in the presence of competing sources (background noise and
interfering signals) is proposed. It proceeds from only a priori
known cyclic frequency of the SOI e which may be estimated be-
forehand, for instancewith the fast spectral correlation [28]. Next, a
statistical indicator is proposed to assess the strength of CS com-
ponents as well as a full-band time-dependent filter to recover the
SOI in time domain. Finally, the filtered signal is analyzed by per-
forming the conventional SES, thus showing a significant
enhancement as compared to that of the original signal. In addition,
it easily allows the use of several cyclic frequencies, which yields a
more accurate estimation of the SOI, for instance while handling
the case of two sources (bearing and gear signals) in wind turbine
gearbox.

The organization of this paper is as follows. In Section 2, a brief
review of the wind turbine layout, its mechanical properties and its
problem statement is presented. After a reminder about the
concept of the AIPS, Section 3 introduces a novel stochastic model
for CS signals on the second-order. Next, in Section 4, an iterative
method that alternates between the extraction of the SOI and
estimation of the parameters is developed in the maximum-a-
posterior sense. A discussion on parameter setting and algorithm
initialization is presented in Section 5, which is also demonstrated
with synthetic signals. Finally, Section 6 illustrates the application
of the proposed methodology on actual vibration signals and
compares it with the classical methodology based on the (fast
kurtogram þ filteration þ SES) sequence.
3. Problem statement in wind turbines

Fig. 2 displays a typical layout of a wind turbine. Driven by the
wind power, the turbine rotor can transmit wind energy into me-
chanical energy, via the main shaft through the gearbox to the
generator. The 3-stage gearbox has the function to optimize the
generator speed to be as suitable as possible for the generation of
Fig. 2. Layout of a typical wind turbine: a com
electricity. For instance, it is generally designed as planetary and
sun gear (with the standstill ring gear) with parallel gear structure
to achieve higher transmission ratio and output power within
compact space. The parallel gear has three shafts: the slow speed
shaft connected to the sun shaft, the intermediate speed shaft and
the high speed shaft used in combination to drive the generator.

As a typical case of complex systems, a wind turbine contains
several components rotating at different speeds. For instance the
wind turbine of Fig. 2 contains 3 main sources e i.e. 17 rolling
element bearings, 9 gears and 8 shafts e likely to release energy. It
should be re-emphasized that the rolling element bearings are
numerous, crucial but fragile components of gearboxes. Therefore
and due to its practical importance, the bearing source is a priority
to analyze among the others. As pointed out previously, bearing
damage triggers repetitive impacts of the moving components on
the defect, i.e. the inner race, the outer race or the rolling elements.
As a matter of fact, such diagnostic information is often masked by
numerous extraneous sources of vibration, simply referred to
hereafter as “background noise”. For instance, they are mostly gear
mesh components modulated by the shaft speed, which usually
dominate the lower frequency range (up to around 5 kHz). It often
happens that the major resonance frequencies of bearing signals is
relatively higher than that of gear signals, whereas these different
frequency ranges add more challenges to wind turbine monitoring,
mainly due to cross frequencies and low frequency bursts.
4. Proposal of a periodic-variance based model

4.1. The concept of instantaneous power spectrum

Let yðtnÞ denote the measured signal in the time domain where
tn ¼ n=Fs refers to time instants acquired with sampling frequency
Fs. Whenever convenient, the stream of samples yðtnÞ, n ¼ 0;…;L�
1, will be simply denoted by y½n�. By convention, it consists of the
SOI x½n� and the residual part r½n� denoted “background noise” in
presence of additive interactions. The measured signal is thus
expressed by the linear combination

y½n� ¼ x½n� þ r½n�: (1)

Although r½n� probably comprisesmultiple components (or even
the other SOI of minor importance), it intervenes in model (1) as a
wide-sense “background noise”. It is noteworthy that their exact
separations are not necessary at this stage, yet they may be either
plex structure with several components.



1 Although the method requires the knowledge of the cyclic frequency of the SOI
to be extracted, it is worth insisting that it is semi-blind in the sense that the latter
can be estimated from the data and that nothing else is assumed (about the number
of interferences, their statistics and the noise properties). However, the ensuing
procedure will entirely benefit from the accuracy of feature extraction while
making the computational complexity acceptable.

2 This means that the frequency fk is separable and distinctive from other fre-
quencies. For notational simplicity, it will be dropped off in cases wherein it will not
cause any confusion.
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periodic or cyclostationary as long as their basic cycles are different
from that of the source to be extracted. In contrast, since x½n� rep-
resents the fault signal in its early stage, it is well modelled by a
series of impacts that repetitively excite resonances of the bearing
and of its receiving structure, thus leading to successive damped
impulse responses. Having a localized signature both in time and in
frequency, such transients are well captured in a time-frequency
decomposition. Although several time-frequency decompositions
are possible, the proposed approach only requires an invertible one.
The STFT meets this property while being associated with efficient
algorithmic implementations. In addition, due to the Central Limit
Theorem applied to the DFT (discrete Fourier Transform), the co-
efficients of the STFT quickly tend in distribution to a complex-
valued Gaussian [39], an assumption that will substantially
simplify the probabilistic model introduced hereafter. It is note-
worthy that the aim is to decompose the signal without loss of
information in the time-frequency domain in which it will be
processed; therefore, considerations such as the uncertainty prin-
ciple will not matter because they are relevant to time-frequency
representation (i.e. visual analysis), which is not of concern here.

The STFT of signal x½n� over a time interval of duration Nw= Fs is
defined as

Xði; fkÞ¼
XNw�1

m¼0

x½iRþm�w½m�e�j2pfkiRþm
Fs (2)

where w½m� denotes a positive and smooth Nw-long data-window
which truncates a segment of the L-long signal x½n� at time datum
i (i ¼ 1;…;N, N ¼ floor ½ðL � NwÞ=R þ 1�) with window shift R (1<
R<Nw) and where fk ¼ kDf denotes the discrete frequencies with
frequency resolution

Df ¼ Fs
Nw

(3)

and bin indices k ¼ 0;…;Nf (Nf ¼ Nw=2� 1 if Nw is even and Nf ¼
ðNw �1Þ=2 if it is odd).

The interpretation of Xði; fkÞ is the “complex envelope” of signal
x½n� in a narrow frequency band of bandwidth Df centered on fk and
sampled at time instants iR=Fs. Its squared magnitude,

��Xði; fkÞj2,
thus reflects the energy flow in the frequency band [27]. Moreover,
the collection of squared coefficients

��Xði; fkÞj2’s for all time indices
iR and frequencies fk defines the spectrogram, which is referred to
as the instantaneous power spectrum (IPS). For a CS source, the IPS
evidences cyclic behavior in and across its frequency bins and it
appears to be very useful for describing the energy distribution
about the signal as a function of time and frequency. From now on,
signal x½n� is assumed to be cyclostationary on the second-order.
This means that its Wigner-Ville spectrum,

W V XX

h
n; fk

�
¼ E

n
F
t/fk

n
x
h
nþ t

.
2
i
x
h
n� t

.
2
i*oo

; (4)

(where n and t stand for the time instant and the time-lag, E for
the ensemble average operator, F for “Fourier transform” and � for
the complex conjugate) is a poly-periodic function of time n;
therefore it can also be expressed by a Fourier series

W V 2X

24n; fk
1A¼

X
aj2A

S 2X

0@fk;aj

1Aej2pajn=Fs (5)

over the spectrum A ¼ fajg of cyclic frequencies aj associated with
the non-zero Fourier coefficients, S 2Xðfk;ajÞ, which denotes the
cyclic power spectrum (units¼ power/Hz) [32].
Although the Wigner-Ville distribution (WVD) has been exten-
sively used for identification of rotating machinery spectral com-
ponents, its usage is still hampered by some problems (e.g.,
interferences, locally negative values). For instance, because of its
uneven performance for different classes of signals, it is not suitable
for analyzing wind turbine gearboxes, especially when there is a
relatively large dispersion of the energy level. Thus, an alternative
distribution is proposed by defining the averaged IPS [36], evolved
from the synchronous averaging technique. It has proven that the
IPS is amenable to recover CS components masked by other com-
ponents originated from different sources. It therefore applies to
either multi-fault cases or in the presence of high noise distur-
bances [37]. However, due to the properties of the synchronous
averaging operation, it may undergo the influence of artifacts in the
presence of random slip. In real life applications, identification of
signals can benefit from the stochastic model by adapting its con-
tent to fit the data themselves. However it is sometimes impossible
to identify them all, and one thus prefers one which already in-
corporates some prior knowledge about the data.

To this end, a novel stochastic model is proposed to automati-
cally recognize the time-dependent signature of CS components via
a pre-selected cycle T, thus resulting in a semi-blind feature
extraction.1 Therefore, an accurate energy distribution over time
index n is tailored to the data which leads to high adaptability and
flexibility. The goal of designing this model is to approach the
behavior of experimental data as close as possible.
4.2. The stochastic model for periodic energy flow

The STFT coefficients Xði; fkÞ is defined as a random function of
time datum i with frequency index fk, which follows a time-
dependent complex normal distribution,

Xði; fkÞ � C N
�
0; s2x ðiÞ; fk

�
(6)

where C N ðm; s2ðiÞ; fkÞ denotes the circular-symmetric complex
normal distribution with mean m and instantaneous variance s2ðiÞ
applied to frequency fk. Without loss of generality, it is assumed
that m ¼ 0 (as obtained after first centering the signal). It is hereby
reminded that in this paper the proposed model consistently
regards the frequency fk as a parameter rather than a variable.2

In the case of a second-order CS signal, the distribution (6) ex-
hibits some hidden periodicities in the statistical sense. Intuitively,
the cyclic variation of s2x ðiÞ evidences the presence of a repetitive
behavior in the signal, for instance due to the occurrence of a fault
in the form of a series of impulses or in the form of periodic
modulations, but not only.

In observations from rotating machinery, the cyclic frequency
results from the machine kinematics which is usually known or
alternatively can be obtained, for instance by means of the spectral
correlation or the squared envelope spectrum. This guarantees a
perfect extraction of the SOI in the noiseless case.

For given period T of the component of interest, the time-
dependent variance of Yði; fkÞ can be described as follows:



3 This expresses specific, definite information about a variable that is determined
largely by pre-existing evidence rather than any original assumption; the terms
“prior” and “posterior” are generally relative to a specific datum or observation. A
reasonable approach is to make the prior parametrization with expected value and
variance value as schemed in Eq. (24).

4 It is proved that the inverse gamma distribution is a conjugate prior of the

complex normal distribution where pðs2��y½n�; mÞ � Inv� Gamma
�
a þ n

2; b þ
P n

i¼1
jyi�mj2

2

	
, more details are shown in Ref. [40].
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s2yði; fkÞ¼ s2x ði; fkÞ þ s2r ðfkÞ; (7)

where s2x ði; fkÞ ¼ s2x ðiþj�T ; fkÞ (T is the periodic time of impacts
and j is an integer) and s2r ðfkÞ denotes the variance of additive noise
RðfkÞwhich is assumed time-invariant for simplicity. Inwords, such
processing reflects the hidden repetitiveness of the energy flow in
the frequency band fk, namely periodic-variance based model,
which specifying cyclostatioanry signals in the field of machine
condition monitoring and fault diagnostics.

5. Extraction of cyclic components of interest

Let us start with the joint posterior probability distribution of
the SOI and the model parameters given the observations,

pðXði; fkÞ; qjYði; fkÞÞ; (8)

where q ¼ fs2x ðiÞ; s2r ; ax; bx; ar ; brg denotes the set of all the un-
known parameters.

Under these circumstances, the desired signal Xði; fkÞ and the
parameters q may be estimated from the expectation-
maximization (EM) algorithm�
pðXði; fkÞjYði; fkÞ; qÞ; a priori known q
pðqjYði; fkÞ; Xði; fkÞÞ; a priori known Xði; fkÞ

: (9)

The EM algorithm makes use of the following quantities.

5.1. Expectation step:extraction of the CS signal

First, the posterior probability distribution of the SOI given the
observations and the current parameters bq is expressed as

pðXði; fkÞjYði; fkÞ; bqÞfpðYði; fkÞjXði; fkÞ; bqÞpðXði; fkÞjbqÞ: (10)

Therefore, combining the above definition (6), it holds that

pðXði; fkÞjYði; fkÞ; bqÞ¼
exp

(
�jYði;fkÞ�Xði;fkÞj2bs2

r ðfkÞ

)
exp

(
�jXði;fkÞj2bs2

x ði; fkÞ

)
p2bs2

r ðfkÞbs2
x ði; fkÞ

:

(11)

After some manipulations, Eq. (11) can be expressed as

pðXði; fkÞjYði; fkÞ; bqÞ¼
exp

(
�jXði;fkÞ�mxði; fkÞj2

s2
x ði; fkÞ

)
ps2x ði; fkÞ

¼C N ðXði; fkÞ; mxði; fkÞ; sxði; fkÞÞ

(12)

with8>>>>><>>>>>:
s2x ði; fkÞ ¼

 
1bs2

r ðfkÞ
þ 1bs2

x ði; fkÞ

!�1

mxði; fkÞ ¼
s2x ði; fkÞbs2

r ðfkÞ
Yði; fkÞ

: (13)

Therefore the conditional expectation of the signal of interest
Xði; fkÞ reads

EfXði; fkÞjYði; fkÞ; bqg¼mxði; fkÞ¼
1

1þ Hði; fkÞ
Yði; fkÞ (14)

where
Hði; fkÞ¼
bs2r ðfkÞbs2x ði; fkÞ (15)

denotes the time-dependent variance ratio between the noise and
the CS signal at fk.

Finally, the time signal bx½n� is obtained from Eq. (14) by using the
inverse STFT.

Two remarks are noteworthy. First, it is seen that Eq. (14) cor-
responds to a periodic time-varying filter from which superior
performance is expected than from a conventional time-invariant
filter. Second, the standard Wiener filter appears as a particular
case under the assumption of stationarity, that is

EfXði; fkÞjYði; fkÞg¼
1

1þ bs2

r ðfkÞbs2

x ðfkÞ

Yði; fkÞ; (16)

where the time index i of the time-dependent variance bs2
x ði; fkÞ

stays constant for all time instants. In other words, Eq. (16) then
corresponds to the case where s2y ¼ s2x þ s2r instead of Eq. (7).
5.2. Maximization step:estimation of unknown parameters

Next, let consider the posterior probability distribution of the
unknown parameters given the observations and the current bXði;
fkÞ, expressed as

p
�
q
��Yði; fkÞ; bXði; fkÞ�fp

�
Yði; fkÞ

��bXði; fkÞ; q�p�q��bXði; fkÞ�:
(17)

By definition, the unknown shape and scale parameters fax; bx;
ar; brg will be estimated and kept constant in the procedure of
data-driven initialization. As a result, q consists of the unknown
parameters fs2x ðiÞ; s2r g hereafter.

The time-dependent variance is therefore defined as a hidden
variable, which is referred to as the inverse gamma distribution

s2ðiÞ� Inv� Gammaða; bÞ (18)

with shape parameter a and scale parameter b. For example, s2x ðiÞ �
Inv� Gammaðax; bxÞ and s2r ðiÞ � Inv� Gammaðar; brÞ stand for the
time-dependent variance of x½n� and r½n�, respectively.

Along these lines, in the case of proposed stochastic model, s2x ðiÞ
and s2r are further assigned informative priors3 in the form of
analytically tractable conjugate distributions4

p
�
s2x ði; fkÞ

���Yði; fkÞ; bXði; fkÞ�� Inv

� Gamma
�
ax þN

2
; bx þ

N
2
P
n
jXði; fkÞj2

o	
(19)

where P f�g is the poly-periodic extraction operator [27], defined
as follows



5 According to the Zangwill's global convergence theorem [41], the proof of
convergence of the proposed EM algorithm (for computing maximum a posteriori
estimate) to the stationary points of the posterior density function is studied in
great detail in Ref. [42].
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P f�g¼
X
a2A

P af�g (20)

where the set A contains all cyclic frequencies a associated with
non-zero periodic components. In particular, the P a-operator first
computes the Fourier coefficient at frequency a and then assigns it
to that periodic component expðj2patÞ in order to reconstruct a
pure sinusoidal signal, defined as follows

P af�g¼
�
lim
T/∞

1
T

ð
T

ð�Þe�j2patdt
	
,ej2pat : (21)

In this case, let us first calculate the expectation of cyclic mod-
ulation spectrum (CMS)

bP2X
�
fk;aj

�¼ 1
N

XN
i¼1

��bXði; fkÞ��2e�j2paj iR=Fs (22)

with a collection of parallel cyclic spectra A ¼ fajg at the discrete
cyclic frequencies aj ¼ j=T . It results from the property that, for a CS
stochastic process, the alignment of non-zero Fourier coefficients
only appear on a countable set of frequencies, i.e. aj.

According to Eq. (20)-(21), the instantaneous power spectrum
P2Xði; fkÞ is then computed as follows

P
n
jXði; fkÞj2

o
¼
X
aj2A

bP2X
�
fk;aj

�
ej2paj iR=Fs : (23)

Now let us remind the property of Inv� Gammaða; bÞ parame-
trization with

8>>><>>>:
E
n
s2
o
¼ b

a� 1
for a>1

Var
n
s2
o
¼ b2

ða� 1Þ2ða� 2Þ
for a>2

: (24)

Taking the expected value of s2x ði; fkÞ, one arrives at

E
n
s2x ði; fkÞ

o
¼
bx þ N

2 P
n
jXði; fkÞj2

o
ax þ N

2 � 1
: (25)

The above equation is a fundamental step towards the dynamic
behavior of experimental data in a statistical sense. It not only
returns the repetitively distributed variance which indicates the CS
source, but provides also quantification of their significance which
highlights the results of this paper.

In the stochastic framework, let CSðfkÞ denote the statistical in-
dex at frequency fk, obtained by taking the standard deviation of
s2x ði; fkÞ over the time instants i, expressed as follows

CSðfkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

�
s2x ði; fkÞ � s2x ðfkÞ

�2vuut (26)

where s2x ðfkÞ is the mean value of the time-dependent variance. It is
noteworthy that CSðfkÞ is a cyclostationary index on the fourth-
order that is apt to measure the “depth” of a modulation with
frequency a ¼ 1=T Hz at carrier frequency fk.

Likewise, the expectation of the time-invariant variance s2r ðfkÞ is
expressed as
E
n
s2r ðfkÞ

o
¼ br þ

P N
i¼1

jYði; fkÞ�bX ði; fkÞj2
2

ar þ N
2 � 1

(27)

which appears as a particular case under the stationary assumption
of the noise.

By now, the Maximization step is completely introduced and it
will alternatewith the Expectation step in the iterative process, thus
driving the convergence of the proposed EM algorithm.5 The per-
formance of the proposed extraction scheme will be respectively
demonstrated on synthetic and experimental signals in subsection
5.3 and 6.

6. Parameter setting, algorithm initialization and
demonstration

6.1. Parameter setting

The proposed methodology is based on the decomposition of
the signal by means of the STFT. Therefore, the first required pa-
rameters to tune are the window length Nw and the window shift R
(see Eq. (2)).

6.1.1. Window length Nw

The value of Nw directly controls the frequency resolution (see
Eq. (3)), which characterizes the carrier frequency. It is recom-
mended that it covers at least the duration TI of a transient, which
implies the condition

Df <1=TI : (28)

As the STFT is subjected to the uncertainty principle, DtDf � 1,
the highest cyclic frequency of s2x ðiÞ, amax ¼ 1=Dt, is bounded up-
ward byDf [27]. Therefore the available range of hidden variables is
limited by

amax 	 Df : (29)

Accordingly, Nw should be taken short to allow a relatively high
varying rate in Eq. (29), but long enough to satisfy Eq. (28), i.e. Fs,
TI <Nw 	 Fs,Dt as illustrated in Fig. 3.

Other reasons for taking Nw small is to reduce the computation
time required by the STFTand also to ensure sufficient segments for
accurate parameter estimation.

It is noticed here that the rule for setting Nw also works in the
special case where the interval Dt between adjacent transients is
close to the impulse duration TI . In other words, it is robust enough
to balance the trade-off between a fine resolution and a high cyclic
frequency of hidden variables. As long as the selected Nw respects
the conditions of Eqs. (28) and (29), it is possible to run the pro-
posed algorithm with a few tentative windows, ranging logarith-
mically (e.g. the powers of two), and eventually to obtain the best
result of all. These facts will be further verified by real-world signals
in Section 6.

6.1.2. Window shift R
There are two considerations for the window shift R:

� first, for the STFT to be invertible, it is recommended to take at
least 75% overlap with a Hanning window,



Fig. 3. Illustration of how to select the window length Nw and shift R with respect to
transient durations TI and cycle Dt.

G. Xin et al. / Renewable Energy 147 (2020) 1739e1758 1745
� second, if invertibility is not required, R should be taken suffi-
ciently small to keep enough diagnostic information while not
increasing too much computational cost and the dependence
between adjacent segments; a typical choice is within 50% and
75% overlap with a Hanning window.

Therefore, the window shift can be easily set by default.
6.2. Initializing parameters of the EM algorithm

The EM algorithm generally requires a good initialization step in
consideration of two reasons. The first ones is to avoid being
trapped in possible local maxima of the posterior and the second
one is to achieve a fast convergence speed. A simple self-running
solution is given hereafter to obtain initial values along the fre-
quency indices fk step-by-step.

The initialization of spectral components runs in an iterative
way, i.e. fk�1/fk (bin index k ¼ 2; … ; Nf ), so as to start with the
initial variance of noise

E
n
s2r ðfkÞ

o½0� ¼ 1
N

XN
i¼1

��Yði; fk�1Þ � bXði; fk�1Þ
��2: (30)

This operation is based on the assumption that the measure-
ment Yði; fkÞ embodies the CS signal Xði; fkÞ in the presence of
stationary noise NðfkÞ. Whereafter, the initial time-dependent
variance of the CS signal is approximated by the subtraction

E
n
s2x ði; fkÞ

o½0� ¼P
n
jYði; fkÞj2

o
� E
n
s2r ðfkÞ

o½0�
: (31)

Next, according to Eq. (24), one can estimate the shape and scale
parameters of noise from

8>>>><>>>>:
barðfkÞ ¼

�
E
n
s2r ðfkÞ

o½0��2
Var
n
s2r ðfkÞ

o½0� þ 2

bbrðfkÞ ¼ ðbarðfkÞ � 1Þ � E
n
s2r ðfkÞ

o½0�
(32)

where the initial variance of s2r ðfkÞ can be taken as large as possible

to achieve a wide dispersion e.g. Varfs2r ðfkÞg
½0� ¼ 10� Efs2r ðfkÞg

½0�
.

Similarly, for that of the CS signal,
8>>>><>>>>:
baxðfkÞ ¼

�
E
n
s2x ðfkÞ

o½0��2
Var
n
s2x ðfkÞ

o½0� þ 2

bbxðfkÞ ¼ ðbaxðfkÞ � 1Þ � E
n
s2x ðfkÞ

o½0�
(33)

where the initial variance of s2x ðfkÞ can be taken as Varfs2x ðfkÞg
½0� ¼

10� Efs2x ðfkÞg
½0�

and the initial expectation of s2x ðfkÞ as

Efs2x ðfkÞg
½0� ¼ 1

N
P N

i¼1Efs2x ði; fkÞg
½0�
.

Of particular importance is the initialization at frequency f1,
which is a special case of the above steps. Specifically, taking the
mean value of the squared magnitude of measurement Yði; f1Þ, one
can obtain the initial variance of noise as

E
n
s2r ðf1Þ

o½0� ¼ 1
N

XN
i¼1

jYði; f1Þj2: (34)

Then the initial time-dependent variance of the CS signal reads

E
n
s2x ði; f1Þ

o½0� ¼�P njYði; f1Þj2o� E
n
s2r ðf1Þ

o½0��
þ

(35)

where operator ð…Þþ keeps only the positive value of a quantity.
Next, the shape and scale parameters of noise can be initialized

by following Eq. (32); to the contrary, the parameters of the CS
signal are taken as baxðf1Þ ¼ 0 and bbxðf1Þ ¼ 0 to avoid the risk of
overfitting.

It has been observed in numerous experiments that the pro-
posed initializations are often quite close to the maximum a pos-
teriori estimates (global maximum) while allowing at the same
time a fast convergence speed of the EM algorithm. This will be
demonstrated in the next subsection.
6.3. Cases 1 & 2: demonstration of parameter selection

To demonstrate the performance of the proposed algorithm, a
synthetic random signal is generated with a resonance frequency
f0 ¼ 0:1 Hz which is further modulated by a relatively high fault
frequency a 0 ¼ 5� 10�3 Hz (T ¼ 1=a 0 ¼ 200 s, the sampling fre-
quency is normalized to Fs ¼ 1 Hz). More precisely, the produced
signal is described as:

yðtÞ¼
Xþ∞

j¼�∞
hðt� jTÞ þ nðtÞ (36)

HðzÞ¼ b1
a1 þ a2,z�1 þ a3,z�2 (37)

where nðtÞ denotes white noise that achieves a noise-to-signal-
ratio of 6 dB and the signal length is L ¼ 104 samples. A second-
order system is defined by Eq. (37), whose numerator and de-
nominator coefficients are b ¼ ½1� and a ¼ ½1; �2cosð2pf0Þr; r2�
with r ¼ 0:95, respectively. Fig. 4 shows the spectrogram (magni-
tude of the STFT) of the raw signal, with its periodic energy flow,
with period T (dashed line in red). The time record is displayed in
Fig. 5 (a).

Following Eqs. (30)-(35), one can initialize the parametersbs2
x ði; fkÞ½0�, bs2

x ðfkÞ½0� and bs2
r ðfkÞ½0� as shown in Fig. 6 (a) and Fig. 7 (a).



Fig. 4. Spectrogram of the signal simulated in Case 1 with resonance frequency f0 ¼ 0:1 Hz, r ¼ 0:95 and fault frequency a 0 ¼ 5� 10�3 Hz (T ¼ 1=a 0 ¼ 200 s, Nw ¼ 25 and R ¼ 4).

Fig. 5. (a) Synthetic signal of Case 1 with additive white noise (noise-to-signal-ratio¼ 6 dB. (b) Synthetic transient signal. (c) Filtered time signal x½n�.
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It is seen that the proposed initialization is simple and effective,
even though the estimated spectrum of the signal of interest still
contains a significant contribution from noise especially beyond
0.18 Hz. After convergence of the EM algorithm, the estimated

signal and noise spectra, bsxðfkÞ½kþ1� and bsrðfkÞ½kþ1�, are close to the
theoretical quantities as can be seen in Fig. 7 (b). In particular, the

very good estimation of the variance bsxði; fkÞ½kþ1� is displayed in
Fig. 6 (b) and further reflected by the cyclostationary index CSðfkÞ in
Fig. 8.

Finally, the filtered time signal bx½n� is displayed in Fig. 5 (c), as
obtained by using the inverse STFT of the estimated CS signal, bXði;
fkÞ. The corresponding time-varying filter is shown in Fig. 6 (c) and
(d), respectively.

To highlight the performance of the proposed extraction



Fig. 6. (a) Initialized time-dependent variance of the CS signal, bs2
x ði; fkÞ½0� , and (b) the estimated bs2

x ði; fkÞ½kþ1� from the EM algorithm. (c) Spectrogram of the estimated CS signal, bXði;
fkÞ, with (d) its periodic time-varying filter 1=ð1þHði; fkÞÞ as defined in Eqs. (14)-(15).

Fig. 7. (a) Initialized spectra (variance of noise and CS signals bs2
r ðfkÞ½0� and bs2

x ðfkÞ½0� , in blue dotted line and red line, respectively) and (b) estimated spectra from the EM algorithm,

(bs2
r ðfkÞ½kþ1� and bs2

x ðfkÞ½kþ1� , in blue dotted line and red line, respectively) together with the theoretical squared magnitude frequency response jHðzÞj2 (black dashed line). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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scheme, Fig. 9 (a) shows a better view of the recovered time signalbx½n� superposed with synthetic transient signal. It is noticed that
the extracted CS signal is composed of all the spectra, yet only
dominated by the major resonance frequencies with the higher
weight. This property can also be verified by the initialized
parameter bs2
x ði; fkÞ½0�, even though it still embodies some marginal

spectral contents in Fig. 9 (b). After the iterative steps of the EM
algorithm, there remain only the components from the CS signal as
can be seen in Fig. 9 (c) associated with Fig. 8.

It is well known that in rotating machines various rotations of



Fig. 8. Cyclostationary index CSðfkÞ is defined as a statistical index at frequency fk in Eq. (26).

Fig. 9. (a) Enlarged view of the filtered time signal bx½n� of Fig. 5 (b) and (c). (b) Initialized time-dependent variance of the CS signal, bs2
x ði; fkÞ½0� , and (c) the estimated bs2

x ði; fkÞ½kþ1�

from the EM algorithm.
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mechanical components are likely to produce periodic modulations
of the vibration signals. Besides the transient signal, periodically-
modulated signals (modulated white noise and modulated
narrow-band noise) are also tested with as good performance as in
Case 1.

In order to demonstrate the potential of the proposed scheme,



Fig. 10. (a) Synthetic signal of Case 2 with additive white noise (noise-to-signal-ratio ¼ 6 dB. (b) Synthetic repetitive transient signal. (c) Filtered time signal bx½n�.
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Case 2 (repetitive transient signal) is generated by means of two
random variables described as:

yðtÞ¼
Xþ∞

j¼�∞
h
�
t� jT � tj

�
Aj þ nðtÞ (38)

HðzÞ¼ b1
a1 þ a2,z�1 þ a3,z�2 (39)

where tj � Nðmt ¼ 0;st ¼ 0:05TÞ and Aj � NðmA ¼ 0; sA ¼ 0:1Þ ac-
count for the uncertainties on the arrival time and on the magni-
tude of the jth transient, respectively. The white noise nðtÞ is set
with a noise-to-signal-ratio of 6 dB and the signal length is L ¼ 104

samples. A second-order system is defined by Eq. (39), whose
numerator and denominator coefficients are b ¼ ½1� and a ¼
½1; �2cosð2pf0Þr; r2� with r ¼ 0:95, respectively.

Fig. 10 (a) and (b) show the signal and the synthetic repetitive
transient signal in time. It is highlighted that although these tran-
sients are not exactly periodic because the rolling elements expe-

rience some random slips, its corresponding parameters bs2
x ði; fkÞ½0�

and bs2
x ði; fkÞ½kþ1� both provide good performances as displayed in

Fig. 11 (a) and (b). In addition, the spectrogram of the estimated CS

signal bXði; fkÞ still reveals distinct spectral contents with its peri-
odic time-varying filter as seen in Fig. 11 (c) and (d), which are
further verified by the recovered time signal bx½n� in Fig. 10 (c). It is
seen from the enlarged view of bx½n� in Fig. 12 (a) that the transients
are close to the reference, even though the frequency of these
modulations are not integrally related to the mean transient
6 Strictly speaking, such a signal is referred to as a quasi-cyclostationary, i.e. with
an energy distribution that has no finite period but can still be expanded into a sum
of Fourier series.
repetition rate.6 The corresponding parameters bs2
x ði; fkÞ½0� andbs2

x ði; fkÞ½kþ1� are estimated as well as those of Case 1, but consid-
erably wider as marked in Fig. 12 (b) and (c).

7. Examples of application

This section illustrates how the proposed method performs on
real-world signals concerned with the diagnostics of rolling
element bearings. Case 3 demonstrates its effectiveness on the
database of the wind turbine gearboxes. In addition, the stochastic
model addressing the issue of signal denoising and weak feature
enhancement are can be easily extended to analyze poly-
cyclostationary signals with different basic cycles. For instance,
Case 4 evidences a marked signature of the rolling elements as well
as a comparison of the results with the fast kurtogram; Case 5
achieves a multi-source separation e i.e., bearing and gear signals.

7.1. Case 3: CS signatures of wind turbine gearboxes

This first experiment deals with the dataset from a three-stage
gearbox of the wind turbines in northern Sweden [43]. The vibra-
tion signals are related to the axial direction of an accelerometer
mounted on the housing of the output shaft bearing as shown in
Fig. 2. The sampling frequency is fk ¼ 12:8 kHz and each signal
segment is 1.28s.

From inspection of Fig. 13, the required parameters of the STFT
can be selected by following Eqs. (28)-(29), i.e. Nw ¼ 26, R ¼ 8.
Fig. 14 (a) displays the spectrogram (magnitude of the STFT) of the
raw signal with its periodic energy, which approximately domi-
nates in the band ½1; 2� kHz. According to Eqs. (30)-(35), one can
initialize the parameters of the EM algorithm. As a result, the
recovered CS signal and time-dependent variance show a “cyclic
behavior” at 1=T ¼ 18:8 Hz with evidence of spectral content in
band ½1:4; 2� kHz, as seen in Fig. 14 (c) and (d), respectively. The CS



Fig. 11. (a) Initialized time-dependent variance of the CS signal, bs2
x ði; fkÞ½0� , and (b) the estimated bs2

x ði; fkÞ½kþ1� from the EM algorithm. (c) Spectrogram of the estimated CS signal,bXði; fkÞ, with (d) its periodic time-varying filter 1=ð1þHði; fkÞÞ as defined in Eqs. (14)-(15).

Fig. 12. (a) Enlarged view of the filtered time signal bx½n� of Fig. 10 (b) and (c). (b) Initialized time-dependent variance of the CS signal, bs2
x ði; fkÞ½0� , and (c) the estimated bs2

x ði; fkÞ½kþ1�

from the EM algorithm.
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index CSðfkÞ is further calculated to quantify the strength of SOI over
the carrier frequency fk as illustrated in Fig. 15. In particular, the
accelerometric sensor (which is close to output shaft bearing)
clearly evidences the dominant harmonics of the shaft rotation
with the carrier frequency band ½1:4; 2� kHz, which probably
corresponds to the misalignment of the bearing, mechanical
looseness, etc. Since the CS index provides an indication of the fault
severity, it is highly recommended to performmaintenance actions,
even though no typical signature of bearing failures is displayed.
Concerning the dataset, it proves the evidence of the periodic



Fig. 13. Selection of the window length Nw and shift R with respect to transient durations TI and cycle Dt.

Fig. 14. Spectrogram (magnitude of the STFT) of (a) the raw signal jYði; fkÞj, (b) the noise signal jRði; fkÞj and (c) the recovered CS signal jXði; fkÞj (Note: the classical power spectrum
can be approximated by taking the time-average of the spectrogram as marked in black dash-dot lines.). (d) The extracted feature by means of the time-dependent variance
s2x ði; fkÞ½kþ1� .
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energy flow in wind turbine gearboxes, yet lacking the sophisti-
cated examples submerged by interfering sources. Case 4 and 5 are
therefore analyzed to further validate the effectiveness of the
proposed method.
7.2. Case 4: an incipient ball fault

In the following, two typical types of bearing fault (i.e. inner race
and ball fault) are investigated in a dataset from the Vibrations and
Acoustics Laboratory of the University of New South Wales (Syd-
ney) [44]. The test-rig is a one-stage gearbox with primary and
secondary shafts supported by ball bearings.

The parameter settings are reported in Table 1 for the tested
signals in Case 4 and Case 5, respectively.

The first test deals with an incipient bearing damage on the
rolling elements (i.e. ball fault), yet in the presence of strong gear



Fig. 15. Cyclostationary index CSðfkÞ is defined as a statistical index at frequency fk in Eq. (26).

Table 1
Parameter settings used in Case 4 and Case 5.

Case 4 Case 5

Sampling frequency Fs (kHz) 48
Duration (s) 1.365 2.082
Nw 26 27

R 8 16
Rotation frequency e frot (Hz) 10 6
Gear mesh frequency e fg (Hz) 320 192
Cage frequency e FTF (Hz) 4.1
Ball spin frequency e BSF (Hz) 26.1
Ball pass frequency on inner race e BPFI (Hz) 42.8
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vibrations, thus under a relatively low signal-to-noise ratio (SNR).
Fig. 16 shows the spectrogram (logarithmic scale) of the raw

signal in conjunction with marked periodic energy flow (1= T ¼
2� BSF , dashed line in red). Moreover, Fig. 17 (a) illustrates the
waveform of the measured signal, fromwhich no obvious impulses
can be observed. By means of the proposed method, the signal is
therefore divided into the filtered part x½n� (driven by 1= T ¼ 2� BSF
Hz) and the noise (residual) part r½n�, as presented in Fig. 17 (c) and
(d) respectively.

It is seen from Fig. 18 (a) that there exists non-stationary com-
ponents in the high frequency band above 10 kHz, whereas the low
frequency range is dominated by high energy components related
to the gearbox vibrations. In particular, the former component ev-
idences a “cyclic behavior” at 1=T ¼ 2� BSF Hz, as also seen in
Fig. 18 (b) and (c). Additionally, Fig. 18 (d) clearly reveals the time-
dependent variance in the time-frequency plane.

Since the information of the bearing fault is completely masked
by high-energy components from the gearbox, the fast kurtogram
is therefore applied as a comparison to demonstrate the capability
of the proposed method. As seen in Fig. 19, there exists several local
maxima in the kurtogram, one maximum is therefore taken at 73.2
whose corresponding to the frequency band ½13:5; 15� kHz. Fig. 17
(b) displays the band-pass filtered signal in band ½13:5; 15� kHz,
which clearly evidences the transient nature similar to the filtered
part x½n� in Fig. 17 (c).

On closer inspection, Fig. 20 highlights that the signal is
composed of a series of repetitive transients hidden under gear
vibrations. In particular, Fig. 20 (b) and (c) compare the enlarged
view of results based on the kurtogram and the proposed time-
dependent filter. As compared to the classical methodology, the
proposed one achieves an exact location of the transients with their
full-band spectral content. This may be used advantageously to
better characterize the fault signature, infer the fault dimension
and spectral content, and possibly update trend models for
prognostics.

Furthermore, due to the high-energy interferences, the con-
ventional envelope analysis (SES) fails to detect the fault signatures,
whereas the filtered time signal confirms the existence of bearing
ball fault (see Fig. 21). Comparing with Fig. 21 (b), the spectrum of
Fig. 21 (c) better enhances the odd harmonics of the BSF than the
SES from the kurtogram, even if the diagnostics information is very
similar in both cases.

7.3. Case 5: separation of bearing and gear signatures

This last case resembles very much the previous one, yet with
only the signature of the inner race. Note that the energy of the gear
vibrations is found significantly higher than that of bearing BPFI.
Moreover, due to the close physical connection of the gear and
bearing elements, the acquired signal shows a mixture of the two
types of signal over the whole frequency range e see Fig. 22 (a).
Here again, both the bearing and gear signatures are distinctly
extracted as the SOI, as shown in Fig. 22 (b) and (c), respectively. It
is further verified in Fig. 22 (d) that there exists a crossing point
around 6 kHz.

Fig. 23 (a) and (b) display the CS indices CSðfkÞ, which respec-
tively indicate the strength of source 1 and 2 over the carrier fre-
quency fk, related to the bearing and gear signature.



Fig. 16. Spectrogram (logarithmic scale) of the signal in Case 4 (frequency resolution Df ¼ 750 Hz) with evidence of spectral content in band ½9:75; 23:25� kHz.

Fig. 17. Case 4. Vibration waveform of (a) the raw signal, (b) the band-pass filtered signal in the frequency band ½13:5; 15� kHz returned by the fast kurtogram, (c) the filtered time
signal x½n� driven by 1=T ¼ 2� BSF Hz from the proposed full-band time-dependent filter and (d) the noise (residual) signal r½n�.
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Fig. 24 shows a zoomed view of the vibrationwaveform, divided
into the filtered parts of source 1 and 2. The detection of the fault is
further demonstrated by means of the SES computed in these
components in Fig. 25. The periodic-variance based model clearly
evidences the dominant harmonics of the gear mesh frequency
with sidebands at the shaft rotation, contrary to the classical SES of
the raw signal which has a poorer SNR.



Fig. 18. Spectrogram (magnitude of the STFT) of (a) the raw signal jYði; fkÞj, (b) the noise signal jRði; fkÞj and (c) the recovered CS signal jXði; fkÞj with evidence of spectral content in
band ½9:75; 23:25� kHz (Note: the classical power spectrum can be approximated by taking the time-average of the spectrogram as marked in black dash-dot lines.). (d) The
extracted feature by means of the time-dependent variance s2x ði; fkÞ½kþ1� .

Fig. 19. Kurtogram of signal of Case 4 computed over K ¼ 7 levels with a 1=3-binary tree and an 8 coefficient prototype filter. Several local maxima are presented. One relevant
maximum is taken to the frequency band ½13:5; 15� kHz.
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8. Conclusions

This paper has introduced a new stochastic model, namely
periodic-variance based model, to extract a signal of interest (SOI)
masked by other interfering signals e a typical situation where
classical vibrodiagnostic method are prone to fail. The SOI is sup-
posed CS signals recorded at constant regime with an individual
“periodicity” that is different from the other sources. This allows a
semi-blind full-band extraction of the SOI through application of
self-tailored time-dependent filter, which may be seen as an
extension of the Wiener filter. Although it requires the knowledge
of the cyclic frequency of the SOI, it is noteworthy that it is semi-
blind in the sense that nothing else is assumed (e.g. the number
of interferences, their statistics and the noise properties); besides,
the cyclic frequencymay be known from themachine kinematics or
alternatively can be estimated from the observed signals. Moreover,
it applies to most common types of modulations in mechanical
systems as a result of an open module that can be tailored
accordingly by the user.

Unlike other analytical approaches, the proposed method is



Fig. 20. Case 4. Enlarged view of (a) the vibration waveform y½n�, (b) the band-pass filtered signal in the frequency band ½13:5; 15� kHz, (c) the filtered time signal x½n� driven by 1=
T ¼ 2� BSF Hz and (d) the noise (residual) signal r½n�.

Fig. 21. Case 4. Squared Envelope Spectrum of (a) the vibration waveform: SSESy ðaÞ, (b) the band-pass filtered signal returned by the fast kurtogram, (c) the filtered time signal:
SSESx ðaÞ and (d) the noise (residual) signal: SSESr ðaÞ.
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Fig. 22. Spectrogram (magnitude of the STFT) of (a) the raw signal jYði; fkÞj, (b) the first cyclic source
���X1ði; fkÞ

��� and (c) the second cyclic source
���X2ði; fkÞ

��� (the classical power
spectrum is approximated by taking the time-average of the spectrogram as marked in black dash-dot lines.). (d) The extracted feature by taking the mean value of s2x ði; fkÞ½kþ1� over
the time instants i.

Fig. 23. Cyclostationary index CSðfkÞ of (a) source 1 and (b) source 2, defined in Eq. (26).
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Fig. 24. Case 5. Enlarged view of (a) the vibration waveform y½n�, (b) the filtered time signal of source 1: x1½n� driven by 1=T1 ¼ BPFI Hz and (c) that of source 2: x2½n� driven by 1=
T2 ¼ fg ¼ frot �No: of teeth Hz.

Fig. 25. Case 5. Squared Envelope Spectrum of (a) the vibration waveform: SSESy ðaÞ, (b) the filtered time signal of source 1: SSESx1 ðaÞ and (c) that of source 2: SSESx2 ðaÞ.
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tailored to the data which leads to high adaptability and flexibility.
The performance is however based on the time CS assumption
(instead of the angle CS assumption) and is thus limited to analyze
machine signals captured under invariant operating conditions. Its
advantage resides in providing a perfect extraction of the SOI in the
noiseless case. Eventually, this paper has illustrated how it can be
extened to extract two sources e i.e. bearings and gears e which is
quite common in gearboxes of wind turbine.
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