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This paper investigates a novel perspective on blind filtering of vibration signals with the
purpose of fault detection in rotating machinery. Instead of maximizing a property of the
time-domain signal such as kurtosis to find an optimal filter, the sparsity of its envelope
spectrum is maximized. The underlying assumption for this approach is that faults of rotat-
ing components such as bearings introduce second-order cyclostationary content into the
signal. This cyclostationary content manifests itself as discrete peaks in the envelope spec-
trum (given the speed is stationary). These peaks thus increase the sparsity of the envelope
spectrum as a consequence. Therefore this paper derives blind filter formulations that try
to filter out a signal with the most sparse envelope spectrum. Blind filters are derived using
three different sparsity measures, i.c. l2l1-norm, Hoyer Index, and spectral negentropy. Key in
the iterative optimization procedure is the usage of the Rayleigh quotient to update the fil-
ter coefficients. One major advantage of this approach is that no prior information about
characteristic fault frequencies of the mechanical components of interest needs to be
known. Inspection of simulation and experimental results shows that the proposed
approach is a simple yet effective way of tracking faults with a cyclostationary signature.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Condition monitoring of rotating machinery is becoming increasingly popular and advanced. Industry starts to incorpo-
rate more and more dedicated condition monitoring systems in their design. Not only is the industry looking to include basic
condition monitoring as a potential service, also general interest in more advanced monitoring tools is growing thanks to the
ever-improving computational power, expanding storage capabilities, and decreasing cost of modern day IT systems. Despite
this trend, it sometimes remains difficult to implement some of the more advanced methods due to incomplete knowledge
about the system of interest. Complex machines can consist of dozens of bearings and gears, modern examples are gearboxes
of wind turbines and helicopters. These machines typically have one or multiple planetary gear stages in combination with
parallel gear stages. Not all kinematic information about the system is always made available to the machine operator by the
manufacturer, or the information might be inaccurate due to reparations with new components. This issue constitutes
the need for a method capable of tracking the condition of these components without the need for a priori knowledge about
the kinematics.
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Current practice in condition monitoring systems often revolves around tracking time-domain statistical indicators and
more component-specific frequency-domain indicators [1–3]. The advantage of using simple scalar time-domain indicators
is that no a priori knowledge about the characteristic fault frequencies is required and thus the number and complexity of
the components is not taken into account. This simplifies the analysis procedure significantly, with the trade-off being that it
does not allow pinpointing which component is exhibiting the anomalous behavior. Not having any knowledge about the
exact location of a fault is a downside, but in an early analysis stage it is often easier and quicker to have a straightforward
overview of which measurement sensor is picking up faulty behavior. Afterwards, a more in-depth frequency-based analysis
can investigate further and try to determine the missing failure information.

The concept of tracking signal characteristics blindly is already widely employed in industry thanks to the simplicity of
time-domain statistical indicators. Nevertheless there is still room to improve further on this blind signal analysis concept
and to bring it better in line with other state-of-the-art vibration analysis methods. One of the most popular approaches for
fault detection is to look at the cyclostationary behavior of the vibration signal [4–12]. Inspired by this fact, this paper inves-
tigates the possibility to utilize the cyclostationary content of a signal in a blind manner. Therefore, instead of just looking at
the statistics of the time waveform, the squared envelope spectrum of the signal is employed as a blind means to gain more
information about potential defects. The envelope spectrum is probably the most frequently used tool to inspect the cyclo-
stationary behavior of signals. From experience it is known that most mechanical faults of bearings or gears induce some
form of cyclostationary behavior in the observed vibration signals [7,13,14]. This phenomenon causes the envelope spectrum
to exhibit discrete peaks at the corresponding fault frequencies. These peaks arise from the background noise and thus their
amplitude is distinguishable from the spectral noise floor. In other words, most mechanical faults increase the sparsity of the
envelope spectrum. Sparsity is a very useful concept that has become a widely used tool across various fields in recent years.
The use of sparsity (or sparseness) saw a significant increase in interest from scholars thanks to the introduction of com-
pressed sensing in 2004. Candes et al. [15,16] and D. Donoho [17,18] proved that when knowledge is available about the
sparsity of a signal, that signal can potentially be reconstructed with even fewer samples than strictly required by the
Nyquist-Shannon sampling theorem. This idea is the basis of compressed sensing. Fig. 1 shows how the usage of sparsity
increased almost exponentially in research efforts over the last few years, as listed by the Web of Science [19]. This sparsity
property can now also be exploited to find a filter that maximizes the sparsity of the envelope spectrum since it can be
assumed that this corresponds to a mechanical fault and not to normal behavior.

This paper illustrates the concept of blind filtering using sparsity indicators on the envelope spectrum as a way of tracking
the health of bearings. The blind filtering approach is similar to the blind deconvolution idea employed by Minimum Entropy
Deconvolution (MED) filtering [20] which uses the kurtosis of the time waveform as the statistic to maximize. MED was
Fig. 1. Evolution of the number of research records in the Web of Science related to the topic of ‘sparsity’.
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originally applied in the field of seismic signal processing. Kurtosis however has some disadvantages as a measure to max-
imize [21]. Kurtosis tends to decrease in value when the frequency of the impulses increases. When the impulses overlap
over each other, the kurtosis can even decrease in value to that of a Gaussian signal. On the other hand, when the impulses
are so infrequent that there is only one impulse in the measurement, the kurtosis tends to be maximized. This explains why
maximizing the kurtosis can lead to erroneous results since it is sensitive to impulsive noise.

Afterwards, improvements and variations on the MED approach were developed. Cabrelli [22] suggested to use the D-
norm (MEDD), an alternative to kurtosis, as a way to find a direct solution to the blind deconvolution problem. Wang
et al. reduced the computation time of MEDD by using an adaptive least-squares approach [23]. Broadhead et al. compared
the performance of MED and MEDD for varying signal-to-noise ratios (SNR) and found that MEDD outperforms MED in low
to moderate SNR. W. Gray [24] analyzed normalized higher-order moments other than kurtosis. McDonald et al. [25] made a
comprehensive investigation of MED and its flaws. They afterwards suggest several improvements and extensions to MED in
an attempt to circumvent these flaws, such as using multi-point kurtosis instead of standard kurtosis. Obuchowski et al. [26]
opted to use the Jarque-Bera statistic, a combination of skewness and kurtosis, for the detection of gear faults. Very often the
MED-related techniques get paired with other pre-processing methods, like autoregressive filtering or cepstrum prewhiten-
ing, in order to remove deterministic content that could potentially hinder successful deconvolution of the fault signal [27–
31]. This harmonic removal step can prove useful for the methodology described in this paper as well.

In recent years, there has been a shift in focus from looking at the timewaveform statistics to looking at the cyclostationary
properties. Maximum correlated kurtosis deconvolution (MKCD) and the multipoint optimal minimum entropy deconvolu-
tion (MOMEDA) are technically cyclostationary approaches but were empirically introduced from the perspective of trying
to maximize the impulsiveness linked to a certain fault period. Thanks to the recent efforts in further development and pro-
motion of the concept of cyclostationarity for vibration analysis [12,11,32–34], the topic is now a lot more understood and
more widely used. A newly proposed approach [35] employs an indicator of second-order cyclostationarity (ICS2) in the pro-
cess of blind deconvolution. It allows the user tomaximize the ICS2 in an efficient and flexiblemanner thanks to the versatility
of the generalized Rayleigh quotient. However, the approach still requires a priori knowledge of the fault frequencies in order
towork. To remedy this potential issue, the concept of sparsity can be applied to the envelope spectrum,which is probably the
most popular tool to analyze the cyclostationary content of a vibration signal. Wang et al. [36] suggest to use the l2

l1
-norm on

the envelope spectrum of filtered signals. They extend the filterbank idea, originating from the kurtogram, to utilize the l2
l1
-

norm instead of the kurtosis. The downside of this approach is however that it is still not fully blind in the sense that an
end-user still has to inspect the filterbank with the l2

l1
-norm values and choose the appropriate frequency band. In contrast,

the proposed method employs the discussed blind filtering approach such that a suitable filter that maximizes the envelope
spectrum sparsity is found automatically. The main ‘‘selling” point of the proposed approach as compared to the ICS2 filter is
the fact that no a priori information is needed about the characteristic fault frequencies. The proposedmethod provides a way
to track the presence of any modulating fault signature using conventional finite-impulse response filters.

An important remark about the proposed approach is that the blind filtering methodology described in this paper cannot
be categorized as blind deconvolution, blind signal separation, or denoising. The proposed approach namely does not
attempt to deconvolve the signal in order to recover the source signal (e.g. impulses), nor does it attempt to separate signals
from a mixture or remove noise from the signal without distorting it. In fact, it actually does distort the signal such that the
envelope spectrum is as sparse as possible. This is a rather new concept since from this perspective the algorithm does not
try restoring the signal or recovering the source signals. Instead the algorithm just tries to maximize the figure of merit and
thus enhance the envelope spectrum. It is important to take into account this distinction when inspecting filtering results
since the results might not correspond to what is expected.

This paper attempts to highlight the utility of sparsity from a cyclostationary perspective and reiterates the versatility of
the Rayleigh quotient regarding the indicator choice for the blind filtering step. First, the theoretical background is explained
in Section 2. The indicator choice and the derivation of the Rayleigh quotients are described. Next, the method is validated on
simulated signals in Section 3 and experimental data of a gearbox trending data set in Section 4. The results show that the
proposed approach is capable of extracting a cyclostationary fault signature and that the sparsity measure of the envelope
spectrum in itself can be used as a tracking parameter.
2. Methodology

To start the optimization of the sparsity of the squared envelope spectrum, a choice needs to be made in which sparsity
measure is best employed for this purpose. This point is explained in Section 2.1. Next, an efficient way to find a suitable
filter that maximizes the chosen sparsity measure needs to be determined. The concept of blind filtering is explained in
Section 2.2.
2.1. Choice of sparsity measure

Ever since sparsity became a popular research interest in large part thanks to compressed sensing, many sparsity mea-
sures have been introduced. Each one typically has its benefits and disadvantages. A widely used sparsity measure is the
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l2
l1
-norm, which belongs to the family of lp

lq
-norms. More than a decade ago, the inverse l1

l2
-norm (more colloquially known as

the Taxicab-Euclidean norm ratio [37]) became much used as a sparsity measure in Non-negative Matrix Factorization [38–
42]. In fact, it was already being used as a tool for deconvolution in geophysics [24]. This type of norm has recently been used
as well in the context of vibration analysis for deconvolution of time-domain waveforms [43]. The l2

l1
-norm of the envelope

spectrum ExðnÞ of a vector x is defined as:
l2
l1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1jExðnÞj2

q
PN

n¼1jExðnÞj
ð1Þ
The l2
l1
-norm is the first out of three sparsity indicators to be investigated in this paper.

Another interesting measure to characterize the squared envelope spectrum is the spectral negentropy in the spectral
domain. Spectral negentropy proceeds from interpreting the (square of the) instantaneous energy flow in a signal as a prob-
ability distribution. Therefore the definition of negentropy takes into consideration the normalization of the energy flow �x.
The spectral negentropy is the negative of spectral entropy and is defined in the time domain as:
DI� ¼ �H� ¼ �xðnÞ2

�xðnÞ2
D E ln �xðnÞ2

�xðnÞ2
D E

0
@

1
A* +

ð2Þ
with �xðnÞ the envelope in the time domain of signal xkðnÞ. In the spectral domain this becomes:
DIE ¼ �HE ¼ jExðaÞj2
hjExðaÞj2i

ln
jExðaÞj2
hjExðaÞj2i

 !* +
ð3Þ
The negentropy in the time domain quantifies impulsive signal content, much like the kurtogram (Eq. 2 is actually a
weighted version of kurtosis). The negentropy in the spectral domain on the other hand quantifies the repetitive or cyclo-
stationary signal content. The negentropy in the spectral domain is therefore investigated as the second measure for blind
filtering.

Hurley et al. [41] made a comprehensive comparison of fifteen commonly used sparsity measures. They evaluated these
measures using six criteria a desirable measure should possess as an attribute. The Gini Index came out on top, satisfying all
six criteria, with the Hoyer Index a close second, satisfying five of the criteria. However, the calculation of the Gini Index
requires sorting the values which is difficult to incorporate in the derivation of the blind filter as will become clear later
on. Thus, this paper opts to include the Hoyer Index as the third and last sparsity measure of choice for the envelope spec-
trum. The Hoyer Index was proposed by P. Hoyer [42] in 2004 and is essentially a normalized version of the l2

l1
-norm. The

Hoyer Index evaluates to unity if and only if the spectrum contains only a single non-zero component, and takes a value
of zero if and only if all spectral components are equal. It is defined as:
Hoyer Index ¼
ffiffiffiffi
N

p
�

PN
n¼1jxðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1jxðnÞj2

q
0
B@

1
CA 1ffiffiffiffi

N
p

� 1
ð4Þ
with x being the sample vector, n the sample number, and N the total number of samples.

2.2. Blind filtering

The concept of blind filtering is to find a filter that maximizes a certain criterion of the signal starting from a noisy mea-
sured signal x:
s ¼ x � h ð5Þ

where s is the estimated input, h is the inverse filter, and � refers to the convolution operation. It should be noted that vec-
tors and matrices are set in bold font to illustrate the difference with scalars. The convolution is expressed as:
s ¼ Xh ð6Þ

sN�1

..

.

xL�1

2
664

3
775 ¼

xN�1 . . . x0

..

. . .
. ..

.

xL�1 . . . xL�N�2

2
664

3
775

h0

..

.

hN�1

2
664

3
775
with L and N the number of samples of s and h respectively.
Now the squared envelope �x can be defined as follows:
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�x ¼ jsj2 ¼ jXhj2 ð7Þ

It can also be written as:
�x ¼
s0 . . . 0

..

. . .
. ..

.

0 . . . sL�Nþ1

2
664

3
775

H

Xh ¼ diagðsHÞXh ð8Þ
with sH being the Hermitian transpose of s, and diagðsHÞ being a diagonal matrix with the values of the vector sH on its diag-
onal. The squared envelope spectrum Ex is then the Fourier transform of this squared envelope:
Ex ¼ FH�x ¼ FHdiagðsHÞXh ð9Þ

with:
F ¼

1 1 . . . 1 . . . 1
1 e�2pj 1

L�N . . . e�2pj k
L�N . . . e�2pjK�1

L�N

..

. ..
. . .

. ..
.

1 e�2pj n
L�N . . . e�2pj kn

L�N . . . e�2pjðK�1Þn
L�N

..

. ..
. . .

. ..
.

1 e�2pjL�N�1
L�N . . . e�2pjkðL�N�1Þ

L�N . . . e�2pjðK�1ÞðL�N�1Þ
L�N

2
66666666664

3
77777777775

ð10Þ
with n ¼ 0::L� N � 1; k ¼ 0::K � 1 and K � 1 corresponding to the index of the maximum frequency of interest. F has dimen-
sions ðL� N;KÞ. The defined variables now allow to derive the filters for the three indicators in a fairly efficient manner. The
described approach is similar and based on the work presented in [35].

2.2.1. Derivation of filter using l2
l1
-norm

The l2
l1
-norm of the envelope spectrum Ex is defined as:
l2
l1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1jExðnÞj2

q
PN

n¼1jExðnÞj
ð11Þ
Rewriting using vector notation, gives:
l2
l1
¼

ffiffiffiffiffiffiffiffiffiffiffi
EH
x Ex

q
EH
x diagð 1

jEx jÞEx
ð12Þ
The denominator is obtained using following identity:
XN
n¼1

jExðnÞj ¼
XN
n¼1

jExðnÞj2
jExðnÞj ¼ EH

x diag
1
jExj
� �

Ex ð13Þ
Manipulating the numerator of Eq. 12 further, it follows that:
ffiffiffiffiffiffiffiffiffiffiffi
EH
x Ex

q
¼ Ex

HExffiffiffiffiffiffiffiffiffiffiffi
EH
x Ex

q ¼ EH
x diag

1ffiffiffiffiffiffiffiffiffiffiffi
EH
x Ex

q
0
B@

1
CAEx ð14Þ
Eq. 12 can thus be rewritten in following form:
l2
l1
¼

Ex
Hdiag 1ffiffiffiffi

Ex
p H

Ex

� �
Ex

EH
x diag

1
jEx j

� �
Ex

ð15Þ
Inserting Eq. 9 in Eq. 15 allows to write the ratio in full:
l2
l1
¼

hHXHdiagðsÞFdiag 1ffiffiffiffiffiffi
EHx E

p
x

� �
FHdiagðsHÞXh

hHXHdiagðsÞFdiag 1
jEx j

� �
FHdiagðsHÞXh

ð16Þ
The generalized Rayleigh quotient [44] can be recognized in Eq. 16 and can be maximized using an iterative maximization of
the eigenvalues:
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k ¼ hHRXW1Xh

hHRXW2Xh
ð17Þ
The Rayleigh quotient has the interesting property that its maximal value with respect to h is equivalent to its largest eigen-
value k and corresponding eigenvector. Thus, maximizing the Rayleigh quotient allows finding the maximal values of the
corresponding indicator and filter. In order to obtain real eigenvalues however, the correlation matrices RXW1X and RXW2X

need to be Hermitian, and RXW2X needs to be positive semidefinite. If these conditions are met, the Rayleigh quotient offers
an efficient means to calculate iteratively the filter coefficients. Only the largest eigenvalue and corresponding eigenvector
need to be computed in each iteration, which can be achieved efficiently by using algorithms such as the power method [45].

Thus the l2
l1
-norm is rewritten as follows:
l2
l1
¼ hHRXW1Xh

hHRXW2Xh
ð18Þ
with:
RXW1X ¼ XHdiagðsÞFdiag 1ffiffiffiffiffiffiffiffiffiffiffi
EH
x Ex

q
0
B@

1
CAFHdiagðsHÞX ð19Þ

RXW2X ¼ XHdiagðsÞFdiag 1
jExj
� �

FHdiagðsHÞX ð20Þ
Eq. 18 can now be easily used for maximization of the l2
l1
-norm of the envelope spectrum. The generalized eigenvalue problem

to be solved can be formulated as such:
RXW1Xh ¼ RXW2Xhk ð21Þ

The iterative algorithm used to maximize the l2

l1
-norm consists of four basic steps:

1. Assume an initial guess for h
2. Estimate RXW1X and RXW2X based on h and X using Eq. 20
3. Solve Eq. 21 to find kmax and a new filter h that corresponds to a higher value of the used criterion
4. Return to step 2 using the new h until convergence is reached or the maximum number of iterations

These steps are used for all three indicator maximization procedures, specified in Sections 2.2.1, 2.2.2, and 2.2.3.

2.2.2. Derivation of filter using Hoyer Index

Since the Hoyer Index is essentially a normalized version of the l2
l1
-norm, the derivation is very similar. The Hoyer index of

the squared envelope spectrum Ex is defined as:
Hoyer Index ¼
ffiffiffiffi
N

p
�

PN
n¼1jExðnÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1jExðnÞj2

q
0
B@

1
CA 1ffiffiffiffi

N
p � 1

ð22Þ
Rewriting Eq. 22 using vector notation results in:
Hoyer Index ¼ ð
ffiffiffiffi
N

p
�
Ex

Hdiagð 1
jEx

jÞExffiffiffiffiffiffiffiffiffiffiffi
EH
x Ex

q Þ 1ffiffiffiffi
N

p � 1
ð23Þ

¼
ffiffiffiffi
N

p
ExHExffiffiffiffiffiffiffiffi
EH
x Ex

p � EH
x diagð 1

jEx jÞEx

ð
ffiffiffiffi
N

p
� 1Þ Ex

HExffiffiffiffiffiffiffiffi
EH
x Ex

p ð24Þ

¼
Ex

Hdiagð
ffiffiffi
N

pffiffiffiffiffiffiffiffi
EHx Ex

p ÞEx � EH
x diagð 1

jEx jÞEx

EH
x diagð

ffiffiffi
N

p
�1ffiffiffiffiffiffiffiffi

EHx Ex
p ÞEx

ð25Þ

¼
Ex

Hdiagð
ffiffiffi
N

pffiffiffiffiffiffiffiffi
EHx Ex

p � 1
jEx jÞEx

EH
x diagð

ffiffiffi
N

p
�1ffiffiffiffiffiffiffiffi

EHx Ex

p ÞEx

ð26Þ
After some more rewriting, the generalized Rayleigh quotient emerges again:
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Hoyer Index ¼
hHXHdiagðsÞFdiag

ffiffiffi
N

pffiffiffiffiffiffiffiffi
EH
x Ex

p � 1
jEx j

� �
FHdiagðsHÞXh

hHXHdiagðsÞFdiag
ffiffiffi
N

p
�1ffiffiffiffiffiffiffiffi

EHx Ex

p
� �

FHdiagðsHÞXh
¼ hHRXW1Xh

hHRXW2Xh
ð27Þ
2.2.3. Derivation of filter using spectral negentropy
The spectral negentropy DIE is the negative of spectral entropy and is defined for the envelope spectrum as:
DIE ¼ �HE ¼ jExðaÞj2
hjExðaÞj2i

ln
jExðaÞj2
hjExðaÞj2i

 !* +
ð28Þ
Rewriting again using vector notation:
DIE ¼ N

EH
x Ex

jExðaÞj2ln jExðaÞj2
hjExðaÞj2i

 !* +
ð29Þ

¼
Ex

Hdiag ln jEx j2
hjEx j2i

� �� �
Ex

EH
x Ex

ð30Þ
This can again be written as a generalized Rayleigh quotient.
DIE ¼
hHXHdiagðsÞFdiag ln jEx j2

hjEx j2i

� �� �
FHdiagðsHÞXh

hHXHdiagðsÞFFHdiagðsHÞXh
¼ hHRXW1EXh

hHRXW2EXh
ð31Þ
The spectral negentropy also has the useful property that it is always greater than zero and smaller than lnðNÞ:

0 6 DIE 6 lnðNÞ ð32Þ
The same is valid for the negentropy in the time domain DI�. This is proven in Appendix A A.

2.3. Practical considerations

The maximization of the sparsity of the envelope spectrum is based on the assumption that the main component increas-
ing the sparsity is the potential fault signature. Therefore, the signal first needs to be whitened such that the deterministic
components are removed before solving the maximization problem since these components often introduce high amplitude
discrete peaks in the envelope spectrum. This whitening or removal of deterministic components can be achieved with var-
ious techniques, e.g. time-synchronous averaging [46], cepstrum editing [47,48], discrete/random separation [49], self-
adaptive noise cancellation [50], etc.

The calculation of correlation matrices RXW1X and RXW2X includes using a Fourier matrix to calculate the envelope spec-
trum. However, in the actual calculation this can be replaced by an FFT to improve the computation time and the memory
requirements. The total duration of the computations will depend mainly on the signal length and the chosen filter length.
Since the matrices can become quite large for long signals and filters, the number of multiplications and FFTs that need to be
calculated can lead to long computation times.

2.4. Extension for non-stationary angular speed cases

A potential extension of the method is to make the kernel of the Fourier matrix used in the filter correlation matrices
dependent on angle instead of time. This way the instantaneous angular speed variations can be taken into account directly
in the filter. This extension is not further investigated in this paper but can be easily achieved by means of the Velocity
Synchronous Discrete Fourier Transform (VSDFT) [51]. The Fourier matrix then becomes:
F ¼ 1
H

_h0 _h0 . . . _h0 . . . _h0
_h1 _h1e�jh1X1 . . . _h1e�jh1Xk . . . _h1e�jh1XK�1

..

. ..
. . .

. ..
.

_hn _hne�jhnX1 . . . _hne�jhnXk . . . _hne�jhnXK�1

..

. ..
. . .

. ..
.

_hL�N�1
_hL�N�1e�jhL�N�1X1 . . . _hL�N�1e�jhL�N�1Xk . . . _hL�N�1e�jhL�N�1XK�1

2
66666666664

3
77777777775

ð33Þ
with hn ¼ RL
n¼1

_hðnÞ;XðkÞ the vector of orders for the representation of the order spectrum, and the normalization factor

H ¼ RL
n¼1

_hðnÞ.
An alternative approach would be to resample the signal to the angular domain before passing it to the filter optimization.
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2.5. Extension for single-input multiple-output (SIMO) systems

Similar to the description in [35], the indicator calculations described here can also be extended for the case when there is
more than one acquisition channel that measures the vibration response. The proposed approach allows a fairly straightfor-
ward extension to the case where one has Q responses xq. Each response of xq filtered by hq can be summed together then to
return an estimation of s. The iterative procedure using the Rayleigh quotient can still be used for the SIMO case. The only
adaptation necessary is of the correlation matrices and the filter vector.

RXW1X and RXW2X need to be expressed as cross-correlation matrices:
RXWX ¼
. .
.

RqW~q

RqWq

R~qWq
. .
.

2
6664

3
7775 ð34Þ
with RqWq the weighted auto-correlation matrix of xq and the off-diagonal matrices are the weighted cross-correlation matri-
ces of xq and x~q. The filter h then becomes:
h ¼

h1

..

.

hq

..

.

hQ

2
666666664

3
777777775

ð35Þ
The qth contribution to the signal of interest s is then calculated as:
sq ¼ RQ
q¼1Xqhq ð36Þ
with Xq the Toeplitz matrix of xq as defined in Eq. 6. Thus, the overall signal of interest s is then found by:
s ¼ RQ
q¼1sq ð37Þ
3. Simulation analysis

To validate and illustrate the proposed approach, two simulated cases are first considered. To add some point of reference,
the performance of the proposed approach with the three different sparsity indicators is compared to time-domain blind
deconvolution filtering based on Minimum Entropy Deconvolution (MED), ICS2, and the time-domain spectral negentropy.
Two cases with cyclostationary source signals are examined:

� Case 1: Periodic impulses with Gaussian distributed amplitudes
� Case 2: Periodic impulses with Gaussian distributed amplitudes and randomly spaced impulses representing the slip in
bearings

These two cases are the same as the first two cases in [35] to provide additional reference for comparison. The periodic
impulse signal s1 is convolved with the IRF g1;s and the Gaussian noise with g1;n. The generated signals are shown separately
in Fig. 2. Instead of only analyzing a single simulation though, the additive Gaussian noise is varied in signal-to-noise ratio
(SNR) from �80 dB to 0 dB to assess the trending behavior of the filters. The overall variance of the full signal is kept con-
stant. For the time-domain blind filters, a filter length of 40 samples is used, while the sparsity-based spectral filters use a
filter length of 20 samples. The maximum number of iterations is set to 50.

Fig. 3 shows the resulting indicator evolutions from �80 dB to 0 dB SNR for the first case. It can be seen that in this par-
ticular case the ICS2 filter outperforms MED and time-domain negentropy filtering. The filters based on the sparsity indica-
tors show a significant increase at approximately �38 dB, similar to the ICS2 filter.

To inspect the results further, Fig. 4 displays a color map of the squared envelope spectra for the first case. The envelope
spectra of the time-domain filters (ICS2, MED, and time-domain negentropy) exhibit clear harmonics of the fault frequency
at 4 Hz for higher SNRs. In contrast, the envelope spectra of the sparsity-based filters exhibit the first fault harmonic at 4 Hz
but also a lower frequency component that is higher in amplitude. This is due to the envelope spectrum of the simulation
signal containing a very low frequency modulation due to the employed Gaussian distributed amplitudes of the periodic
impulses. Additionally, this low frequency modulation increases the sparsity of the envelope spectrum.

Lastly, the filtered signals of case 1 are shown in Fig. 5 at the SNR of �19 dB, similar to the comparison of signals shown in
[35]. The amplitude of the signals has been normalized between �1 and + 1. It turns out that the time-domain filters decon-
volve the periodic impulse train of the input source signal, while the envelope spectrum sparsity-based filters extract the



Fig. 2. Input signals used for simulation case 1: (Top) Periodic impulses with Gaussian distributed amplitudes s1 , (Bottom-left) after convolution with IRF
g1;s , (Bottom-right) Additive Gaussian noise after convolution with IRF g1;n .

Fig. 3. Trending of the different indicators for simulation case 1.
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periodic impulse train after deconvolution with its IRF. This result makes sense considering that the most sparse envelope
spectrum is that of a signal with a pure sinusoidal amplitude modulation. A Dirac impulse train however results in an envel-
ope spectrum that exhibits multiple harmonics which decreases the sparsity as compared to a single discrete peak. Therefore



Fig. 4. Trending of the normalized squared envelope spectra for simulation case 1. The fault frequency of interest is 4 Hz. (Black = 0, white = 1).

Fig. 5. Time waveforms at �19 dB SNR for simulation case 1. The amplitudes have been normalized between �1 and +1.
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the sparsity-based methods filter out the impulse train after convolution with the IRF which leads to a sparsity that is in-
between that of a pure sinusoidal modulation and that of an impulse train. For the purpose of condition monitoring, the
non-removal of the convolution with the IRF is not essential in the sense that fault detection through tracking the fault
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frequency peak in the envelope spectrum remains the same. The signature of the envelope harmonics will differ though
between the situation with and without convolution with the IRF. Also the evolution of the fault can be tracked through
the envelope spectrum sparsity regardless of the IRF convolution since it is assumed that the main second-order cyclosta-
tionary component originates from the fault source.

The second example investigates the case where the fundamental fault period of the impulses fluctuate due to slip. The
results are similar to the first case since the slip only impacts the filtering potential of the sparsity-based filters slightly.
Figs. 6–8 display respectively the indicator trends, the envelope spectra color maps, and the filtered time waveforms at
�19 dB. The sparsity values are only marginally lower than the ones for the first case without slip. This can be explained
since the slip of the fault period causes the discrete envelope spectrum peaks to spread out over multiple frequency bins
and thus reduce the sparsity of the envelope spectrum.
4. Experimental analysis & results

The proposed approach is applied on vibration signals from the Prognostics Data Repository of NASA as provided by the
Center for Intelligent Maintenance Systems (IMS) of the University of Cincinnati [52]. This data set was measured during a
run-to-failure experiment in which a bearing experienced an outer race fault. The bearing test rig, as shown in Fig. 9, consists
of a shaft coupled to an AC motor rotating at 2000 RPM. A radial load of 2700 kg is applied. Four Rexnord ZA-2115 bearings
are mounted on the shaft together with high-end accelerometers. In total three run-to-failure experiments were conducted
where one second measurements were recorded at a sample rate of 20 kHz every 10 min. The approach described in this
paper is examined on the second data set containing 984 measurement samples and in which Bearing 1 failed due to an
outer race defect.

Again, all six filters used in the simulation analysis are employed here to provide some reference for comparison of the
methods’ performance. The characteristic fault frequency of the outer race is approximately 236 Hz and is thus used as input
for the ICS2 filter. The filter length is set at 20 samples and the maximum number of iterations is 50. Theoretically the ICS2
filter should be most capable in tracking signal signature changes due to the fault emergence since it tracks the fault fre-
quency modulation directly.

The results shown in Fig. 10 seem to confirm this theory. The ICS2 filter manages to already show a rise in ICS2 indicator
at the start of day 4. The MED filter and the time-domain negentropy filter perform badly which comes as no surprise since it
was already proven in [54] that kurtosis or other indicators tracking non-Gaussianity perform badly for this particular data
set. The signal is in fact already non-Gaussian from the start of the test. These two filters therefore underperform in effec-
tively tracking the fault in this case. The envelope spectrum sparsity-based filters on the other hand suggest the increase of
mainly cyclostationarity of the signal due to the fault. All three filters exhibit a sudden increase in indicator value around the
Fig. 6. Trending of the different indicators for simulation case 2.



Fig. 7. Trending of the squared envelope spectra for simulation case 2. The fault frequency of interest is 4 Hz. (Black = 0, white = 1).

Fig. 8. Time waveforms at �19 dB SNR for simulation case 2. The amplitudes have been normalized between �1 and +1.
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Fig. 9. Bearing test rig [53] of the IMS dataset.

Fig. 10. Evolution of the indicators after filtering with the six different methods on the IMS data set. (Top row, left to right) ICS2 filter, MED filter,
Negentropy in the time-domain filter. (Bottom row, left to right) Filters based on respectively the negentropy, the l2

l1
-norm, and Hoyer Index of the envelope

spectrum.
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start of day 5. As described in [54], the degradation of the bearing mainly manifests itself by a significant surge in cyclosta-
tionarity and not non-Gaussianity.

The increase in envelope spectrum sparsity means that a dominant discrete peak or set of discrete peaks should show up
in the envelope spectrum. Fig. 11 shows a waterfall colormap plot of the envelope spectra as a function of time from 0 Hz to
1 kHz. The fault frequency at 236 Hz can be detected clearly starting from day 4 for the ICS2 filter, and from day 5 for the
sparsity-based filters. The filtering singles out the fault frequency in the envelope spectrum from the noise as showcased by
the difference in envelope spectrum before and after filtering shown in Fig. 12. This makes inspection of the signal for the
type of fault significantly easier and quicker.



Fig. 11. Waterfall plots of the normalized envelope spectra after filtering with the six different methods on the IMS data set. (Top row, left to right) ICS2
filter, MED filter, Negentropy in the time-domain filter. (Bottom row, left to right) Filters based on respectively the negentropy, the l2

l1
-norm, and Hoyer Index

of the envelope spectrum. (Black = 0, white = 1).

Fig. 12. Envelope spectrum after filtering with the Hoyer Index filter for measurement ndeg690.
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5. Discussion

The simulation and experimental results showcase the potential for condition monitoring using a blind filtering approach
of vibration signals without any prior knowledge of the fault frequencies. The simulation results indicate that filtering based
on the sparsity of the envelope spectrum can outperform traditional time indicator-based filtering approaches such as MED.
This is especially so when the fault signature introduces cyclostationarity in the signal which is detected effectively by the
envelope spectrum. A limitation of kurtosis-based filtering is exemplified for the case when the fault impulses have a high
repetition rate and do not fully decay before the next impulse. In this case the kurtosis will only be affected slightly due to
the lack of strong non-Gaussian behavior. This phenomenon can occur when dealing with very fast rotating machines where
the bearing frequencies are in the kHz-range.
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Another significant difference in the way the sparsity-based filters function as compared to more conventional blind
deconvolution filters such as MED is the fact that the proposed filters purely try to maximize a certain property of the signal.
This means that they do not recover source signals (e.g. repetitive impacts), separate signals from a mixture, or denoise the
signal. This is a different blind filtering perspective than typically used in the past. As a consequence, the user needs to keep
this property in mind when analyzing the results since the filtered response might not accurately represent the signal of
interest, rather a distorted version of it that maximizes the used criterion. Nevertheless, the experimental applicability of
the suggested approach is fairly apparent since the envelope spectrum is one of the most prevalent tools in vibration-
based condition monitoring.

The experimental application illustrates the sensitivity of the proposed approach to cyclostationary sources. While the
sparsity-based filters is slightly slower in detecting the fault than the ICS2 filter, they still manage to track the fault accu-
rately without any knowledge of the actual bearing fault frequency. The results suggest as well that simply looking at the
envelope spectrum sparsity of the filtered signal can be a reliable blind tracking measure for the amount of cyclostationarity
in a signal. Lastly, the results do not give any strong indication for one of the three proposed sparsity measures to be superior
in terms of tracking capability.

The proposed approach employs a powerful new way of looking at the combination of blind filtering and the envelope
spectrum. As is the case for almost every method however, there are some drawbacks or hindrances that can negatively
influence results. The main difficulty in using this type of filters resides in the choice for the filter length. This length can
impact the results and the computation time significantly. Obviously longer filter lengths increase the computation time,
but they can also lead to slower convergence or non-convergence of the filter coefficients. The latter can be especially trou-
blesome if the indicator values oscillate strongly due to this non-convergence. Therefore it is recommended to keep the filter
length short, while maintaining the capability of the filter in suppressing unwanted frequency content.

Despite this obstacle, this paper hopes to pave the way for further research in novel blind filtering approaches for vibra-
tion monitoring. The Rayleigh quotient iteration framework detailed in this paper is the main tool responsible for the ease of
implementation of the proposed filters. Yet this does not mean other approaches are not viable. A future improvement could
be to reduce the sensitivity to the filter length and improve the convergence behavior.

6. Conclusion

This paper investigates novel blind filtering techniques that utilize the sparsity of the envelope spectrum to track the
presence of faults with a second-order cyclostationary signature in vibration signals. Three sparsity measures are used to
derive filter formulations that are applicable in a methodology based on Rayleigh quotient iteration. This approach allows
for fast computation and straightforward implementation of the proposed filters.

Both the simulation and experimental results indicate the efficacy of the proposed blind filters in tracking the emergence
of cyclostationary sources. The three suggested sparsity measures perform in a similar manner with regards to their rise in
absolute values and to their corresponding filtering behavior. When the fault signal does not exhibit strong impulsive con-
tent, the described approach can outperform conventional blind deconvolution methods such as MED and its variants. Blind
filters that do employ prior knowledge of the fault frequencies such as the ICS2 filter do still outperform the proposed filter
methodology, which is not surprising considering the narrower frequency range of interest.

Future work will focus on improving the stability of the results so that filter length plays less of an influential role in the
computation time and convergence behavior of the algorithm.
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Appendix A. Appendix A

It can be proven that the spectral negentropy is always greater than zero and smaller than lnðNÞ:

0 6 DIE 6 lnðNÞ ð38Þ
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Starting from the Shannon (or information) entropy H, the following is valid:
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It is also known from Kullback–Leibler divergence (or relative entropy) that:
DKLðpjjqÞ ¼
X
i

pilnð
pi

qi
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pi ¼ 1;
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Thus for pi ¼ jEi j2PN
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and taking a uniform distribution for q with qi ¼ 1
N the following is true:
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0 6 DIE 6 lnðNÞ ð51Þ

The same is thus also valid for the negentropy in the time domain DI�.
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