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Mean Shift Clustering-Based
Analysis of Non-Stationary Vibration

Signals for Machinery Diagnostics
Stanley Fong, Jinane Harmouche, Sriram Narasimhan and Jerome Antoni

Abstract—Vibration analysis is a powerful tool for condition
monitoring of rotating machinery. In the non-stationary case,
this analysis often involves de-noising and extraction of the
time-varying harmonic components buried within the vibra-
tion signal. However, the complexity of many contemporary
techniques—especially in relation to non-stationary signals—and
their dependence on prior knowledge of the system kinematics
in order to be effective is an inhibitor to autonomous fault
detection and monitoring of non-stationary systems. In this paper,
a non-parametric, blind spectral pre-processing approach to
simultaneously de-noise and extract harmonic content from non-
stationary vibration signals is presented. The proposed approach
utilizes Mean Shift Clustering in conjunction with the Short-
Time Fourier Transform to separate time-varying harmonics
from background noise within the frequency spectrum, without
the need for a priori knowledge of the system. The technique is
fully invertible, allowing the time signals corresponding to the
separated time-varying harmonic and residual components to
be reconstructed. The performance of the proposed technique is
compared against existing pre-processing methods, and validated
using several industrial datasets: first, using vibration data
obtained from a low-speed, non-stationary industrial automated
people mover gearbox, next using vibration data from an
aircraft engine containing outer race faults, and finally, using
non-stationary vibration data from a wind turbine containing
frequent speed fluctuations.

Index Terms—Mean Shift Clustering, non-stationary signals,
signal decomposition, gearbox systems, fault diagnosis

I. INTRODUCTION

IN the realm of machinery maintenance, vibration analysis
has been demonstrated to be a powerful tool for fault

detection and condition monitoring [1]. If a fault is present
within a component, information pertaining to the fault can
often be found within the vibration signal. This information
can be extracted using a wide variety of diagnostic signal
processing techniques, of which the nature and complexity
varies widely depending on the application, ranging from
statistical approaches and frequency domain-based methods
to angular, cepstral and time-frequency-based methods [2].
The tradeoff found in many current techniques is that in-
creased diagnostic capabilities or robustness comes at the
cost of increased computational effort, or some requirement
for more information regarding the system’s characteristics or
kinematics to be known a priori. This is especially true for
the case of non-stationary signals, in which sophisticated pre-
processing is often required in order to extract the diagnostic
information from the signal. The combination of these factors
inhibits the dissemination of the most powerful contemporary

vibration analysis techniques into large scale, autonomous or
semi-autonomous online monitoring frameworks, especially
for non-stationary machinery.

The main purpose of pre-processing in machinery diagnos-
tics is to either directly enhance the presence of diagnostic
information buried within the signal, or to convert the signal
into a form that is more suitable for extracting diagnostic
information. Depending on the type of fault, the critical diag-
nostic information can be found within different components
of the signal: gear faults typically manifest themselves within
the harmonic components, while bearing faults can manifest
themselves within the harmonic or stochastic components
of a signal [3]. Hence, the separation of the deterministic
and stochastic components of a signal is a fundamental pre-
processing phase to many diagnostic approaches.

Current state-of-the-art pre-processing methods for fault
detection in non-stationary signals typically approach the prob-
lem using a time-frequency approach, or through resampling
the signal in the angular domain using Synchronous Averaging
(SA) prior to pre-processing [4, 5]. Time-frequency based
approaches such as the Synchro Squeezing Transform (SST)
[6] and Sliding Singular Spectrum Analysis [7] have seen ex-
tensive applications in spectral analysis of non-stationary sig-
nals; however, these methods require significant computational
resources or parameter tuning, and hence are not conducive
for online applications. Similarly, SA based approaches also
add an additional layer of computational complexity and con-
straints to the problem, requiring the instantaneous shaft speed
to either be known or estimated [4]. Additionally, the current
state-of-the-art pre-processing methods which follow SA are
also not conducive to online monitoring. Techniques such as
Automated Cepstral Editing [8], Stochastic Resonance Method
[9], and Minimum Entropy Deconvolution [10] have been ap-
plied as post-processing techniques to enhance the diagnostic
information in the signal. These techniques, while powerful,
require user expertise, iterative parameter tuning, filter design
and prior knowledge in order to be effective. Coupled with
the pre-requisite of angular resampling, such techniques are
non-conducive to online monitoring applications. Hence, there
is a pressing need for computationally efficient, blind pre-
processing techniques that are conducive for online monitoring
while providing comparable performance to existing state-of-
the-art techniques.

In the context of autonomous spectral analysis techniques,
literature is relatively sparse and generally inapplicable to non-
stationary signals containing time-varying harmonic compo-
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nents. Schoukens et al. proposed a method for autonomous
spectral analysis [11]. However, the proposed method was
limited to analysis of periodic signals, and cannot be applied
to higly non-stationary signals. Barbe and Van Moer presented
another autonomous approach for the detection of peaks buried
within noise using discriminant analysis in conjunction with
thresholds [12]. However, this method yields optimal results
only under a Gaussian distribution assumption. Nadine et al.
proposed an automatic spectral analysis technique using a
multi-estimator approach that can be used to autonomously
extract and classify spectral peaks in a stationary vibration
signal [13]. The proposed method is parametric and the
thresholds pertaining to the spectral estimators are user-defined
and dependent on the probability distribution of the data,
which may vary significantly in non-stationary signals. To the
best of the authors’ knowledge, there currently does not exist
a non-parametric and model-free spectral analysis technique
for extraction of time-varying harmonic components in non-
stationary signals that is conducive to online monitoring.

The approach presented in this paper is a spectral pre-
processing method for machinery diagnostics, which can
be used to separate time-varying harmonics from noise or
stochastic components in non-stationary vibration signals. The
proposed approach aims to circumvent the aforementioned
disadvantages commonly found within current state-of-the-art
pre-processing techniques with respect to online monitoring
frameworks, by adopting a computationally efficient, fully
blind and model free approach. The proposed approach uses
Mean Shift Clustering (MSC) in conjunction with a sliding
Short Time Fourier Transform window to separate the noise
and time-varying harmonic components within each spectrum.
One key property of the proposed approach is that the prop-
erties of the extracted components of the signal (harmonics
and noise), including phase and magnitude, are preserved after
performing separation using MSC. The process is invertible,
meaning that the time signals corresponding to each separated
component can be reconstructed by applying the inverse
Fourier Transform. Hence, the proposed approach can be used
as a pre-processing technique for many existing fault detection
methods. Several applications of the proposed approach and
comparisons against existing pre-processing techniques are
shown using the following datasets:

1) a non-stationary vibration dataset collected from an
industrial gearbox, which is used to demonstrate the
application of the proposed approach in separation of
harmonic content and transformation of non-stationary
time-frequency information into an equivalent, station-
ary, time-invariant representation; the result is compared
against those obtained using Synchronous Averaging.

2) a non-stationary vibration dataset for an aircraft engine
containing faulty bearings, which is used to demonstrate
the application of the proposed approach when used as
a de-noising tool prior to performing envelope analysis
for bearing diagnostics.

3) a non-stationary vibration dataset for a wind turbine,
containing frequent speed fluctuations, which is used to
demonstrate the effectiveness of the proposed approach

in the presence of speed fluctuations; the result is
compared against those obtained using sliding Sliding
Singular Spectrum Analysis (SSA) [7].

II. METHODOLOGY

A. Motivation for Mean Shift Clustering

MSC is a clustering technique which utilizes a density-mode
detection algorithm based on the Kernel Density Estimate
(KDE) of the data [14], and offers several unique benefits
for blind spectral analysis. MSC is a model-free technique,
meaning that it does not require any prior knowledge of the
number or shape of the clusters present within the data [15].
The lack of restrictions on the number and shape of clusters
implies that the probability of convergence in MSC is not
dependent on the initialization, which is a common pitfall of
other based clustering techniques such as Gaussian mixtures
or k-means [16]. Initialization-independence is advantageous
for autonomous frameworks as it circumvents the need for
iterative user intervention in the clustering process.

The application of MSC as a spectral analysis technique
for machinery diagnostics has not yet been studied. In this
paper, MSC is shown to be a highly effective technique for
performing frequency spectrum decomposition of Short-Time
Fourier spectra to separate time-varying harmonic and noise
components in non-stationary signals. The proposed approach
separates a vibration signal into two components: a de-noised
signal containing only the time-varying harmonics, and a
residual component containing the noise. Gearbox vibration
spectra are typically composed of families of non-stationary
discrete frequencies smeared in dense, broadband noise. The
distinct contrast between the density of the gearbox-related
spectral content and background noise means that separation of
these two components can be achieved by isolating the densest
cluster, which corresponds to the noise, from the signal. A
major advantage to this approach is that the technique is not
dependent upon an angular reference signal or kinematics
of the gearbox. Spectral decomposition using MSC can be
performed directly on the Fourier Transform of the raw time
signal, without the need for resampling in the angular domain,
which is often required in many current state of the art pre-
processing techniques for non-stationary vibration analysis.
The ability to directly and simultaneously extract both the
time-varying harmonic components and the noise from non-
stationary signals significantly reduces the computational com-
plexity, which is important for online monitoring applications.

B. Bandwidth Parameter Estimation

The performance of MSC for frequency spectrum decom-
position depends upon the proper selection of the kernel
bandwidth. The bandwidth parameter controls the size of
the kernel, which influences the smoothness of estimated
probability function over the data set and number of resulting
clusters in MSC [14]. The topic of bandwidth estimation has
been extensively studied, resulting in a number of data-driven
estimators associated with different optimization criteria to
confirm the estimated kernel bandwidth [14]. If specific a
priori information is known, such as the real density function



0018-9456 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2019.2944503, IEEE
Transactions on Instrumentation and Measurement

SUBMITTED TO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 3

of the data, the kernel bandwidth estimation can be verified
using a metric such as the mean integrated square error.
Conversely, if a priori information is not available, numerical
approaches such as cross validation, or application-specific
criterion can be used to select the kernel bandwidth.

In the present context, MSC is used as a pre-processing
approach to separate time-varying harmonic components from
noise in non-stationary machinery vibration signals. KDE is
applied to the magnitudes of the positive frequencies from the
STFT, and hence, the kernel bandwidth is represented in units
of the frequency magnitude. If a priori information regarding
the signal properties is available, the bandwidth parameter
can be tuned to produce the optimal decomposition for the
intended post-processing application. However, in the absence
of a priori information, to the best of the authors’ knowledge,
there currently does not exist an optimality criterion to select
the kernel bandwidth for MSC decomposition of machinery
vibration spectra.

An experimental study is conducted in this paper in order
to evaluate the influence of the kernel bandwidth on the
decomposition of vibration spectra. For the types of signals
studied in this paper, it was found that smaller bandwidths
increase the sensitivity of the decomposition with respect to
the frequency amplitude, which allows for a larger number
of clusters and isolation of weak harmonic components. A
lower bound exists in which the bandwidth will result in over-
decomposition of the noise. On the contrary, larger bandwidths
can only capture significant differences in frequency ampli-
tudes, resulting in clusters which contain mixtures of harmonic
and noise components. It will be shown (Section III-D) that
the skewness of the resulting noise decomposition spectrum is
an effective metric to perform kernel bandwidth selection in
the absence of a priori information.

C. Procedure

The discrete gearbox vibration signal to be analyzed x[n]
by the proposed spectral analysis technique is assumed to be
sampled from a continuous time process x(t) such that:

x[n] = x(
n

fs
) (1)

where, n is the sample number, and fs is the sampling
rate. The continuous process x(t) is assumed to consist of
convolved harmonics c(t), and a noise process e(t), satisfying
the relationship:

x(t) = c(t) + e(t). (2)

In the above equation, the probability distribution of e(t) is
uniformly bounded and unknown. The proposed technique
consists of applying the following steps to the discrete signal
x[n].

1) Segmentation: given a discrete signal of length L sat-
isfying the given representation, the signal is segmented into
m equally sized, non-overlapping rectangular windows w[n]
of length l = bL/mc. Steps 2) through 4) are performed for
each window w[n].

2) Discrete Fourier Transform: the corresponding fre-
quency spectrum is obtained by computing the l-point Discrete
Fourier Transform (DFT) given by:

X(k) =
l−1∑
n=0

w[n]x[n]e−j2πkn/l, k = 0, ..., l (3)

The mean shift clustering procedure described in subsequent
steps is to be applied to the set of N = l/2 magnitudes of the
DFT coefficients at the positive frequencies within X , denoted
by f+.

3) Mean Shift Clustering: the general algorithm for Mean
Shift Clustering consists in two sequential steps: kernel density
estimation followed by mode seeking [14]. The kernel density
estimate p(f+) using kernel K(u) and bandwidth h > 0 is
defined as,

p(f+) =
1

N

N∑
n=1

K

(
f+ − f+n

h

)
. (4)

Given the kernel density estimate p, the cluster centers, or
modes of p can be found by applying to each point, the
iterative transformation f+τ+1 = g(f+τ ), where τ = 0, 1, 2...
denotes the iteration number. The gradient ascent function
g(f+), is obtained by setting the gradient of p equal to zero,
resulting in

g(f+) =

∑N
n=1 f

+
n K

′
(∥∥∥ f+−f+

n

h

∥∥∥2)
∑N
n=1K

′
(∥∥∥ f+−f+

n

h

∥∥∥2) (5)

where K ′ = dK/du. Using the flat kernel reduces the
search for the local maxima of the density function to the
computation of the local mean. At each iteration, each peak is
shifted and associated to a local mean until the magnitude of
the "mean shift" vector g(f+)− f+ is less than the standard
error. Once this convergence criteria is met, the stationary
points at which all surrounding points have been shifted
to are considered the modes of p. The subset of spectral
peaks belonging to each mode is defined as an "elementary
spectrum" i.e. a spectrum where all frequency components are
of similar magnitude.

4) Separation of harmonic components from noise: The
result of the previous step is a set of clusters that can be sorted
in decreasing order of their densities. The first cluster with
the highest density corresponds to the background noise of
the spectrum. The remaining clusters, when grouped together,
are comprised of the harmonic components in the signal.
Hence, removal of the densest cluster, and amalgamation of
the remaining elementary spectra will result in a de-noised
spectrum vector containing only the harmonic components of
the original spectrum. Additionally, time signals corresponding
to the harmonic and noise component can also be obtained by
applying the inverse Fourier Transform to the corresponding
spectra.

5) Post-processing: The procedure presented in steps 1)
- 4) can be applied as a pre-processing technique in any
existing fault detection method where extraction of time-
varying harmonic components or de-noising is required.
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D. Summary of procedure

The procedure to implement the proposed pre-processing
method is summarized in Fig. 1.

Fig. 1: Flowchart for proposed spectral pre-processing method

III. VALIDATION AND DISCUSSION

For validation, the proposed spectral analysis approach was
applied to following three cases:

1) separation of time-varying harmonic content from noise
in highly non-stationary vibration data; obtained from
the gearbox of the LINK train (LINK) automated people
mover (APM) located at Toronto Pearson International
Airport; this data was collected by the authors;

2) de-noising of non-stationary aircraft engine vibration
data prior to performing envelope analysis for bearing
fault detection; obtained from exercise 2 of the Surveil-
lance 8 challenge, which features an accelerating Safran
aircraft engine containing two outer race bearing faults
[5].

3) separation of time-varying harmonic content from noise
in a non-stationary wind turbine vibration signal con-
taining non-linear speed fluctuations; obtained from the
CMMNO 14’ challenge [17].

While the main objective of the proposed approach is
the extraction of time-varying harmonic components in non-
stationary vibration signals, the extracted harmonic compo-
nents are inherently de-noised as a part of the process. For each
of the above cases, this level of inherent de-noising achieved
by the proposed approach is estimated. Often in practice, the
signal-to-noise ratio is unknown and varying in the case of
non-stationary and time-varying signals. In order to estimate
the inherent de-noising performance of the proposed method,
all non-harmonic signal components are assumed to be part of
the noise process. Hence, at each position of the time window,
the energy of the non-harmonic signal components isolated by
MSC is assumed to be equivalent to the local noise level. The

global level of noise extracted from the entire signal can then
be represented in terms of the average and standard deviation
(σ) of the the local noise values obtained at each position of
the time-window.

A. LINK APM gearbox

1) Experimental Setup: LINK provides an around-the-clock
transportation service for the airports’ passengers and employ-
ees between the airport’s two terminals (terminal 1 and 3)
and parking facilities. The trains themselves are computer-
controlled, cable-driven carriages that are devoid of any drive
assemblies. Rather, power is generated from a central station
that houses all of the drive train machinery. Tractive forces
are then transferred to the train through a cable that is fixed to
the underside of the carriage. Hence, the critical component
to be monitored is the APM gearbox.

The LINK gearbox is a three-stage gearbox with a max-
imum input shaft speed of 1340 rpm and corresponding
maximum output shaft speed of 54 rpm. The fundamental
gear mesh frequencies (h1) and corresponding harmonics for
the gearbox are shown in Table I for each gearbox stage.
Each shaft of the gearbox was instrumented with a uniaxial
PCB model: 352C68 accelerometer (A1, A2, A3, A4 in Fig.
2), measuring tangential acceleration. In addition, the input
shaft of the gearbox was instrumented with reflective taping to
accommodate order tracking using an optimal tachometer. The
gearbox and accelerometer mounting positions are illustrated
in Fig 2. Vibration data was sampled at two rates: 20 kHz as
a base line sampling rate and 200 kHz to provide adequate
frequency resolution when applying SA.

Fig. 2: LINK APM gearbox and accelerometer mounting
locations

TABLE I: LINK APM gearbox stages: gearmesh frequencies
and harmonics (Hz)

Gearbox Stage h1 h2 h3 h4

a (Input) 624 1248 1872 2496

b (Intermediate) 221.8 443.6 665.4 887.2

c (Output) 47.23 94.5 141.7 189
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2) LINK APM gearbox vibration signals: Order-tracked
vibration data was sampled from the LINK APM gearbox to
perform validation of the proposed spectral analysis technique.
The discussion presented hereafter focuses on the vibration
data obtained from the input shaft accelerometer (A4 in Fig.
2). The sampling period for each signal corresponded to one
round-trip of the train. A typical LINK APM gearbox time
signal acquired from a complete round trip of the train’s travel,
including the stop phases at the serviced terminals, is shown in
Fig. 3. The vibration amplitude increases gradually when the
train is leaving a station, reaches a certain level as the train is
traveling between stations, and decreases to a stop as the train
approaches the next station. This behavior occurs 4 times in
a round-trip, which corresponds to the 4 segments shown in
Fig. 3. The time-frequency analysis of this vibration signal

Fig. 3: Vibration signal for LINK APM gearbox - round trip

yields the spectrogram shown in Fig. 4. The spectrogram
shows that the vibration behavior of the gearbox is highly
non-stationary and noisy throughout the train’s travel. The
spectral content of the signal varies between different segments
of the train’s route. Apart from amplitude and frequency
modulation during operation, the APM signals exhibit many
instances where harmonics may appear and disappear from
the signal entirely, depending on the position of the train.
This behaviour is illustrated in the zoomed time-frequency
representation in Fig. 5 and the Fourier transform spectra
shown in Fig. 6. Fig. 6 illustrates the STFT spectra obtained
from different time windows of the APM signal, in which
several harmonics are present at one point of the signal, but
missing from another. The non-stationarities can be attributed
to operational factors, such as the stop and start phases and
fluctuating passenger loads; as well as to mechanical factors
such as the bi-directionality of the gearbox and gradient of the
guideway.

3) Performance of proposed approach: The proposed spec-
tral analysis approach is applied to the collected round-trip
vibration signals, using a frequency resolution of 1 Hz. Fig.
7 illustrates the original frequency spectrum and resulting
spectral components obtained when the mean shift procedure
is applied to the frequency spectrum of a single time window.
Through the clustering and grouping steps, the original spec-
trum is decomposed into noise and peak components without
any loss of information.

Fig. 4: Spectrogram of LINK APM gearbox round-trip vibra-
tion signal

Fig. 5: Spectrogram for a single stop-start-stop phase

By applying the spectrum decomposition approach to all
of the time windows for a given round-trip vibration signal,
the de-noised time-frequency spectrogram can be obtained,
as shown in Fig. 8. The average level of noise removed
during the MSC process is estimated to be -0.13 dB with
σ = 7.5 dB. The spectra of all time windows contained
in Fig. 8 can be averaged to obtain a single de-noised,
enhanced spectrum, as shown in Fig. 9a. For comparison,
Fig. 9b illustrates the marginal spectrum distribution of the
entire vibration signal, which is obtained by averaging the
spectrogram shown in Fig. 4 across the time axis. Gear mesh
frequencies found in both spectra are labeled according to
Table I. Direct comparison between the two spectra shows that
the spectrum obtained from the proposed technique contains
more spectral information than its marginal counterpart. While
both spectra contain spectral components related to the gear
meshing families from gearbox stage a and b, the averaged
spectrum was able to capture more harmonics from these
families, as well as a gear mesh harmonic from gearbox stage
c. Specifically, the enhanced spectrum in Fig. 9a captures the
harmonics h3c , h

3
b , h

4
b , h

6
a, which are missing from the marginal

counterpart. Furthermore, the resonant region around 6-8 kHz
is captured in the averaged spectra, but are far less obvious in
the marginal spectra.

Further comparisons between the enhanced and marginal
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Fig. 6: Fourier spectra from different segments of the raw
LINK APM vibration signal, containing different harmonic
components

Fig. 7: Typical decomposition of a frequency spectrum into
peak and noise components using Mean Shift Clustering

spectra can be made from zoomed in depictions, such as those
shown in Fig. 10a and b. Comparison of these spectra again
shows that the enhanced spectrum contains more information
than its marginal counterpart. Components related to the shaft
rotational frequency are present in the enhanced frequency
spectrum while missing from the marginal spectrum. Other
prominent spectral structures, such as modulation sidebands,
were also captured more clearly by the proposed spectral anal-
ysis technique. Fig. 11a shows that the modulation sidebands
surrounding the second harmonic from gear mesh stage were
also captured in the enhanced frequency spectrum. Fig. 11b
shows that in the corresponding marginal spectra, the same
modulation sidebands are not as pronounced.

In addition to comparison against the marginal spectrum,
the performance of the proposed spectral analysis technique

Fig. 8: De-noised spectrogram of LINK APM gearbox round-
trip signal after mean shift clustering

Fig. 9: (a) Enhanced frequency spectrum obtained using the
proposed approach in conjunction with time averaging (b)
Marginal frequency spectrum obtained from the signal spec-
trogram - the extracted gearmesh components labeled

is also assessed against the SA spectrum. The SA spectrum
for the APM signal was computed using the frequency domain
SA algorithm presented in [4], which applies re-sampling of
the time domain data in order to account for non-stationary
shaft speed. The SA spectrum corresponding to the input
shaft, is shown in Fig. 12, for data sampled at 200 kHz
and 20 kHz. Comparison of the 200 kHz SA spectrum with
the enhanced spectrum in Fig 9a shows that both spectra
contain the same harmonic content corresponding to the input
shaft, with very similar noise levels. However, the proposed
spectral analysis technique presented several advantages over
SA for the type of vibration data considered. When using
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Fig. 10: Rotational frequency, gearmesh components and mod-
ulation sidebands extracted using (a) the proposed approach in
conjunction with time averaging, (b) the marginal frequency
spectrum

SA, the spectrum corresponding to each gearbox stage must
be obtained separately, as opposed to the proposed spectral
analysis technique, where all of this information is obtained
simultaneously. In addition, the kinematic information (i.e.
gear ratios) for the gearbox must be known a priori for SA.
Furthermore, comparison of the spectra shown in Fig. 12a and
b illustrates the importance of sampling rate on the frequency
resolution when using SA. Closely spaced harmonics and
sidebands, which are visible in the enhanced spectrum shown
in Fig. 9a, are not visible in the SA spectrum for data sampled
at the same rate. Comparable frequency resolution between the
two methods could only be obtained for SA data sampled at
200kHz, which would increase the data rate required for online
monitoring by an order of magnitude.

In terms implementation on such systems, the presence
of speed fluctuations within the APM gearbox presented a
challenge for obtaining suitable data for SA. Without the use of
more sophisticated techniques, SA data could only be obtained
in regions where the speed fluctuations were nominal, whereas
in the proposed technique, this was not an issue.

B. Bearing fault detection - Surveillance 8 Safran aircraft
engine

The proposed spectral analysis technique was also applied
as a pre-processing technique to de-noise a high-speed gearbox
signal prior to using envelope analysis to detect bearing faults.
The data used was obtained from exercise 2 of the Surveillance
8 challenge, which was sampled from an accelerating Safran
aircraft engine at a rate of 50 kHz for 200 s. The engine
contained two faulty bearings (L1 and L5) with outer race

Fig. 11: Gearmesh harmonics and modulation sidebands ex-
tracted using (a) the proposed approach in conjunction with
time averaging, (b) the marginal frequency spectrum

faults. Fig. 13 illustrates the speed of the shaft containing
the damaged bearing (L5), and shows non-stationarity due to
the acceleration of the engine over the sampling interval. A
full description of the engine, gearbox kinematics and data
acquisition process can be found in [5].

1) Performance of proposed technique: To perform bear-
ing fault detection, the given signal was segmented into 2s
windows and MSC was applied in conjunction with envelope
analysis to identify and track the bearing fault frequencies as
the speed of the shaft changes over the sampling interval. A
frequency resolution of 1 Hz was used for all analyses. The
procedure consists in the following steps:

1) For each segment, the DFT is calculated and MSC is
applied to the signal to separate the gearbox harmonics
from the noise as per steps 2) 3) and 4) described
in section II-C ; the resulting de-noised spectrum is
subsequently band-pass filtered at a resonant band of
21.5 - 24.8 kHz.

2) The band-pass filtered signal is demodulated using the
Hilbert Transform to produce the envelope signal and
the corresponding envelope spectrum.

3) After all segments have been processed according to
steps 1 and 2, the resultant envelope spectra are ag-
gregated into a single time-frequency representation or
spectrogram.

The performance of the proposed technique was determined
by comparing the envelope spectrograms obtained with and
without the application of mean shift clustering. Fig. 14a
illustrates the envelope spectrogram without the pre-processing
technique applied, while Fig. 14b illustrates the spectrogram
with the proposed pre-processing approach used for de-
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Fig. 12: Frequency spectrum obtained using time synchronous
averaging where the sampling frequency is (a) 200 kHz, (b)
20 kHz

noising. Comparison of the two spectrograms shows that the
unprocessed envelope spectrogram contains a high level of
background noise, resulting in only faint traces of the outer
race bearing fault frequency and its second harmonic (BFPO 1
and 2) appearing in the spectrogram. However, the de-noised
envelope spectrogram shows relatively sharp traces of the
outer race fault frequency along with two harmonics (BFPO
1, 2 and 3) and their corresponding modulation sidebands.
Furthermore, the cage frequency (CF), and its corresponding
sidebands are also visible in the pre-processed spectrogram.
Comparing the noise level of the two resulting spectrograms,
it was found that the MSC spectrogram contained 18 dB
less noise than the non-processed counterpart, indicating a
significant improvement to the SNR after the application
of the proposed approach. These results demonstrate that
the proposed spectral analysis technique can be used as an
efficient, non-parametric and blind de-noising tool to pre-
processing signals in bearing fault detection.

C. Performance of proposed approach in the presence of
frequent speed fluctuations

The wind turbine signal to be analyzed consists of multiple
families of deterministic frequencies embedded within broad-
band noise, which are subjected to frequent non-linear speed
fluctuations. The raw time-frequency spectrogram of the wind
turbine signal is shown in Fig. 15a, which was generated using
overlapping 2s windows (75% overlap) and a frequency reso-
lution of 1Hz. Using the same parameters, spectral de-noising

Fig. 13: Rotational speed of shaft containing damaged bearing
L5

Fig. 14: Envelope spectrogram of vibration signal: (a) without
and (b) with spectral de-noising using Mean Shift Clustering

was performed by applying the mean shift clustering technique
to each window, resulting in the de-noised spectrogram shown
in Fig. 15b. The resulting spectrogram shows that the time-
varying harmonic components were successfully separated
from the broadband noise, despite the presence of frequent
speed fluctuations. The average level of noise removed from
the signal using MSC is estimated to be 1.45 dB, with σ =-11
dB.

The performance of the MSC approach can be further
quantified by comparing the results to those obtained using
Sliding SSA. Sliding SSA is a data-driven spectral analysis
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tool that utilizes singular value decomposition (SVD) in con-
junction with a sliding window to decompose a non-stationary
signal into physically interpretable components representing
oscillations and noise [7]. According to SSA-based de-noising,
the separation of signal harmonics from noise is achieved
by selecting the first n pairs of singular values, which are
sorted in decreasing order, and reconstructing the signal using
the associated singular vectors, where n is the number of
harmonics perceived to be in the signal. Based on the spectral
information shown in Fig. 15a, a value of 20 was chosen
for n. Using the same sliding window parameters (2s, 75%
overlap), Sliding SSA was applied to the signal, resulting in
the de-noised spectrogram shown in Fig. 16. The level of noise
removed using the SSA approach is estimated to be -18 dB,
with standard deviation σ =1 dB. Comparison of the SSA
spectrogram shown in Fig. 16 to MSC spectrogram in Fig. 15b
shows that the results obtained from both methods are com-
parable and they are equivalently effective at highlighting the
signal harmonics buried in noise. However, the MSC spectro-
gram contains less residual noise and sharper harmonics than
the SSA counterpart. Additionally, unlike MSC, Sliding SSA
involves SVD, which can be computationally intensive for long
signals and challenging for online monitoring applications.

These results illustrate the robustness of the proposed ap-
proach, and suggests that the MSC approach is insensitive
to the type of speed fluctuations commonly found in non-
stationary systems such as wind turbines. For these types of
signals, the performance of the proposed approach in both
the extraction of time-varying harmonic components and de-
noising was found to be comparable to that of Sliding SSA,
while requiring significantly less computational resources.

D. Evaluation of the kernel bandwidth parameter

The tuning of the kernel bandwidth parameter was inves-
tigated in the context of machinery vibration signals. The
Safran and wind turbine vibration signals were considered
for the study. For each signal, an arbitrary 3s window of the
data was selected, and MSC decomposition was performed on
each window across a range of bandwidth values. For each
value of the bandwidth, the skewness i.e. the asymmetry of
the probability distribution of the power spectra amplitudes,
and power of the resulting decomposition power spectra was
calculated. As shown in Fig. 17, the skewness of a spectrum
consisting of purely harmonic components is high compared
to the skewness of the spectrum consisting of purely noise.

As discussed in Section II-B, there appears to be an optimal
range for the kernel bandwidth parameter for both signals,
which is defined by the area surrounding the local minimum
of the skewness of the noise spectrum. Fig. 18 shows the
decomposition spectra for the wind turbine signal using the
bandwidth corresponding to the minimum skewness, illustrat-
ing an effective separation of harmonic and noise components.
Additionally, the trends described in Section II-B in relation to
the extreme values of the bandwidth parameter were observed
in both signals, but were significantly more evident in the wind
turbine signal, in which the spectrum is primarily comprised
of weak harmonic components buried in noise. Fig. 19a-b

Fig. 15: Spectrogram of wind turbine vibration signal: (a)
without and (b) with spectral de-noising using Mean Shift
Clustering

Fig. 16: Spectogram of wind turbine vibration signal with
spectral de-noising using Sliding SSA

shows the decomposition spectra corresponding to the small-
est and largest bandwidth values for the wind turbine data,
respectively. In the case of the smallest bandwidth, the over-
decomposition of the noise component is apparent, leading
to the minimum noise power level shown in Fig. 19a. In the
case of the largest bandwidth, the decomposition is unable
to separate harmonic components from noise, resulting in
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Fig. 17: Effect of bandwidth on skewness and power of MSC
decomposition spectra (a) Safran (b) Wind Turbine

the noise spectrum shown in Fig. 19b, which contains both
harmonic and noise components. The over-decomposition of
noise can also be seen in power trend of the decomposition
spectra, as shown in Fig 17. When considering the range of
bandwidths below the optimal range, the power of both decom-
position spectra can be seen to change rapidly with respect to
the bandwidth, indicating a significant amount of frequency
components (presumed to be noise) are transferred between
the two spectra as the bandwidth increases. This behaviour
continues until the bandwidth approaches the lower bound of
the optimal region, at which point the skewness of the noise
spectrum approaches a minimum, and the majority of the noise
is assumed to be separated from the harmonic component. For
bandwidths to the right of this optimal region, the skewness of
the noise spectrum begins to increase, indicating that harmonic
components are being clustered along with the noise. Hence,
it is proposed that in the absence of a priori information, the
minimization of the noise spectral skewness can be used as the
selection criterion for the kernel bandwidth, which was found
to be applicable to the types of spectra found in both of the
signals considered.

Fig. 18: MSC decomposition of wind turbine signal corre-
sponding to optimal bandwidth

IV. CONCLUSION

The separation of time-varying harmonic and stochastic
signal components is a fundamental pre-processing step in
many current machinery diagnostic approaches that aim to
extract diagnostic information buried in non-stationary sig-
nals. However, current approaches are often computationally
demanding and require intensive parameter tuning or a priori
information regarding the system to be effective, making these
methods difficult to implement in online monitoring. This
paper presents a model-free, blind spectral analysis approach
for pre-processing non-stationary vibration signals. The ap-
proach consists of applying Mean Shift Clustering to the
Short-Time Fourier Transform of vibration signals in order to
simultaneously de-noise and separate time-varying harmonics
from noise. It depends upon only a single parameter, the kernel
bandwidth. A criterion is proposed to automatically select
the bandwidth parameter based on minimizing the skewness
of the MSC noise decomposition spectrum. Validation per-
formed using real world, non-stationary data sets showed that
the proposed approach is effective at separating noise from
signal components in a variety of non-stationary conditions,
providing comparable performance to more computationally
intensive pre-processing methods. Most importantly, compared
to the current state of the art, the proposed approach offers
an effective, versatile, model-free tool for performing spectral
analysis of non-stationary signals that is suitable for online
monitoring of non-stationary machinery.
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