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Abstract
The functional-series angle-/time-varying autoregressive moving-average (AT-FS-ARMA) model was used to model and 
analyze vibration-based signals from internal combustion engines. This approach is derived from the formulation of the 
time–angle periodically correlated processes, a relatively new topic in the cyclostationary framework, which has gained 
attention for modeling of mechanical signals. The AT-FS-ARMA model consists of traditional time-varying FS-ARMA-like 
models, but with the projection coefficients expanded in terms of the angular variable, dependent on time. Therefore, the 
method has the advantage of considering the angle periodicities often present in vibration-based signals from rotating and 
reciprocating machines. The performance is illustrated by an experimental application of signals measured in a diesel internal 
combustion engine (ICE) with a constant operating speed. The accuracy of the model is evaluated through the residual sum 
of squares normalized by the series sum of squares. To illustrate the use of the AT-FS-ARMA for vibration analysis of ICEs, 
parametric angle–frequency spectrum was estimated and compared to angular-varying pseudo-Wigner–Ville distribution/
spectrum. The results showed that AT-FS-ARMA provides a useful complementary tool for analysis.

Keywords System identification · Rotating machines and/or reciprocating machines · Internal combustion diesel engine · 
Angle-/time-varying ARMA models · Cyclostationarity

1 Introduction

The modeling and analysis of rotating and reciprocating 
machines using vibration-based signals have been impor-
tant research topics for several decades. The interest in 
those machines is justified due to their vital position in the 
industry in general. These machines, which include pumps, 
turbines, compressors, internal combustion engines (ICEs), 
generators, fans, and gearboxes, are used in the mechanical 

and power industries. For ICEs, studies are generally related 
to the development of condition monitoring and diagnosis 
tools, aiming to increase the durability of the engines for 
longer life cycles and reduce maintenance costs due to unex-
pected failure and quality control in assembly lines [18]. 
Moreover, diesel ICEs are still widely utilized since they 
are present in vehicles and find broad applications as power 
generators. These latter applications include high-respon-
sibility applications, i.e., emergency generators in nuclear 
power plants, which are used to stop the nuclear reactor in 
unexpected situations [30]. Hence, those applications sug-
gest the necessity for robust methods of system identification 
for damage detection and fault prediction, which optionally 
may be used during the operation.

Generally, the methods for modeling and analyzing ICEs 
are classified into two different approaches: (1) those based 
on finite element methods and (2) those based only on 
experimental signals. Both methodologies for monitoring 
ICEs were widely reviewed in a recent paper by Delvec-
chio et al. [18]. The vibratory characteristics of signals from 
ICEs, including the vibration sources, ways of propagation 
and methods of analysis, are also presented in Refs. [4, 18]. 
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The experimental signals-based methods depend on signal 
processing techniques and require feature extraction, which 
consists of defining specific signal characteristics to monitor 
and identify the ones related to faults and damages.

The fundamental principle of the experimental signals-
based approaches is to establish an association between 
some deviation in the vibration signal statistics and some 
healthy-state reference(s). However, due to the complexity 
of the vibration and acoustic-based signals from the ICEs, 
analysis and feature extraction are more difficult than for 
other rotating machines, e.g., gearbox and bearings ele-
ments, because the signal processing tools to analyze ICEs 
are not well consolidated yet [4, 18, 30]. Different signal and 
system identification approaches have been used for vibra-
tion analysis, vibratory source separation and feature(s) 
extraction. Among those methods are the nonparametric 
techniques, which include the classical time-frequency 
representations based on the short-time Fourier transform 
(STFT), Wigner–Ville distribution (WVD), pseudo-WVD 
and its variations [14, 20, 30, 45], and wavelet-based [33]. 
The WVD-based may present cross-terms, and the STFT-
based methods present limitations due to the uncertainty 
principle [15], whereas the wavelet-based methods require 
an appropriate choice of the wavelet and are sometimes dif-
ficult to interpret by a nonspecialist, and its diagnosis is hard 
to automatize [4].

In addition, the parametric identification and analysis of 
vibration signals based on autoregressive models has been 
used in general applications for both stationary [17, 19] 
and nonstationary [9, 22, 34, 49, 51] scenarios, as well as 
for time-varying structures [40, 44]. The common models 
are the AR/ARMA.1 Those parametric methods require the 
model structure to be defined by the analyst and the order(s) 
to be selected. In general, this selection uses measured data 
and an order selection criterion, by a trial-and-error proce-
dure, which is generally based on the estimation of several 
candidate models and the evaluation of some fitness crite-
rion [46].

Periodic time-varying parametric identification has been 
applied to analyze ICEs under constant speed regime of 
operation [13, 24, 39]. König et al. [25] employed periodic 
time-varying AR filters to model and predict the cylinder 
pressure signals in ICEs using vibration-based signals under 
constant rotation speed regime. The nonstationary paramet-
ric approaches use time-varying parameters in their models, 
in which temporal dependence may be classified as unstruc-
tured, stochastic or deterministic evolution, accordingly to 
how the parameters can evolve through time. The determin-
istic parameter evolution (DPE) approach is particularly 
interesting for vibration analysis [34]. This class of methods 

imposes a deterministic structure for the time-varying coef-
ficients. The time-varying parameters are expanded into 
constant coefficients of projection into functional subspaces 
(FS), whose evolution occurs in terms of deterministic and 
preselected time-varying functions. Through an appropri-
ate selection of the FS, those models achieve high parsi-
mony (i.e., their representation requires a limited number of 
parameters) and can track slow or fast dynamics [44], espe-
cially when orthogonal functions are selected. For vibration 
and speech analysis, trigonometric functions have often been 
used to compose the FS [9, 22, 23, 34]. Due to the use of 
functional subspaces, those models are often referred to as 
FS-TAR/TARMA.

It is possible to compute parametric spectral estimation, 
providing spectra with potential high resolution, avoiding 
cross-terms, and offering more details than obtained using 
traditional nonparametric approaches [26, 38]. However, 
the quality of the obtained spectrum is affected by model 
underfitting or overfitting. For example, for an all-poles 
(AR-part only) model spectral analysis, the model order 
should be the “optimum” one, i.e., the one that provides the 
best mean square compromise between bias and variance 
in the spectral estimates. If the selected order is too low, 
it may cause the resonances in data to be unresolved. On 
the other hand, orders too high may be less noise-sensitive 
[31] and are susceptible to produce spurious peaks (numeri-
cal instabilities), which results in a significant variance in 
the spectral estimates [38, 50]. More recently, parametric 
identification methods have been developed for vibration 
analysis using both vibration data and environmental and 
operation parameters to evaluate the effects of the latter at 
the extracted features vibration response and include uncer-
tainty into model [10, 12, 48]. Also, recursive DPE-based 
methods have been investigated with prominent applications 
for online identification [28, 29].

In addition, the cyclostationary framework has been used 
for modeling, identification, analysis and fault detection on 
rotating machines [7, 36, 37]. The cyclostationary techniques 
are useful in describing signals carrying (hidden-)periodici-
ties and, therefore, are well suited for rotating machinery 
applications. Based on this framework, Antoni and others 
proposed the angle-/time-correlated models, which are an 
extension of the cyclostationary modeling under nonsta-
tionary speed conditions [1, 8]. Those models assume that 
when varying speed or considerable speed fluctuations are 
present, the time periodicity is not verified anymore, but an 
angular periodicity may be held. This angular periodicity 
of time-varying mechanical signals is then used to provide 
formal descriptions of those processes. Moreover, a tutorial 
on cyclostationarity focusing on mechanical applications 
is presented in Ref. [5], while a survey on cyclostationary 
signals and applications may be found in Ref. [32]. By the 
assumption of cyclostationarity, vibration characterization 1 AR: autoregressive. ARMA: autoregressive moving average.
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of ICEs has been performed in the past using a Wigner–Ville 
distribution at the angle–frequency plane. Those results 
allow one to relate the energy content of a signal at each 
angle instant [6].

This paper’s main objective is to present a functional-
series angle/time-varying autoregressive moving-average 
(AT-FS-ARMA) model for parametric identification of rotat-
ing machines and illustrate the application of this model 
using vibration data measured from accelerometers on a 
four-stroke diesel ICE operating at a constant speed. The 
method provides parametric spectra that may be used for 
characterizing the vibration signals in terms of the angular 
instants.

This paper is organized as follows. First, the AT-FS-
ARMA model is introduced in Sect. 2, and some funda-
mental aspects of its formulation are discussed. The results 
and discussion are presented in Sect. 3, where the method 
is illustrated using real data from a four-cylinder four-stroke 
diesel ICE. For that, some essential characteristics of the 
signals and the preprocessing of the data are discussed. The 
model structure is selected using the BIC criterion, and the 
AT-FS-ARMA model is estimated and validated. A com-
parison between the smoothed pseudo-WV distribution and 
spectrum and the parametric estimated ones using the AT-
FS-ARMA is presented. Finally, the conclusions are sum-
marized in Sect. 4.

2  Parametric modeling in the time–angle 
domain

A traditional time-varying ARMA (TARMA) model is given 
by [22]:

and is presented as a generalization of the time-invariant 
ARMA model of the nonstationary case. Here, tn stands 
for the discrete-time variable, x(tn) is a N-sample scalar 
and time-dependent stochastic process and ai(tn) denotes 
i = 1,… , na and ci(tn) for i = 1,… , nc are the time-varying 
AR and MA ith coefficients; e(tn) is an unobservable uncor-
related white-Gaussian nonstationary innovation process, 
with zero mean and variance �2

e
(tn) , which is also time vary-

ing, contrary to the traditional stationary ARMA model. The 
values na and nc address the AR/MA-part orders, and NID 
stands for normally independently distributed.

(1)
x(tn) = −

na∑
i=1

ai(tn)x(tn−i)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
AR-part

+

nc∑
i=1

ci(tn)e(tn−i)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
MA-part

+e(tn), e(tn) ∼ NID(0, �2
e
(tn)),

One common strategy to represent time-dependent 
dynamics imposes a deterministic parameter evolution 
(DPE) for the coefficients ai(tn) and ci(tn) , which are 
assumed as a set of known/preselected deterministic time 
functions belonging to a functional subspace (FS). Due to 
that, the time-varying models with DPE structure are also 
known as FS-TARMA. Those models are capable of track-
ing fast time evolution by choosing an orthogonal basis for 
the FS. The FS-TARMA models have been properly used 
for conditioning monitoring of diesel engines [13], time-
varying structure identification [11, 40] and fault diagnosis 
[9, 44].

In contrast to the FS-TARMA models, the proposed AT-
FS-ARMA approach expands the model coefficients in an 
angle-function functional basis belonging to a functional 
subspace, where the angular dependency is directly related 
to the instantaneous position of a reference shaft instead of 
time. This model can be used to identify vibration-based 
signals from rotating and reciprocating machines and is 
derived from a new framework, where the signals from 
machines are modeled as angle-/time-cyclostationary 
processes. The signal periodicity is described in terms of 
the angular variable, whereas the signal dynamics stills  
represented varying through time. Broader discussions 
on cyclostationarity in mechanical systems, as well as its 
definition, statistics, and examples of systems with such 
behavior, were given by Antoni [5], while more details 
about the angle/time modeling are presented in references 
[2, 3]. The AT-FS-ARMA model is a significant original 
contribution of this paper.

Let us define the instantaneous angular shaft displace-
ment variable, which depends on the discrete-time instant 
�n = �(tn) . Hence, an AT-FS-ARMA model with param-
eters dependent on both time and angle is proposed as:

where

are functions dependent on both time and angle that are 
angle periodic with a period equal to � . The angular perio-
dicity also indicates that the innovation variance �2

e
(�n) is 

cyclic with a period related to a shaft/rotating component 
position. This period is in general equal to � = k2� , where 
k ∈ ℤ . Usually, the period is � = 2� for rotating machines, 

(2)x(tn) = −

na∑
i=1

ai(�n)x(tn−i) +

nc∑
i=1

ci(�n)e(tn−i) + e(tn),

(3)
ai(�n) = ai(�n +�), ci(�n) = ci(�n +�), �2

e
(�n) = �2

e
(�n +�),
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and it is equal to � = 4� for four-stroke diesel engines. 
Assuming the DPE-based structure for the AT-FS-ARMA 
model, the parameters for the AR part ai(�n) and MA part 
ci(�n) as well as the innovation variance �2

e
(�n) are expanded 

into angle-dependent functional basis in the form:

and substituting Eq. (4) into Eq. (2), we have a closed-form 
formulation of the AT-FS-ARMA model as:

Then, the AT-FS-ARMA model can be expressed as:

The angle-/time-dependent FS-ARMA model is described 
in terms of na

(
pa + 1

)
+ nc

(
pc + 1

)
+ ps coefficients. As 

previously mentioned, the DPE-based method requires the 
preselection of a proper family of basis functions, which in 
general may assume in a priori knowledge about the sig-
nal and previous analyst experience. Vibration signals from 
reciprocating/rotating machines suggest angular periodic-
ity of the sources of vibrations linked to a reference shaft. 
Therefore, an angle-periodic basis is an appropriate choice 
to express this dependency.

Thus, to express the angle/time periodicities, a functional 
subspace with an angular-period equals to � = 4� composed 
by Fourier series expansions angular coefficients is selected 
[8]:

where Gb(k) for k = 1,… , max(pa, pc) are the angle-/time-
dependent functional subspaces and k are the indices of 
the subspace basis functions. The angle-dependent Fourier 
series used as basis functions in Eq. (7) are achieved through 
a general model that originated in the angle-/time-cyclosta-
tionary modeling of signals [1, 8]. The model is estimated 
using a “Relaxed” multistage weighted least-squares (RMS-
WLS) method to compute the model coefficients of projec-
tions and the innovation variance [41, 43].

(4)

ai(�n) ≜
pa∑
k=1

�i,kGba(k)
(�n), ci(�n) ≜

pc∑
k=1

�i,kGbc(k)
(�n),

�2
e
(�n) ≜

ps∑
k=1

si,kGbs(k)
(�n),

(5)

x(tn) = −
∑
i,k

�i,k Gba(k)
(�n)x(tn−i)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
zk(�n−i)

+
∑
i,k

�i,k Gbc(k)
(�n)e(tn−i)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
yk(�n−i)

+e(tn),

e(tn) ∼ NID(0, �2
e
(�n)),

(6)x(tn) = −
∑
i,k

�i,kzk(�n−i) +
∑
i,k

�i,kyk(�n−i) + e(tn), e(tn) ∼ NID(0, �2
e
(�n)).

(7)

⎧⎪⎨⎪⎩

G1(𝜙n) = 1

G2k(𝜙n) = sin
�

k𝜙n

2

�
, k > 1

G2k+1(𝜙n) = cos
�

k𝜙n

2

�
, k > 1

3  Results and discussion

The experimental data were measured from a four-stroke 
four-cylinder IC diesel engine from a passenger car. The 
experiments have been carried out with the transmission 
at the neutral position. The vibration signals were saved 
at a constant speed regime of operation using one accel-
erometer positioned on the engine block close to a cyl-
inder. Additionally, an encoder provides an one-top-per-
revolution signal. All data were acquired at the sampling 
frequency of fs = 20.48 kHz.

A complete cycle of the four-stroke engine has four 
stages: (1) admission, (2) compression, (3) ignition, and 
(4) expansion/exhaust. The dependence between the ther-
modynamic cycles and the crankshaft position suggests 
that the vibration signals are angle periodic at every two 
turns of the crankshaft ( � = 4� ), which contains four 
combustions. The sources of the vibrations in IC engines 
are mostly due to the movement of the moving parts, the 
tilting of pistons, the distributor and injection systems, 

and forces caused by the pressure variations inside the 
chambers. The combination of all those vibration sources 
results in a complex signal for analysis. More details on 
the vibration characteristics of IC diesel engines can be 
found in Chapter 3 of the thesis by Antoni [4].

The counting of the tachometer pulses and the instan-
taneous angular speed were both estimated by the encoder 
signal. Then, the vibration signal was initially preproc-
essed to include an integer number of the thermodynamic 
cycles by windowing it into an even number of tachometer 
pulses. The preprocessing of the accelerometer signal also 
includes mean and trend removal. The angular displace-
ment of the crankshaft is approximated through a discrete-
time integral of the instantaneous angular speed signal. 
The measured vibration response signal is originally 15 s 
and shown in Fig. 1. This signal structure presents high-
amplitude peaks produced by the explosions, followed by 
strong transients until the energy produced by the impacts 
dissipates through the engine block. A zoom in a segment 
of the signal may allow one to see the angular periodic-
ity of the signal representing the function of the number 
of engine’s cycles (as shown in Figs. 2 and 3 where the 
tachometer signal is also represented).

Figure 4 illustrates the relationship between the crank-
shaft cycles and the measured vibration response.

A nonparametric spectrogram was also estimated for an 
initial analysis. Figure 5 corresponds to the nonparamet-
ric PSD obtained through STFT using a Gaussian moving 
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window with 2048 data points with 200 advance samples 
and 2048 DFT points. In the PSD, the darker the color, 
the lower the energy content at this frequency range, as 
indicated by the color bar. Also, from Fig. 5, the energy 
of the signal decreases considerably for frequencies above 
4.5 kHz. This information may be helpful to determine 
whether the signals can be down-sampled before using the 
parametric identification method.

After the range of frequency with high energy content is 
established, the next step is to select the model structure. 
This procedure requires the selection of the model orders 
and basis dimensions for the AT-FS-ARMA(na, nc)[pa,pc,ps] . 
This may be achieved using Akaike’s information criterion 
(AIC), Bayesian information criterion (BIC), by evalu-
ation of the mean squared error (MSE) or using other 
model order selection criteria [34, 35]. Several conditions 

Fig. 1  Vibration response signal 
for the steady-state condition at 
a nominal speed of 1500 RPM

Fig. 2  A zoom at a small length 
of the vibration response signal 
at a nominal speed of 1500 
RPM

Fig. 3  Segment of the vibration 
response signal   and its rela-
tion with the tachometer signal 
(–) for the steady-state condition 
at a nominal speed of 1500 
RPM (color figure online)
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are then examined by varying the data length and down-
sampling the signals, which are recommended because 
the original sampling frequency is too high and the data 
length is too long. Complete and high-dimensional sub-
spaces are defined to check the sensibility of varying those 
dimensions.

As aforementioned, the original signal length is too long, 
and taking into account that it presents periodicity, only a 
segment of the vibration signal is selected for analysis. This 
may be achieved by dividing the signal into M segments. 
This selected Mth segment was then truncated to include an 
integer number of thermodynamic cycles. Therefore, a new 
number of N samples are obtained. The signal is also resa-
mpled into a new sampling frequency fsn using a polyphase 
anti-aliasing filter. Again, Fig. 5 demonstrates that the high 
energy content of the signal occurs below 4.5 kHz, so the 
new sampling frequency was established as at least fsn ≥ 10 
kHz to include information below at least 5 kHz and satisfy 
the Shannon sampling theorem.

The structure of the model is chosen through the selection 
of the orders na and nc and the dimension of the functional 
subspaces pa and pc . In this paper, the selection is based on 
the BIC criterion [34]. For that, several AT-FS-ARMA(n,n) 

candidate models are estimated for n = 1,… , 30 (extended 
to 50 for situations where the initial evaluation was consid-
ered inconclusive). The selected AR-part order na is the one 
that minimizes the BIC value. Then, the same procedure is 
used to optimize the MA-part order nc , but now consider-
ing nc = 1,… , na , where the selected nc order will again be 
the one that minimizes the BIC. The removal of FS exces-
sive dimensions procedure is not performed in this work 
[42]. This procedure described above was repeated for dif-
ferent signal lengths Nn′s and sampling frequency fsn . All 
the bases were adopted as containing the same dimension 
p = pa = pc = ps.

Table  1 provides the obtained results, where 
d = (napa + ncpc) indicates the number of invariant 
parameters that describe the resultant model. This table 
shows that the combination of parameters from Test #6 
provided the lowest BIC value. Therefore, the AT-FS-
ARMA(16, 3)[25,25,25] model was selected as the one that 
would best represent the signal. For Test #6, the sampling 
frequency is reduced to 3/4 of its original value, and the 
resulting signal contains 14,605 samples and is approxi-
mately 1/15 of the original duration. The BIC values 

Fig. 4  Segment of the crank-
shaft position signal (mapped 
from 0 to 4� )  and its relation 
with the tachometer signal (–) 
for the steady-state condition at 
a nominal speed of 1500 RPM 
(color figure online)

Fig. 5  Two-dimensional non-
parametric PSD obtained via 
STFT, using a Gaussian moving 
window with 2048 data points 
with 200 advance samples and 
2048 DFT points. The darker 
the color, the lower the energy 
content (color figure online)
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obtained for the AT-FS-ARMA(n, n)[25,25,25] candidate mod-
els from Test # 6 are presented in Fig. 6.

Once the model structure and orders are selected, the 
obtained model must be validated [27]. The acceptance of 
the model depends on its performance under procedures 
that check it for an example for the innovations sequence 
Gaussianity-whiteness. For stationary models, those tests 
usually check for the uncorrelatedness innovations sequence 
by estimating its autocorrelation function (ACF). However, 
for the nonstationary model due to nonstationarity variance, 
the usual tests are not applicable [43]. To overcome this 

issue, the innovation variance may be normalized into a unit-
variance sequence as [21, 43],

where �(�n) is the normalized variance.
Figure 7 shows the ACF of the normalized innovations 

sequence for 95% confidence level. The impulse-like sig-
nature for the ACF indicates the uncorrelatedness of the 
normalized innovations sequence and, therefore, an overall 
adequate model fitting. Another procedure is the residual 

(8)�(�n) =
e(tn)

�e(�n)
�(�n) ∼ NID(0, 1)

Table 1  AT-FS-ARMA model 
identification: BIC minimum 
values obtained for candidate 
models

Model fsn (Hz) Nn (samples) p na nc d min(BIC 
value 
( ×103))

# 1 10,240 9737 25 13 1 350 3.5231
# 2 10,240 14,651 25 26 7 825 3.2290
# 3 10,240 9737 15 25 8 495 3.3879
# 4 10,240 9737 50 12 1 650 4.2239
# 5 15,360 14,605 15 18 6 345 − 0.5253
# 6 15,360 14,605 25 16 3 475 − 1.1384
# 7 10,240 9737 15 18 6 525 3.7280

Fig. 6  AT-FS-ARMA model 
identification: a BIC values 
of AT-FS-ARMA(n, n)[25,25,25] 
models ( n = 2,… , 30 ) 
for AR-part order selec-
tion. b BIC values of AT-
FS-ARMA(16, nc)[25,25,25] 
nc = 1,… , 14 for MA-part 
order selection

(a) (b)

Fig. 7  AT-FS-ARMA model 
identification: normalized 
autocorrelation function (ACF) 
of the residual error of AT-FS-
ARMA(16, 3)[25,25,25] for 95% 
confidence level computed for a 
number of 1000 lags
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sign test (run test for randomness) [34, 47] in which the 
AT-FS-ARMA(16, 3)[25,25,25] innovations sequence is tested 
for 95% confidence level and attests the hypothesis that the 
uncorrelated residual series is valid.

The comparison between the vibration response and its 
modeling using AT-FS-ARMA(16, 3)[25,25,25] is presented in 
terms of the residual error sequence in Fig. 8. The estimated 
angle-/time-dependent innovation variance is in Fig. 9 and 

is periodic, as expected. The vibration response and model 
prediction in Fig. 10 were in a good accordance.

The obtained value for the residual sum of squares nor-
malized by the series sum of squares (RSS/SSS) is approx-
imately 5.96%, which indicates a high modeling accuracy. 
For the effect of comparison, the same signal was modeled 
using a traditional FS-TARMA (with a time-based basis) 
with precisely the same orders and basic dimensions, and 

Fig. 8  AT-FS-ARMA model 
identification: the residual error 
sequence e(�(tn))

Fig. 9  AT-FS-ARMA model 
identification: the angle-/time-
dependent innovations variance 
�2
e
(�(tn))

Fig. 10  AT-FS-ARMA identifi-
cation: segment of the vibration 
response  and AT-FS-
ARMA(16, 3)[25,25,25] prediction 

 (color figure online)
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the RSS/SSS obtained was equal to 11.30%. This does 
not exclude, however, the possibility that an even more 
parsimonious FS-TARMA may be identified with RSS/
SSS lower than that obtained here. Also, as expected, the 
success of the estimated model depends on the tachometer 
signal quality or, more generally, on the angular displace-
ment estimation. Thus, poor tachometer signal features 
may result in problems in selecting the orders or may com-
promise the model’s statistical characteristics. Some pre-
liminary tests, not included in this work, were affected by a 
weak tachometer signal. To avoid that, the first 1000 sam-
ples of the signals were dropped due to missing tachometer 
pulses at the beginning of the acquisition.

To discuss the potential of the AT-FS-ARMA for vibra-
tion analysis, a comparison between parametric and non-
parametric angle–frequency distribution is performed. 
Since STFT-based methods would present time–frequency 
resolution limitations due to the uncertainty principle, the 
smoothed pseudo-WVD is used for the time/angle–fre-
quency analysis.

When compared to the traditional Wigner–Ville distribu-
tion, the smoothed pseudo-WVD has reduced occurrence 

cross-terms when analyzing multicomponent signals, at the 
cost of loss on its time–frequency resolution and on its mar-
ginal properties [15, 16].

Angular resampling is performed using the raw vibra-
tion signal on its original sampling frequency and length. 
Then, its angular–synchronous average is calculated and the 
smoothed pseudo-WVD is computed from it.

The smoothed pseudo-WVD of a signal x(�) in its con-
tinuous form is defined as [6],

where g(�) and H(f) are independent smoothing windows in 
angle and frequency, respectively.

Figure 11 shows the obtained smoothed pseudo-WVD 
computed over the angular–synchronous averaged signal 
over 189 cycles. The frequency axis is limited to 7680 
Hz for a direct comparison with the parametric spectra 
that will be presented below. The highest peak in ampli-
tude is related to the combustion phenomena in the cylin-
der, which is closer to the accelerometer’s position. The 

(9)

Wxx(�, f ) = ∫
+∞

−∞

g(�)H(f )x
(
� +

�

2

)
x∗
(
� −

�

2

)
exp−i2�f � d�

Fig. 11  Averaged smoothed 
pseudo-WVD |Wxx(�, f )| com-
puted over the signal resampled 
in the angular domain synchro-
nously averaged on 189 cycles

Fig. 12  Averaged smoothed 
pseudo-WVS log10

(
Wxx(�, f )

)
 

computed over the signal resam-
pled in the angular domain 
synchronously averaged on 189 
cycles
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obtained spectrum is represented on the logarithm scale 
in Fig. 12, where it is possible to verify the success of the 
four combustion events that excite the system over a wide 
frequency range. Also, a stationary component around 570 
Hz is noticeable which may be related to the gearbox of 
the vehicle. Finally, transients are detected around 3 kHz 
after each of the combustion events. Those transients may 
be related to the openings and closures of the inlet and 
exhaust valves.

The “frozen” configuration angle/time–frequency dis-
tribution is presented in Fig. 13, and is obtained running 
realizations of the AT-FS-ARMA(16, 3)[25,25,25] model for 
angle-periodic inputs. Hence, the previously estimated tra-
jectories ai(�n) , ci(�n) and innovations variance �2

e
(�n) are 

used to estimate the new output assuming a sinusoidal inno-
vations sequence, modulated by an angle-periodic amplitude 
�e(�n) = �e(�n +�) , as

(10)e(tn, fk) = �e(�n) exp
i2�fktn

for given frequencies fk ≥ 0 . Then, an output x(tn, fk) is com-
puted for each frequency fk and the “frozen” angle-/time-
varying map is obtained by

Figure 14 presents the “frozen” angle–frequency map. In 
comparison with Fig. 12, the parametric spectrum in Fig. 14 
seems smoother along the angle axis. In Fig. 14, the events 
related to the engine cycle are evidenced, where the combus-
tion events and the transients due to the openings/closures of 
the valves are evidenced by vertical lines, while the station-
ary component around 570 Hz is signalized by the horizontal 
red dashed line (Fig. 13).

One advantage of the parametric spectra is that they are 
free from cross-terms. Hence, they may be used as a helpful 
complementary tool for identification and characterization of 
vibrations of rotating and reciprocating machines (Fig. 14).

(11)S(�n, fk) = |x(tn(�n, f )|2.

Fig. 13  “Frozen” angle–fre-
quency distribution for the fifth 
engine cycle. Angular scale is 
mapped between 0◦ and 720◦

Fig. 14  “Frozen” log-scaled 
angle–frequency spectrum for 
the fifth engine cycle. Angular 
scale is mapped 0◦ and 720◦ . 
Events related to the engine’s 
kinematics are indicated in the 
figure (color figure online)
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4  Summary and conclusions

Time-varying parametric models have been a topic of 
research in recent decades. Some of those methods are DPE-
based, where the parameters of the models are expanded in 
terms of projection coefficients that vary, respectively, to 
a deterministic FS, which is chosen a priori according to 
the nature of the signal. The FS-TARMA models have been 
successfully applied to vibration analysis, and the Fourier-
based (or trigonometric) basis is often used to model vibra-
tion signals. In the vibration analysis field, the evolution of 
this FS is often in terms of the time variable. However, their 
applications in rotating and reciprocating machinery are still 
not typical. Those machines frequently perform angle-/time-
dependent dynamics, and their signals have angle-periodic 
data, i.e., angle-dependent cyclostationarity. To overcome 
these drawbacks, an angle-/time-varying FS-ARMA model 
was proposed in this paper.

The method attempts to couple the advantages of para-
metric methods of identification with concepts from the 
cyclostationary framework. The formulation was based 
on the well-known FS-TARMA models, and an expansion 
basis based on the angle-dependent Fourier series. The 
method was illustrated by an application using experimen-
tal data from an diesel ICE operating at a constant speed. 
The method demands both vibration and angular position 
information, which may be acquired by a tachometer. The 
analysis was performed through the estimation of parametric 
angle–frequency spectra and distributions and comparing 
those to the obtained ones through smoothed-pseudo-WVS/
WVD. The AT-FS-ARMA models may be used as comple-
mentary tools for analysis of reciprocating and/or rotating 
machines. However, further investigations are required to 
assure the capacity of the proposed model when modeling 
signals with time-varying speed but where the cyclostation-
arity is maintained.
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