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Abstract - The purpose of this paper is to estimate hydroelectric turbine runner modal 22 
characteristics from experimental measurements coming from asynchronous regimes. This is 23 
achieved by investigating resonances generated by the interaction of a structural mode with 24 
harmonics of the rotating speed. Resonances are extracted using order tracking and processed 25 
with a Fast Bayesian algorithm in an ambient manner to estimate modal parameters and 26 
related uncertainties. Since data collection and effective processing of hydropower turbine 27 
field measurements is in its early stages, this paper lays some foundations in the treatment of 28 
transient regime measurements. A novelty in this approach lies in the use of a probabilistic 29 
identification tool in Order Based Modal Analysis (OBMA). A numerical experiment and a 30 
study from a hydroelectric Francis turbine field measurements are introduced to illustrate the 31 
method.  32 

 33 
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List of symbols 36 
 37 � Complex unit �� Discrete radial frequency � ∈ �1, 	
� ��|�� Probability of x given y 	�� (m×m) Excitation density matrix at	�� 	�� 
  �� (Ns×Ns) Response density matrix at	�� 	�� � (Ns×Ns) Identity matrix �� (Ns×1) Frequency response vector at	�� 	�� �� Experimental estimation of � �� (Ns×Ns) Noise density matrix at	�� 	�� |�| Determinant of � ����� (Ns×1) Amplification factor at �� 	�� �� Moose-Penrose pseudo-inverse of �   (4+Ns× 4+Ns) Covariance matrix !� �" Transpose of � # Tachometer record (angle vector) �∗ Hermitian conjugate of �   %⋆ Interpolated vector of % ' (Ns×1) Partial mode shape �� 	( Number of investigated channels �) Natural radial frequency 	
 Number of frequency samples *) Damping ratio 	� (4+Ns×1) SDoF parameter vector	�� +) Scaled PSD of modal force ,�� Negative log-likelihood function !� +-) Scaled PSD of channel noise  

 38 
1. Introduction 39 

A full grasp of turbine runner dynamic behavior is required in assessing the consequences of fatigue 40 
on life duration and crack propagation. Especially, an accurate determination of the actual behavior 41 
during transients is mandatory to determine the load levels [1, 2]. High amplitude stress cycles can lead 42 
to early damages and loss of reliability [3, 4]. Most of resonances observed in transient regimes 43 
emanate from the interaction between synchronous excitations coming from the harmonics of the 44 
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rotating speed, and a matching vibration mode of the turbine. Such phenomenon can generate periods 45 
of intense vibration, possibly leading to extensive damages or even failure of the structure. The 46 
prediction of structural modes allows defining optimal operating ranges in which resonances cannot 47 
develop, and predicting the dynamic stress amplitudes the structure withstands during operations. In 48 
some cases, operation during resonance may be allowed if excitation is sufficiently low and damping 49 
sufficiently high, and a proper design is even more important in such situations to ensure safety. 50 

In a foreseeable future, experimental measurements on turbine prototypes are expected to become 51 
an integral part of this process [5, 6]. For both designers and users, experimental tools can be used for 52 
validating and calibrating numerical models hence increasing structural reliability assessment 53 
accuracy. Such approaches are particularly welcomed in the field of hydropower, as operational 54 
conditions can strongly alter numerical predictions [7-9], and reduced model resonance studies cannot 55 
be transposed to turbine prototypes [10]. The most practical way to achieve modal analysis for 56 
operating devices is Operational Modal Analysis (OMA), where the structural behavior is investigated 57 
without prior knowledge of the excitation, which is in effect the ambient excitation occurring during 58 
operation. Experimental setup and cost are relatively low compared to other methods, so that OMA 59 
has been widely developed since the early 1990's. Usually, only minor assumptions are needed to 60 
characterize the response without knowing the excitation, but such analysis result in high uncertainties 61 
to be evaluated.  62 

Analysis of turbine operational modal characteristics is still restricted to a few studies [11-13], but 63 
is gaining recognition with the demonstration of its benefits. Especially, it was shown that transient 64 
events are particularly useful for detecting modal signatures [12, 13]. The purpose of this paper is to 65 
present an OMA procedure tailored for hydroelectric turbines, capable of extracting modal 66 
information and quantifying related uncertainties. The study focuses on asynchronous transient 67 
regimes, in which the harmonics usually lead to resonances. System response is processed with a 68 
Bayesian-based inference scheme which can return the modal statistical distributions with a low bias. 69 

The paper is structured as follows. The first section introduces the main OMA tools available to 70 
estimate modal parameters, and presents the concept of order based modal analysis.  the ML Order 71 
Based Modal Analysis (ML-OBMA) is presented in section 3, inspired by the works of S.-K. Au [14]. 72 
In section 4, several numerical cases are studied to test the algorithm. The model is finally 73 
implemented on a hydroelectric case, where operational resonances during a coast-down are 74 
characterized.  75 
 76 

2. Modal identification under random excitation 77 
OMA techniques are divided into four classes: they can process data in the time domain or in the 78 
frequency domain, and can be parametric or non-parametric. Non-parametric algorithms perform 79 
identification by splitting the signal into its modal contributions: see, e.g., Random Decrement 80 
Technique (RDT) [15], Frequency Domain Decomposition (FDD) [16], Blind Source Separation (BSS) 81 
[17]. Parametric approaches, for their part, attempt to fit Multi-Degree-of-Freedom (MDoF) model 82 
parameters to experimental data. Time domain models are mostly based on signal autoregression or on 83 
the output correlation matrix: auto-regressive (ARMA) [18], subspace methods (SSI) [19], 84 
eigenrealization algorithm (ERA) or Ibrahim algorithm [20]. On the other hand, frequency domain 85 
models are mainly based on density matrices: poly-reference Least-Square Complex Exponential (p-86 
LSCE) or polymax [21], frequency polyreference [20], maximum likelihood [22].  87 

All these methods are deterministic and mostly rely on curve-fitting. Although ambient modal 88 
analysis offers a wide range of identification tools, assessment of uncertainties is still limited to 89 
specific procedures, and a general framework is yet to come. This is partly due to the many 90 
uncertainty sources and their propagation: data acquisition, identification model, computation process, 91 
etc. However, significant progress has recently been made in terms of taking stochastic uncertainties 92 
into account [23]. The determination of modal parameter uncertainties is a first step in estimating the 93 
uncertain vibrating response of structures [24]. Most time domain modal parameter variance models 94 
are derived from the curve-fitting methods, using Monte Carlo algorithms or first-order developments. 95 
Essentially, Taylor series are expanded to the first order derivative, for models such as SSI [25, 26] or 96 
autoregressive [27]. In the frequency domain, statistical approaches mostly rely on Maximum 97 
Likelihood Estimator (MLE). Such approach was combined with the polymax algorithm to reduce 98 
noise and obtain distribution intervals, producing the Polymax Plus algorithm [28, 29]. Some accuracy 99 
loss due to very noisy data were addressed more recently [30]. These algorithms are efficient modal 100 
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identifiers for long time-histories. MLE was finally extended into a Fast-Bayesian model through a 101 
Laplace approximation in 2017 [14]. MLE has many benefits as it is asymptotically unbiased and 102 
efficient (with respect to the Cramer-Rao lower bound) and convergent.  103 

OMA models generally consider linear time-invariant systems, which results in the fundamental 104 
frequency input-output relation suggested in eq. (1). �� 	N/ × N/�, ��m ×m� are respectively the 105 
discrete output and input spectral density matrices at radial frequency �� and 2�	m × N/� is the 106 
frequency response function matrix containing the system characteristics. �� 	N/ × N/� is the noise 107 
spectral density matrix. The equivalent time domain model can be obtained through the Wiener-108 
Khinchin theorem. The objective is to determine 2� for a given �� with �� unknown. This lack of 109 
knowledge is tackled by considering the ambient vibration as white noise having a constant power 110 
spectral density. Under this assumption, �� becomes a constant matrix, which is sufficient to estimate 111 
the poles of 2�. 112 �� = 2�∗��2�" + �� ,			� ∈ �1, 	
� (1) 

 113 
First introduced by K. Janssens et al. in 2006 [31], OBMA is a method combining advanced order 114 
tracking and an OMA algorithm to obtain modal characteristics. It has been extensively studied by 115 
E.D. Lorenzo [32, 33]. By considering hydroelectric turbines as multi-sine sweep generators 116 
(especially, the Rotor-Stator Interactions, RSI), resonances are easily extracted from the signal using 117 
Order Tracking (OT) methods. OT tools are capable of extracting the harmonic content of a mixed 118 
signal. Once synchronous resonances are extracted, excited modes are identified with OMA. 119 
Traditionally, the p-LSCE (or Polymax in its industrial name) identification algorithm is used [21]. 120 
This parametric, deterministic frequency domain procedure is a poly-reference extension of the Least 121 
Square Complex Frequency algorithm (LSCF). It is a two-stage least square procedure that first 122 
identifies frequencies and damping ratios, and then identifies mode shapes based on stable poles. The 123 
processing of synchronous resonances with OMA is possible because the spectral density matrix of 124 
chirps in the order domain turns out to be constant, thus making it equivalent to an ‘order domain 125 
white noise’ (see, e.g., Figure 1). The analysis of chirp excitations, rather than stochastic excitations, is 126 
more representative of transient regimes. Especially, they provide more intense excitation forces, and 127 
resonances with higher Signal-to-Noise ratio (SNR).  128 

In the current context, the p-LSCE has several limitations. First, the classical formulation of the 129 
problem does not consider uncertainties, which is crucial for treating poorly conditioned signals. 130 
Furthermore, its accuracy in presence of small data is shown limited in section 4, making the 131 
algorithm improper for short-time signal processing. For these reasons, the Fast-Bayesian approach is 132 
chosen to experimentally identify turbine modal characteristics. Indeed, this framework is well suited 133 
for such identifications. Typically, the identification is performed in the frequency domain, as required 134 
for an order-based formulation. Moreover, it is well adapted to process short series, since likelihood is 135 
effective for making inference with small data sample available, and will be shown robust against 136 
short-time estimation biases. Short-time estimations result in non-averaged spectra and excitation 137 
variance, that can make identification fail as the modal force is not perfectly constant.  138 

 139 
 140 
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 141 
Figure 1: Time series, frequency content and order-tracked frequency response of a 142 
pure sine sweep and a harmonic signal buried in noise. 143 

 144 
3. Bayesian order-based modal analysis 145 

This section introduces a new OBMA formulation based on probabilistic modal analysis through 146 
Bayesian inferences. Each subsection explains one step of the process, successively: 147 

• The resonance detection. 148 
• The angular domain order tracking. 149 
• The identification scheme. 150 

 151 
3.1. Resonance Detection 152 

The data consists of an asynchronous time series containing 	( strain gauge measurement channels. 153 
The first step is to map all synchronous resonance regions contained in the dataset. This is done by 154 
investigating time-frequency spectra, using short-time discrete Fourier transforms. To ensure that the 155 
observed amplification regions truly are resonances, a dual-channel Phase-Shift Analysis (PSA) might 156 
be considered as it has been proven effective for diagnosis purposes [34, 35]. PSA examines the short-157 
time phase-shift diagram between two redundant sensors, as a complement to classical amplitude 158 
spectrum studies. This is relevant because modal phase shifting between sensors is constant. Indeed, 159 
rotational symmetric structure’s modes are cylindrical or disk-like patterns, characterized by their 160 
number of nodal diameters 5. Nodal diameters are diameters along which modal displacement is null, 161 
thus separating isophase regions [36]. They can be positive or negative, the sign indicating the 162 
direction of rotation: forward for 5 6 0, backward for 5 8 0. The motion along a mode has a constant 163 
phase shift: between two consecutive blades separated by an angle of 9: = 2</>?, the phase-shift is 164 59:. Then between N blades, the modal phase-shift is given by: 	59:		�2<�, where �. � is the modulo 165 
operator, ensuring a result on the trigonometric circle. 166 
 167 

3.2. Angular Domain Order Tracking 168 
In this study, Angular Domain (AD) Order Tracking is used because it does not need phase reference 169 
and tackles the spectral leaking issue [32, 33]. A Computed Order Tracking (COT) algorithm is 170 
performed to transform an asynchronous time series into a synchronous time series. This is based on a 171 
two-stage interpolation as follows: 172 

1. Determine the time-angle relation by integrating the rotational speed. This result in a relation 173 
with constant 9A between each angular sample. 174 

2. Interpolate this time-angle relation to obtain a new time reference with constant 9:. 175 
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3. Interpolate the data with respect to the new time vector. The obtained data are synchronous, in 176 
the sense they are sampled at constant 9:. 177 
 178 

Then, a non-windowed short-angle Fourier transform is performed on the resampled signal to exhibit 179 
its frequency content. For the stake of convenience, each interval corresponds to one runner revolution 180 
such that the spectrum resolution coincides with orders. An order spectrum is obtained for each 181 
studied revolution. Each line of the spectrum carries the amplitude of a synchronous harmonic in the 182 
signal, that are called orders. For each revolution, an exciting radial frequency �� is defined by 183 
averaging the harmonic frequency over the lap.  184 

Bias in AD comes from the interpolation method and synchronous interval sampling. The 185 
interpolation bias is induced by the interpolating method, and residual shaft torsion vibrations that can 186 
induce tachometer signal fluctuations. This results in a slight shift of the angular signal. Concerning 187 
the synchronous interval splits, each interval must represent exactly one revolution, which is not 188 
necessarily the case: the angular shift between the first and the last point of the Fourier interval can be 189 
slightly different than 2<, and depends on the angular resampling rate. Most such errors are 190 
asymptotically unbiased, and can be reduced if the data are recorded with a very high sampling 191 
frequency as compared to the structure’s natural frequencies. Also, the harmonic frequency averaging 192 
over a revolution involves a quasi-static assumption, reasonable for low accelerating systems only. 193 

 194 
3.3. SDoF Fast-Bayesian Inference 195 

Hydroelectric runner modal frequencies are often close to each other, and might involve coupled-196 
mode responses. However, harmonic excitations are well shaped to separate modes, since they can 197 
excite only some specific runner modes (see, for instance, the RSI theory presented in section 5). The 198 
use of a SDoF model is then advocated as it reduces the model complexity and related uncertainties. 199 
The bandwidth selection can be based on modal coherence techniques [37] or sensitivity to 200 
bandlimiting. The choice made here depends on the signal-to-noise ratio (SNR): Modal Assurance 201 
Criterion (MAC) should be preferred for high SNR, while sensitivity analysis is convenient for low 202 
SNR, since MAC becomes ineffective. 203 

Once the SDoF assumption is assessed, the modal parameter vector estimate �� is determined 204 
using a Maximum Likelihood Estimator. This approach was initially developed in the early 2000’s by 205 
Yuen [38]. A comprehensive state of the art is given in [22]. The underlying assumption is that the 206 
posterior probability is proportional to the likelihood, which is an unscaled version of the Baye’s 207 
theorem with uniform priors. The experimental frequency data B���C	N/ × 1� is independent zero-208 
mean complex Gaussian, and the likelihood function reads as: 209 

�DB���C|�E =F <GHI|�����| -��J−���∗ 	��GL������M
HN
�OL 	 (2) 

 210 
The likelihood is a function encapsulating the statistics of the data. For any parameter vector, it gives 211 
the conditional probability of observing the data given the physical model. ����� = P{����∗ } is the 212 
theoretical density matrix. It derives from the resonance model given in eq. (3, 4), where � =213 �), *), +), +-)�" is the modal parameter vector, including the natural radial frequency, the damping 214 
ratio, the modal excitation PSD and the noise PSD. The transition from eq. (1) to eq. (3) is reminded in 215 
Appendix A. '	N/ × 1� is the partial mode shape and ����� the amplification factor for 216 
displacement data. �	N/ × N/� is the identity matrix. 217 ����� 	= 	 +)�����'	'" + +-)�HI (3) 

 218 ����� = 1D�)S − ��SES − 2*)�)���S		 (4) 

 219 
The main obstacle with the method is that the formulation given in eq. (2) is highly non-linear, and 220 

its maximization requires intensive and time-consuming computations. To reduce the complexity and 221 
some ill-conditioning problems, a modified version of the Negative Log-Likelihood Function (NLLF) 222 
was recently introduced [14, 39]. Based on an eigenvalue decomposition, this formulation allows to 223 
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express ' as a function of the other modes, reducing the optimization problem to the minimization of 224 
eq. (5), in which only 4 parameters need to be estimated. For typical data sizes, this process is fast, as 225 
the NLLF has a unique minimum in the parameter space [14].  226 

 227 

,�� = 	
	( ln<� +V ln+)����� + +-)�
HN
�OL + 	( − 1�	
 ln+-)�

+ 1+-) WV���∗��� −'"����'HN
�OL X	 

(5) 

 228 

���� = VY1 + +-)+)�����Z
GLℛℯJ���∗���M

HN
�OL  

 

(6) 

A good Gaussian approximation of the posterior densities relies on a second-order Taylor 229 
expansion of the NLLF. Since such computation requires intensive efforts, posterior distributions are 230 
approximated with the Laplace method, i.e., with normal distributions centered at the MPV with 231 
standard deviations deduced from the covariance matrix  �, obtained with eq. (7). This gives the Fast-232 
Bayesian method which leads to conditional distributions, but is faster, and any loss of accuracy it 233 
provides as compared to the unconditional distribution are considered insignificant [14]. In other 234 
terms, the likelihood around the MPV is assumed Gaussian and independent, which is apparently 235 
reasonable for large data processing. 236 

 237  � 	= 	 ]^_�D��E. J]S,D��EM�. ]^_�"D��E	 (7)	
  

^_D��E 	= `��, 'ab|'a|bc (8)	
 238 

In eq. (7),  � is obtained as the inverse of the NLLF Hessian at the MPV, through a constraint 239 
function that takes into account the mode shape normalization, denoted ^_ and expressed in eq. (8). 240 
The solution is a "pseudo-inverse" computation in the sense it ignores the null eigenvalues arising 241 
from the constraint singularities.  242 

 243 
4. Numerical Testing 244 

This section verifies the model performance through several numerical studies. At first, the model is 245 
tested on a MDoF synthetic case with known masses, stiffnesses and damping, subjected to sine-246 
sweep excitations. The synthetic case is also identified using the p-LSCE, to demonstrate the benefits 247 
of the Bayesian framework. Then, a deeper study will highlight the influence of short-time data and 248 
non-averaged spectra on the identification accuracy. Subsequently, the modal force frequency 249 
modulation (FM) rate is studied. It is shown that high FM can distort the response and introduce 250 
epistemic uncertainties. Along this section, the synthetic data is obtained with a time domain state-251 
space model solicited by chirp-like forces. 252 

 253 
4.1. Illustrative computational example 254 

The model is now used on a simulation example, and compared to the p-LSCE. Let consider a 3-DoF 255 
system with known modal properties, and 	d = 10 measured DOF. Three modes are expected at 256 
24.7Hz, 31.2Hz and 39.7Hz, with damping ratios 2.7%, 5.3% and 4.5%, respectively. The system is 257 
first computed in the time domain using a state-space model. The sampling frequency is 2.5kHz, 258 
making the OT biases insignificant. The AD resampling is 2,500 samples per revolution. Two 259 
simulations are performed. On the first hand, the system is excited with a pure and low sine-sweep, 260 
capturing a well-shaped response. On the other hand, the system is excited by a mix of a sine-sweep 261 
and a stochastic source, which embodies the non-flat excitation behavior. The scanning harmonic is 262 
faster, delivering short-time spectra and ill-conditioned responses. The two simulations are presented 263 
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in Figure 2a. and b. left, depicting the excitation input and response output time-frequency 264 
distributions. The responses are extracted using OT, and processed with the p-LSCE and with the Fast-265 
Bayesian inference. The p-LSCE stabilization diagram and the Fast Bayesian bandwidth selection are 266 
presented on the right side of Figure 2. The p-LSCE converges fast for the well-shaped responses, and 267 
the three modes are stable from order 15. Notice that the stabilization diagrams are very clear and easy 268 
to interpret, since the spurious modes are computed with negative damping. However, the p-LSCE 269 
seems inadequate for processing ill-conditioned responses: the first and second modes are identified at 270 
low orders, but the third mode is very unstable, and the algorithm hardly identifies a stable pole 271 
around order 70. A stable spurious mode is present around 20Hz, between order 65 and 75. The Fast-272 
Bayesian bandlimited inputs are obtained using the MAC criterion for the first simulation, and using a 273 
sensitivity analysis for the second simulation.  274 
 275 

 276 
Figure 2: 3-DOF system response. a) well-shaped responses. b) ill-conditioned responses. 277 

The identification results are presented in Figure 3. When dealing with long time histories, the two 278 
approaches are consistent and identified modal parameters are close to the theoretical values. The 279 
Bayesian approach provides estimates with low uncertainties. The short time history case is properly 280 
identified by the Fast-Bayesian scheme, but the related uncertainties are very large, especially for the 281 
damping estimates. The p-LSCE finds accurate natural frequencies for modes 1 and 2, but fails at 282 
properly identifying the third natural frequency. The damping ratios are systematically under-283 
estimated, and the identified modes 2 and 3 are almost undamped. 284 
 285 

 286 
Figure 3: p-LSCE and Fast-Bayesian identification. 287 

The processing of short-time spectra cannot be handled correctly with the p-LSCE. The stabilization 288 
diagram indicates over-fitting at high order that can be sufficient for capturing stable poles, but the 289 
results show that the damping ratios are not representative of the studied dynamical modes. 290 
Conversely, the Fast-Bayesian is a legitimate algorithm that can be used to study short-time responses. 291 
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As demonstrated in this section, the identification is still accurate with sparse data and the error 292 
between the MPV and the theoretical values is low. Nevertheless, the computed uncertainties grow 293 
when the data becomes limited. Although this is naturally expected, the posterior deviation can be 294 
wide and not representative of the real parameter variability. Consequently, these uncertainties can 295 
make the experimental characterization unusable in an industrial context.  296 
 297 

4.2. Robustness against non-flat excitation spectra 298 
Once the algorithm is shown adequate for processing short-time histories, it is necessary to assess in 299 
which extent the identification remains acceptable. For this, it is proposed to test the ML-OBMA on a 300 
linear sine sweep excitation passing through a resonance, with different levels of deviation from a 301 
constant excitation force. To be consistent with experimental data, a set of 	d = 10 channels with 302 
equally distributed mode shape ratios is considered. An ML-OBMA was performed on several 303 
datasets with different variance intensity levels. The variable control is the Stochastic Gain Ratio 304 
(SGR), defined as the power ratio of the white noise deviations (the ‘stochastic’ part) and the averaged 305 
white noise. The FM rate was set to 6	. 10GS	fg/h, and the modal frequency and damping are 50fg 306 
and 2.5%. Figure 4.a presents the sensitivity results. The markers draw the normalized most probable 307 
value (scaled on the theoretical value), and the bars represent k3 normalized standard deviations.  308 

 309 

 310 
Figure 4: a) Modal parameter most probable values as a function of SGR. Uncertainty bars cover 3 c.v. 311 
b) Modal force and PSD error standard deviations. The two distribution parameters evolve jointly and 312 
tend to when the noise intensity is too high. 313 

It is observed that even for noise with a high SGR (near 500), the theoretical natural frequency still 314 
lies within a 95% credibility interval. When the stochastic gain ratio is lower than 100, the error 315 
between mn and mn�  drops below 1%. The damping ratio’s MPV only converges toward the theoretical 316 
value for very low SGR, and tends to be underestimated for SGR greater than 20. This is explained by 317 
the modal force PSD standard deviation discrepancy, as shown in Figure 4.b. The underestimation of 318 
the damping ratio while the excitation variance is too high is in keeping with the well-known damping 319 
underestimation in OMA. The damping and radial frequency variance seem relatively insensitive to 320 
the stochastic excitation amplitude. This is because the modal force PSD and noise PSD uncertainties 321 
increase drastically with the SGR, dominating the other modal parameter variabilities. The MPVs are 322 
not displayed, but the noise PSD increases linearly with SGR, i.e., the model equates a fraction of 323 
stochastic excitation with channel noise. On the other hand, the modal force PSD decreases to 324 
conserve signal power, and is reduced by 50% for a SGR of 100.  325 

The model appears to be robust against stochastic excitation processes, which is an important 326 
factor for ambient measurement processing. The identification fails as soon as the modal force PSD 327 
and noise PSD standard deviations begin to diverge. The SGR at which these deviations diverge is a 328 
function of the number of channels, the higher the number of channels the lower the critical SGR.  329 

 330 
4.3. Sensitivity to the frequency modulation rate 331 

Two aspects of the sine sweep excitation frequency modulation rate need to be considered. The first 332 
deals with model uncertainties, while the second undermines the structure of the non-stationary natural 333 
response. With a low frequency-modulated excitation o, uncertainties appear to be low and MPVs are 334 
well estimated. When the FM rate increases, uncertainties seem to increase linearly with it, as shown 335 
in Figure 5: when τ increases, resonances develop and vanish faster. This shrinks the time duration of 336 
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the signal, as shown in the lower part of Figure 5 (Nq decreases as the time duration decreases). The 337 
model accuracy is inevitably reduced because fewer observations are available. This remark is known 338 
as noise mitigation process. Damping estimations remain good, but the frequency MPV tends to be 339 
overestimated during the run-up (and underestimated during run-downs), the steeper the slope the 340 
higher the error. 341 

For higher FM slopes, another issue may arise due to dynamic distortions of the classical steady-342 
state response. These are due to the inability of the system to instantaneously match the excitation. 343 
Such distortions have been widely investigated for electronics, and more recently, in the field of 344 
mechanical engineering [40]. The ISO-7626 standard defines some criteria under which the response 345 
distortion is low enough to be neglected. For example, the condition for linear FM excitation is h ×346 τstu 8 3.6	fnξ�S	�Hz/s�. When these conditions are not fulfilled, the response may be distorted and 347 
cannot be modelled with a static transfer function. Figure 5 (right side) demonstrates an example of 348 
such a distorted response: epistemic uncertainties can be encountered when dealing with out-of-349 
standard systems, and natural frequencies deviate from their original value. At the same time, damping 350 
ratios are unpredictable if distortions are not modelled properly. 351 

Dynamic distortions can also play a role in the uncertainty rise seen in Figure 5 (left), as it 352 
introduces  353 
a modeling error leading to the expansion of credibility intervals. Identification in the presence of such 354 
dynamic behaviors was not considered in this paper, but authors seemed to deem it worthwhile to 355 
mention its existence and potential effects on parameter identification. 356 
 357 
 358 

 359 
Figure 5: Left – Uncertainties increasing with FM slope. Right – The dynamic distortion 360 
of modal response when subjected to strong frequency modulated excitations. 361 

 362 
5. Case study: an experimental analysis of a Francis turbine during coast-down 363 
5.1. Turbine characteristics and experimental setup 364 

The case study is based on a vertical medium head Francis hydroelectric turbine. It is part of a run-of-365 
the-river plant located in Quebec, Canada. The turbine has a specific speed of {| = 57, and a 366 
synchronous speed of 163.6 RPM. The flow in the penstock is directed into a spiral casing, and fed 367 
into the runner through a distributor of >~ = 20 guide vanes. The runner is a Francis runner of 368 
diameter 4.4m and height 2.7m, and is composed of >? = 13 blades. For this kind of geometry, 7 369 
cylindrical mode shapes are expected. Such patterns are cyclic-symmetric with nodal diameters |5| 370 
between 0 and 6.  371 

In many medium-to-high head hydraulic turbines, the main harmonics of the rotating speed are 372 
the Rotor-Stator Interactions (RSI) [41]. The RSI theory can be jointly used with Phase-Shift Analysis 373 
to determine the mode shapes. Indeed, RSI pressure waves have specific and predictable patterns and 374 
frequency, which will perform a selective excitation that only excite matching mode shapes. 375 
Typically, the RSI seen from the runner generate excitations at the wicket gate passing frequencies: 376 m�d�� = {>~mn. The RSI is capable of exciting modes with 5 = �>? − {>~ nodal diameters on the 377 
runner. Table 1 summarizes the runner RSI properties, that will be used latter when identifying the 378 
mode shapes. The phase-shift is calculated using section 3.1.  379 
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 380 
Table 1: RSI characteristics in the runner rotating coordinate system. 
 

RSI harmonic { Frequency m�d��  Excitation shape 5 
Expected phase-

shift [rad] 
1 20	mn 6 -0.97 
2 40	mn -1 -1.93 
3 60	mn 5 -2.90 
4 80	mn -2 2.42 

 381 
Data were recorded during an asynchronous coast-down transient experiment in no-load 382 

conditions. Two blades separated by an angle of 111° were instrumented with strain gauges, as 383 
presented in Figure 6.a. The blade intrados were instrumented with three strain gauge rosettes located 384 
in the band junction to a blade leading edge and trailing edge, and in the middle crown-blade weld, as 385 
shown in Figure 6.b. The blade extrados were instrumented with two uniaxial gauges, one close to the 386 
crown, and the other close to the band. The locations were the same from one blade to the other. This 387 
enables the turbine runner mode shapes to be determined through a phase-shift analysis. The rosette 388 
and uniaxial gauges were oriented in agreement with the expected principal strain sensor.  389 
 

 390 
Figure 6: a) Instrumented blades. The two blades are separated by an angle of 111°. 391 
b) Strain gauge location on the instrumented blades. Circles represent rosette gauges, 392 
triangles, uni-axial gauges. 393 

 394 
5.2. Mode Shape Identification 395 

The analysis of experimental amplitude and phase-shift spectra between redundant sensors was 396 
conducted first. Examples of time-frequency distributions are shown in Figure 7, as related to the 397 
crown extrados. Phase-shift spectra are amplitude-filtered and show only phases associated with a 398 
high enough amplitude. With a long enough Fourier windowing, amplitude spectra show five 399 
operating deflection shapes (ODS).  400 

The ODS of interest are those triggered by synchronous harmonics. It should be recalled that a 401 
harmonic interaction requires both a matching frequency and a compatible nodal diameter. As 402 
expected by the RSI theory, a ND5 is excited by the 60-th harmonic around 60Hz when the rotating 403 
speed is around 1Hz (see Table 2). A ND0 is excited by the 13-th harmonic with a zero phase-shift. 404 
This correspond to the Blade Passing Frequency seen from the stationary cascade. Such frequency can 405 
be excited either by by an improper flow distribution, a local default on the structure or a casing 406 
asymmetry. Then, the ND0 can be excited every time a blade passes through the pressure fluctuation, 407 
i.e. 13 times per revolution.  408 

In the studied turbine, the authors were surprised to find out that some resonances are not induced 409 
by the RSI harmonics, but by harmonics in their vicinity. As shown in Figure 8, two resonances are 410 
induced by the 41-th and 62-nd harmonics while the RSI theory predicts excitations with the 40-th and 411 
60-th harmonics. While excited mode shape nodal diameters should be ND-1 and ND5, the observed 412 
phase-shift indicates that the excited nodal diameters are respectively ND-2 and ND3, as reported in 413 
Table 2. Without going further in details, these observations are the result of a stationary point force 414 
excitation. Readers should refer to the works of Wildheim for deeper explanations [42].  415 

 416 
 417 
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Table 2: Excitation shape and frequency domain of the identified resonances.  
 
Resonance Band Rotating speed 

[Hz] 
Phase-shift [rad] Mode shape nodal 

diameters |5| 
[15, 20] Hz 1.3 0 0 

[20, 40] Hz 0.7 2.42 −2 

[40, 50] Hz 0.8 −0.48 3 

[50, 60] Hz 1.0 −2.90 5 

 418 
 419 

 420 
Figure 7: ODS analysis of principal direction of extrados crown Rosette gauge. 421 
On the left, phase-shift spectrum of the redundant gauges. On the right, redundant 422 
amplitude spectra. 423 

 424 
Figure 8: Unexpected resonances with the 41-th and 62-nd harmonics. 425 

 426 
5.3. Modal identification using ML-OBMA 427 

Each resonance is processed with an ML-OBMA to extract both frequency and damping distributions. 428 
Bandwidth were selected using a MAC analysis for the ND0, while ND-2, 3 and 5 were bandlimited 429 
using a sensitivity analysis. An example of such an analysis for ND3 is provided in Figure 9. A band 430 
of 9m = 8fg is chosen as modal parameters stable and uncertainties low. Identification results are 431 
presented in Figure 10. Two types of result were investigated: a direct ML-OBMA inference as 432 
described in the previous sections and the distributions after taking into account short-time noise 433 
variance through Markov chains. 10� process realizations were needed to ensure a good statistical 434 
convergence. Results show that the sole likelihood inference provides robust and accurate uncertainty 435 
bounds while Markov chains do not bring any significant change. This means that the Fast-Bayesian is 436 
not sensitive to non-flat noise PSD. 437 
 438 
 439 
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 440 
Figure 9: ND3 bandlimiting using a sensivity analysis. 441 

 442 
Figure 10: Frequency and damping distributions after ML-OBMA and after 443 
Markov chains ML-OBMA. 444 

ND0 distributions remain unchanged after experimental uncertainties are calculated. This is 445 
explained by the high quality of the signal, which causes the noise to have almost no impact. 446 
Frequency distributions are narrow distributions, almost Gaussian with small standard deviations, 447 
while damping distributions seem skewed, developing a wider tail for upper damping values. This is 448 
particularly observable for ND3. A high uncertainty exists for damping estimation, much like with 449 
many modal analysis extraction tools. Table 3 presents the parameter statistical distributions. The most 450 
probable values (MPV) and coefficients of variation (ratio of standard deviations over MPVs) are 451 
drawn.  452 

The deviation of the estimated mode shape from the real mode shape can be estimated, without the 453 
latter being known. This is done using a stochastic representation of the mode shape: ' =454 �‖�‖G�, �~�'a, �'�, and using an eigen-representation of the MAC. For more details please refer 455 
to [14]. ML-OBMA provides very close estimations of mode shapes, since the modal assurance 456 
criterion is high with a low c.v. As shown in Figure 11, the MAC may be close to 1, mode shape can 457 
strongly deviate from the expected target (ND5), or slightly (ND0). The MAC value does not reflect 458 
this inaccuracy. The MAC c.v. gives the global degree of adequacy, accounting for the norm 459 
constraint ‖'‖ = 1. This degree of uncertainty depends on the SNR, the higher the SNR, the lower 460 
the error: ND0 has an SNR of 7.4�� and a MAC c.v. of 2.7%, while ND5 has an SNR of 0.95�� with 461 
a MAC c.v. of 7.7%. 462 

 463 
 464 
 465 
 466 
 467 
 468 
 469 

 470 
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 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 

 485 

 486 
 487 

Figure 11: Mode shapes for identified modes. 488 

 489 
5.4. Comparison with numerical simulations 490 

Once the experimental frequencies are characterized, it is possible to use them to validate the 491 
numerical predictions. In order to compare the experimental results to the numerical computations, 492 
several simulations were performed to obtain the runner modal analysis in different configurations. As 493 
it is well known that the modal behavior of a turbine is strongly influenced by the surrounding water, 494 
the fluid-structure interaction (FSI) added mass effect must be considered in the simulations when 495 
computing the natural frequencies. The full runner geometry is considered, and the meshing for one 496 

Table 3: Modal parameter distributions for identified modes. 

  M.P.V. (SI) C.V.  M.P.V. (SI) C.V. 
  ND0  ND3 

Frequency [Hz]  17.43 3.8 × 10G�  49.79 5.2 × 10G� 
Damping ratio [%]  1.26 3.0 × 10GL  1.39 5.4 × 10GL 
Excitation PSD 
[�+] 

 2.2 × 10� 1.6 × 10G�  1.2 × 10� 7.3 × 10G� 

Noise PSD [�+/fg]  1.7 × 10GS 2.6 × 10G�  7.6 × 10G� 1.4 × 10G� 
Shape (MAC)  0.999 2.7 × 10GS  0.999 4.5 × 10GS 
  ND-2  ND5 

Frequency  28.72 6.4 × 10G�  59.25 5.2 × 10G� 
Damping ratio  2.75 2.8 × 10GL  2.01 2.4 × 10GL 
Excitation PSD  3.3 × 10� 9.2 × 10G�  4.3 × 10� 7.8 × 10G� 
Noise PSD  1.2 × 10G� 1.6 × 10G�  2.0 × 10G� 5.9 × 10G� 
Shape (MAC)  0.999 5.4 × 10GS  0.997 7.7 × 10GS 
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blade is presented in Figure 12, with tetrahedral elements. The shaft is not included in the simulation, 497 
which could have a significant influence on the prediction of nodal diameters 0 and 1. Instead, a zero-498 
motion boundary condition is imposed at the shaft coupling ring.  499 
The FSI are treated like a structural-acoustical problem in Ansys. Three different water volumes were 500 
modelled, as shown in Figure 13. In the first simulation, a large volume of water is studied with a fluid 501 
domain of 0.5m around the runner. In the second simulation, a restricted volume of water is used with 502 
0.1m distance between water external boundary and runner largest diameter, to take into account the 503 
runner confinement effect. In the third simulation, a more realistic geometry with a larger fluid domain 504 
is considered, including the upper and lower labyrinths real gaps (1-2mm), a portion of the distributor 505 
inflow, and the upper part of the draft tube. Obtained fluid volumes are meshed using quadratic 506 
elements with approximately 2M nodes. The external fluid bounds are treated as reflective walls. In 507 
the simulations, the system is considered undamped and no damping prediction is available. For this 508 
reason, the comparison with the experimental results is restricted to the natural frequencies. 509 
 510 

 511 

 512 
Figure 12: Turbine mesh for one blade. 513 

 514 
 515 

 516 
Figure 13: FEM analysis for the simulations with acoustic fluid. 517 

 518 
Table 4 presents the relative error between the identified frequencies and the numerical computations. 519 
The ND0 is a torsion mode, which is strongly influenced by the shaft. Since the finite element model 520 
did not incude the shaft, the large overestimation of the modal analysis is easily explainable. 521 
Theoretially, nodal diameters larger than 2 are fully balanced over the runner and they should not be 522 
influenced by the shaft. Consequectly, the modal prediction is very close to the experimental 523 
observations. From simulation 1 to 2, the error decreases by 10% for modes 2 and 3. The best results 524 
are naturally obtained from the complex fluid domain geometry used in simulation 3, with a remaining 525 
error of about 1%. This is mainly due to the confinement effect, which is known to reduce the natural 526 
frequencies. 527 

Although experimental identification is incomplete and misses several modes, available results can 528 
be used to calibrate models and obtain more precise load levels throughout the turbine. This 529 
calibration will also have impact on non identified modes, what will result in an improvement of stress 530 
predictions, then turbine fatigue and structural health. 531 
 532 
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 533 
Table 4: Comparison of experimental and numerical natural frequencies of identified 
modes. 
  
Mode shape nodal 
diameters |5| Experimental 

freq. [Hz] 
Simulation 
1 

Simulation 
2  

Simulation 
3 0 17.43 232% 211% 180% 2 28.72 36% 22% -2% 3 49.79 16% 9% 1% 5 59.25 3% 0.5% -0.5% 

 534 
 535 

6. Conclusion 536 
A new ambient modal analysis tool was implemented, based on the combination of order tracking and 537 
the so-called Fast-Bayesian algorithm. The ML-OBMA outperforms the OBMA in the sense that not 538 
only is able to identify modes, but it can also quantify related uncertainties, which can be relevant in 539 
many practical cases. Furthermore, it was demonstrated that the Fast-Bayesian is more adequate for 540 
analyzing limited data than the traditional Polymax. The model is unable to process synchronous 541 
resonances if spectra are influenced by modulation distortions, but it appears that such distortions 542 
involve FM rates that are very unlikely to occur in hydroelectric turbines. It is relatively robust against 543 
the flat spectrum assumption, and the inference still provides accurate estimates in presence of large 544 
residual excitation variance. This is an important characteristic because short-time responses 545 
systematically exhibit non-flat excitation behaviors. However, one should keep in mind that damping 546 
ratios tend to be underestimated in some cases where residual variance power is too high.  547 

This study allows a statistical modal analysis through the investigation of synchronous harmonic 548 
resonances. Experimental parameter estimates can be used for many purposes in industry, including, 549 
for instance, numerical model validation, trade-off criteria to optimize model accuracy versus 550 
computing time, and model calibration. In this paper, the model was implemented on a prototype 551 
Francis turbine, and several resonances were featured, showing a close agreement with the numerical 552 
modal analysis. In future works, the modulated RSI phenomenon will be studied deeper. Such 553 
behavior is rare and absent from the literature, although it can produce unexpected resonances that 554 
may damage the structure.  555 

In the Fast-Bayesian model, parameter distributions were assumed to be linearly dependent on the 556 
likelihood function, i.e., the priors were implicitly assumed to be uniform. The Bayes theorem was 557 
then used in its weakest version. Furthermore, the posterior distributions were approximated in a 558 
Taylor manner, using a Laplace approximation. Future works should transform this weak Bayesian 559 
theory into a fully Bayesian approach, by considering non-uniform priors and a sampling of the 560 
likelihood in the vicinity of the MPV. 561 
 562 
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A Appendix: Theoretical SDoF PSD formulation 581 
 582 
As a reminder, the general PSD formulation is given by eq. (1): 583 
 584 �� = 2�∗��2�" + �� ,			� ∈ �1, 	
�  
 585 
If the excitation is a white noise with equal channel intensities, then the input PSD reduces to a 586 
constant matrix �, independent of the frequency. Moreover, the frequency response function matrix 587 
for an SDoF merely reads as: 588 2� = ��L/S'〈�〉" (10) 

 589 
where ' is the mode shape and 〈�〉 is the modal participation factor. Then, eq. (1) can be written as: 590 
 591 �� = ��'〈�〉��〈�〉'� (11) 
 592 
Without further development, it appears that 〈�〉��〈�〉 is a scalar independent of the frequency. 593 
Defining the scaled modal force as + = 〈�〉��〈�〉, and assuming �� to be constant diagonal (i.i.d 594 
white channel noise under homoscedastic assumption), then: 595 
 596 �� = +��''" + +��H� ,			� ∈ �1, 	
� (12) 
which is eq. (2).  597 




