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Abstract 12 

The measurement of stress/strain on blade plays an essential role in the fatigue assessment of the 13 

hydroelectric turbine runner. However, a typical measurement campaign does not cover all the 14 

possible operating conditions due to the field measurement requirements and limitations, which leads 15 

to fatigue evaluation missing for unmeasured conditions. In this paper, kriging interpolation method is 16 

used to estimate the missing fatigue information based on the available measured operating conditions 17 

of the turbine. The rainflow counting matrix, which contains the fatigue cycles of strain signal, is 18 

considered as the input of the interpolation process. For validation, the fatigue cycles are randomly 19 

generated, using bivariate Gaussian distributions, from the interpolated matrix for comparison with 20 

the experimental values under similar operating conditions. The developed approach will help plan 21 

experimental campaign and might contribute to decreasing the measurement requirements for runner 22 

fatigue assessment. 23 
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 29 

1. Introduction 30 

Fatigue is one of the damage mechanisms occurring during the operation of a hydroelectric turbine. 31 

Today, runner blades are experiencing increasing dynamic strains due to larger operating range of 32 

turbines caused by electrical network usage changes [1]. These changes mean that the turbine must 33 
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operate under conditions that deviate significantly from the Best Efficiency Point (BEP), which leads 34 

to a higher risk of fatigue crack. Monette et al. (2016) highlighted the reduced fatigue life of turbine 35 

runner and the high repair costs generated by this enlarged operating range [1]. A general overview of 36 

conditions and dynamic phenomena that significantly influence runner fatigue is presented by Liu et 37 

al. (2016), Seidel et al. (2014) and Gagnon et al. (2014) [2-4]. Steady state operating conditions 38 

containing a high stochastic component such as Speed No-Load (SNL) or Deep Part-Load (DPL) or 39 

Part load containing vortex rope phenomenon, and transient conditions such as turbine start-up can 40 

have major impact on runner fatigue assessment if not properly accounted for. 41 

Fatigue is assessed based on several factors (runner material, stress level, initial crack), and 42 

requires a representative strain/stress history. Many approaches are available for improving runner 43 

fatigue life estimation. To limit fatigue failure, Gagnon et al. (2013) proposed a runner reliability 44 

model using the High Cycle Fatigue (HCF) onset as the limit [5]. Fatigue damage is linked to the 45 

propagation of cracks on the runner, and thus, an investigation of the metallurgical or mechanical 46 

behaviour of the material is also needed [6-9]. However, fatigue assessment cannot be carried out if 47 

the dynamic load information is missing. Computational Fluid Dynamic (CFD) combined with Finite 48 

Element Analysis (FEA) can be used to estimate the static and dynamic behaviour of the structure 49 

under such as SNL or DPL [10-12]. Nevertheless, numerical prediction is still challenging when 50 

turbulence models are not able to properly describe the behaviour of the turbine [13]. Moreover, the 51 

validation of numerical simulation depends on the availability of the experimental information. 52 

However, to recover this missing experimental information, other approaches, such as the 53 

interpolation and extrapolation of experimental data, can be used [14-16]. The use of indirect method 54 

can also help minimize the measurement requirement, Diagne et al. (2016) utilised the ARMAX 55 

(Autoregressive Moving Average with eXogenous input) model to predict the runner dynamic stress 56 

using shaft torsion information, which is more readily available [17]. For a detailed review of the 57 

fatigue life estimation methodologies used for Francis turbines, please refer to Presas et al. (2019) 58 

[13]. Our state-of-art summary shows that in situ field strains/stress during or after commissioning 59 

provide important and essential information for the study of the hydroelectric turbine runner fatigue. 60 

Finding a solution that can provide missing experimental information and improve knowledge on 61 

the dynamic behaviour remains a challenge. Obtaining experimental strains over all the possible states 62 

of the hydroelectric turbine operation would be overly costly and time-consuming; hence, 63 

experimental measurements are usually limited to a limited set of operating conditions, which leads to 64 

difficulties during runner fatigue assessment. The goal of this paper is to propose a methodology to 65 

minimize the requirements for experimental strain measurements. There are three difficulties 66 

associated with the measurement of strain for fatigue evaluation:  67 

• Limited number of measured locations on runner blades 68 

• Limited measurement length 69 

• Limited number of measured operating conditions  70 

The first was studied by Salah where the kriging method was used for the interpolation between 71 

different locations of the runner blade [14]. For the second, several approaches can be used for 72 

temporal extrapolation to obtain long-term fatigue assessments. Poirier et al. (2016) [15] extrapolated 73 

information on the cyclostationary decompositions of the short-term records of strain signals to 74 

evaluate runner fatigue cycles over a longer period of usage. Other researchers extrapolated the 75 

rainflow matrices directly over longer periods [19-22]. However, such strain interpolation between 76 

blade locations or a temporal extrapolation can be performed if and only if an estimate of the signal is 77 

available (generally in the form of measurements) at a given turbine operating condition. Therefore, 78 

the lack of measurements over the complete operating range should be studied as shown in Figure 1.  79 

In a previous work the authors developed an interpolation process for a subcomponent of the strain 80 

signal between different turbine operating conditions [16]. Only the periodic component of the signal 81 

was interpolated while the complete strain signal was overlooked as it is more complex and contains 82 

other hidden structures. The direct interpolation of complete strain signal (measurement form) is a 83 

complicated problem because of these hidden structures. However, in cases where only fatigue 84 

information is needed for further evaluation, the strain signal could be transformed into a cycle 85 

counting form (level crossing, peak counting, rainflow matrices, etc.) to simplify the interpolation. 86 

Among cycle counting methods, the rainflow algorithm is commonly used for fatigue assessment of 87 
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hydroelectric turbines [1, 10-11, 15-16]. Therefore, our goal is to interpolate the rainflow counting 88 

matrices (instead of the signal itself), which contain information on the fatigue cycles, over the 89 

complete range of operating conditions. Notice that there are two important variables that define the 90 

operating conditions of turbine: opening vane level and head level. However, in this study, the aim is 91 

to focus on the differences of stress level between different opening vane levels for the same head (the 92 

data in the case study also comes from the measurements strain at relatively constant head). The head 93 

level might be used in the future research if observed data become available for multiple head levels. 94 

 95 

 96 
Figure 1. Measurement limits and interpolation/extrapolation solutions for the fatigue assessment of hydroelectric turbine 97 

runner 98 

The kriging method was chosen for this study to interpolate rainflow counting matrices (histogram 99 

form), Then, the fatigue cycle reconstruction was generated via stochastic simulations using bivariate 100 

Gaussian distributions. This reconstruction step helps recover the long-term information of fatigue, 101 

more cycles are generated, more fatigue information is evaluated. The obtained results were compared 102 

with the experimental fatigue cycles to evaluate the correctness of the proposed interpolation 103 

methodology. In addition, the signal was reconstructed from the simulated cycles by using the inverse 104 

method proposed in [19-20] to compare with the measured signal. 105 

The paper is organized as follows: First, the methodology is presented with detailed explanations 106 

of the principal methods (rainflow-counting, kriging interpolation, reconstruction simulation). Then, a 107 

hydroelectric turbine runner case study is presented followed by interpolation results and a discussion. 108 

 109 

2. Proposed Methodology 110 

2.1 Asymmetric Rainflow Counting Matrices 111 

The rainflow algorithm allows the analysis of signal amplitudes (or range) by assigning extreme (max, 112 

min) values of closed loading cycles. To evaluate fatigue, only the range/amplitude information of 113 

each cycle is often needed.  In this study, the strain signal is transformed into an Asymmetric 114 

Rainflow Matrix (ARM), which separates the cycles into two types: increasing and decreasing cycles 115 

(or standing and hanging cycles in some references) [24]. These two types of cycles are defined based 116 

on the order of occurrence of maximum and minimum values in the signal. To construct the ARM, a 117 

rainflow-counting procedure called the Four-Point Counting (FPC) algorithm is used [25]. 118 

Considering four consecutive points (three consecutive cycles) in the loading signal, if the cycle range 119 

created by the second and the third points is smaller than the range of the two other points, this cycle 120 

is reduced and is added to the ARM. An ARM is constructed by two variables: from value (noted as f) 121 

corresponding to the amplitude of the first point of the cycle (the first point of the cycle arrives on the 122 

axis of time) and to value (noted as t) corresponding to the amplitude of the final point of the cycle 123 

(Figure 2). In our study, the created ARM is represented under histogram density form where each 124 

bin contains the number of cycles or the probability of occurrence of cycles. The ARM is a 125 
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composition of max-min cycles (above the matrix diagonal) and min-max cycles (below the matrix 126 

diagonal). Furthermore, the choice of the asymmetric rainflow matrix allows a distinction to be made 127 

between increasing and decreasing cycles during the signal reconstruction. To properly apply the 128 

FPC, the turning points, which represent the peak and the valley of the signal, are extracted before the 129 

ARM is constructed. This extraction deletes variations that are neither peaks nor valleys (these small 130 

variations in the rainflow approach are considered to have minor impact on the fatigue assessment). 131 

 132 
Figure 2. Four Point Counting algorithm applied for strain signal. 133 

2.2 Kriging Interpolation Method 134 

Before presenting the interpolation method, the context must be clarified. The interpolation input 135 

is a set of ARM histograms, which are spread across the different turbine operating conditions. The 136 

histogram bins are fixed for all the histograms. The goal is to estimate new ARM histograms at any 137 

given operating conditions (see Figure 3).  138 

 The relation between the bins of each ARM matrix is an important bit of information that cannot 139 

be ignored in the interpolation phase. Hence, the kriging interpolation method is a suitable method to 140 

preserve the spatial covariance within the ARM histogram. However, there is also a covariance to 141 

preserve between each operating condition. Thus, a multivariate kriging method, inspired by Spatio-142 

Temporal Kriging (STK), where the temporal and spatial coordinates are treated separately, is 143 

applied, and developed for this study. Readers can consult the general definition of the kriging 144 

principle in [27-30]. 145 

 146 

 147 
Figure 3. Interpolation objective: new ARM histogram (at a given turbine operating condition) is interpolated from all 148 

experimental ARM histograms 149 

In our case, the position of bins in the ARM histogram and the operating condition are considered 150 

as coordinates. The estimator used in this study can be written as: 151 

�∗���, !"� = $ $ ������, !"����� , !���%
�&'�∈)*

 

 

(1) 

where �� is a given bin position in the ARM histogram (p depends on a ‘from value’ +�  and a ‘to 152 

value’ ,� : ���+�, ,��, !" is a given operating condition of the turbine, �∗��� , !"� is the interpolated 153 
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value of bin �� at the condition !", ���� , !�� is the known bin value at location ��� , !��, ������, !"� is 154 

the regression weight to optimize during the interpolation process (details below), �� is the number of 155 

experimental turbine conditions, �� is a set of neighbourhood positions of �� (including ��) . It must 156 

be noted that the spatial covariance map is obtained from the whole histograms of all the experimental 157 

turbine conditions, while Eq. 1 searches for the input in the neighbourhood �� of the target bin. This 158 

reduces the calculation time and avoids the interpolation smoothing effect. 159 

 Kriging allows the unbiased estimation of values at given locations by determining the weights 160 ��� which minimize the error variance �	
���, !"� between the real value B and the interpolated value 161 �∗ at the same location, �	
���, !"� = ./01����, !"� − �∗���, !"�3. The condition for non-bias 162 

relating to the regression weights is ∑ ∑ ������, !"��%�&'�∈)* = 1; it ensures a constant local mean value 163 

in every location. Therefore, to impose this non bias constraint, the minimization system is updated by 164 

adding a Lagrange parameter �: 165 

6����, �� = ./01���� , !"� − �∗��� , !"�3788888888988888888:;<=��*,�>� + 2� A $ $ ������ , !"��%

�&'�∈)*
− 1B 

 

(2) 

where 6���, �� is the Lagrange function. Making use of Eq.1, the minimization of Eq.2 leads to the 166 

system that allows to obtain the ��� and �: 167 

C∑ ∑ ������ , !"��%�&' ���D�EF�GD, �|�IF�J|��∈)* − � = � K�D�*F�GD, �|�>F�J|L , M ∈ �� , N = 1, … , �� ∑ ∑ ������ , !"��%�&'�∈)* = 1   
 

(3) 

where 168 �1�‖�QF�R‖, �|�SF�T|3 = 0.5 × ./0Y���Z, ![� − ����, !\�] (4) 

is the semivariogram, which depends on the increments � and �, �Z and �� are two positions of the 169 

bin in the histogram, ![ and !\ are two turbine operating conditions such that: � = ‖�Z − ��‖ and 170 � = |![ − !\|. Based on Eq. 4, the semivariogram is defined as the half variance between two values 171 

separated by the increments � and �. This semivariogram can be considered as a simpler 172 

representative of the covariance map that does not require information on the mean value of B (that is 173 

often unknown in practice [29]). To obtain the semivariogram at any possible increment (�, �), some 174 

numerical models can be used to fit to the semivariogram using analysis estimations (e.g., Least 175 

Squares method) [27][30]. However, to choose the best numerical model, one needs to create a 176 

semivariogram from the experimental data. In practice, the quantity of data is not enough to provide 177 

values exactly separated by � = ‖�Z − ��‖ and � = |![ − !\|, as in Eq. 4. Consequently, to create 178 

the Experimental Semivariogram (ES), Eq. 5 is used. This equation allows an estimation of the 179 

semivariogram value associated with a set of (h, u) values, where � and � are midpoints of imposed 180 

spatial increment intervals: 181 

����, �� = 12���, �� $ Y���Z, ![� − ����, !\�]

�Z,[,�,\�∈^�_,`�  (5) 

where ����, �� is the experimental semivariogram, ��, �� is a set of paired points separated such that 182 ‖�Z − ��‖ ∈ Y� − a�, � + a�] and |![ − !\| ∈ Y� − a�, � + a�] with dh > 0, du > 0, ���, �� is 183 

cardinal of  ��, ��. The next step is to fit the ES with a numerical model that will make a continuity 184 

throughout the increments for the semivariogram. Classes of semivariogram models are presented in 185 

[29-30]. For example, the sum-metric model (Figure 4), which turns out as one of the best fitting 186 

models in our study, is expressed as: 187 

���	������, �� = �����+ ����� +  ������1b�
 + ��. ��
3 (6) 

where ����) is the univariate semivariogram model for the variable p, ����� is the univariate 188 

semivariogram for the variable o, and ������1b�
 + ��. ��
3 is a metric joint variogram model 189 

including an anisotropy correction � [30]. Many basic analytical models exist for the univariate 190 

semivariograms such as spherical model, the exponential model, the Gaussian model, power model, 191 
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etc. [14][27]. The schema in Figure 5 summarizes the kriging interpolation approach used in our case 192 

study. 193 

 194 

 195 
Figure 4. Experimental semivariogram and example of semivariogram model (Sum-metric). Semivariogram values in this 196 

figure are normalized. 197 

 198 

 199 
Figure 5. Schema of the Kriging process in this paper applied for the studied variables 200 

2.3 Simulation Reconstruction   201 

To generate strain cycles from an interpolated ARM histogram, it must be converted to a 202 

continuous distribution. A smoothing process for the interpolated histogram is proposed by 203 

considering that the cycles inside each bin follow a Bivariate Gaussian Distribution (BGD). The BGD 204 

mean corresponds to the coordinates of the center point of the bin and the proposed covariance matrix 205 

is �
c
, where � = d.e×[�� \�Zf��Z�gZ��Z[����h �Z�Z�	�	�  and c
 is the identity matrix. The variability parameter in the 206 

denominator is a coefficient proposed to ensure that the simulated cycle distribution does not create 207 

too much variability outside its bin. A variability test is proposed to select this variability parameter. 208 

In this study, since the interpolation input comes from the experimental strains measured by gauges, 209 

we impose the strain gauge uncertainty as a limited level of variability, which limits the variability of 210 
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generated point outside each bin. For example, if the relative error of the strain gauge is ±y%, the 211 

imposed limited level for the variability will be y%. It must be noted that the experimental 212 

uncertainties are not the focused problem of this study. The test of variability is then launched for 213 

several variability parameters. For each ARM, Monte Carlo simulation is generated from the bivariate 214 

normal distribution with the mean [0,0] and the covariance �
c
. If the percentage of the sample 215 

values outside the bin dimension is approximately equals to the limited level y% (Figure 6), this 216 

variability parameter is chosen for the ARM histogram smoothing process. The reader can also 217 

optimize the variability parameter by using or adding other uncertainty types (e.g., error of kriging 218 

interpolation) if needed for other study. In addition, other approaches, such as the Kernel Density 219 

Estimation (KDE), can also be useful for smoothing the histogram [19-20]. Finally, the cycles are 220 

randomly generated from the set of BGDs by respecting the probability of occurrence of cycles in 221 

each bin (the sum of all the probability values in the histogram is equal to 1).This generation process 222 

allows an observation of a set of simulations, which is useful for the industry when evaluating the 223 

fatigue. The risk of fatigue will be predicted with a set of possibilities instead of a unique prediction.  224 

 225 

 226 
Figure 6. Percentage of the sample values outside the bin dimension is approximately equal to y% 227 

In addition, an inverse method is used to reconstruct the strain signal from the simulated samples 228 

[19-20]. The signal reconstruction consists of two steps: First, the largest cycles (the furthest points 229 

from the ARM diagonal), either a Decreasing Cycle (DC) or an Increasing Cycle (IC), are used to 230 

create an initial reconstructed signal (also called the remaining residue in Figure 2). Second, all the 231 

other cycles are randomly inserted into the remaining residue descending order (from the furthest to 232 

the closet point from the diagonal) by respecting the rule proposed by Socie et al. [19-20]. The smaller 233 

IC is added to the position of the larger DC (peak and valley values of the smaller cycle fall within the 234 

range of the larger cycle) and vice versa. Each cycle added to the remaining residue is removed in the 235 

ARM until there are no cycles left. It is not expected that the reconstructed signal will be similar to 236 

the experimental one because only the rainflow information is considered for the interpolation; 237 

nevertheless, the signal should represent a time history that generates equivalent fatigue damage. The 238 

flowchart in Figure 7 illustrates the interpolation scheme used in this study. 239 

 240 
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 241 
Figure 7. Flowchart displays the interpolation scheme 242 

3. Case Study 243 

The data used in this case study were obtained from experimental measurements conducted using 244 

strain gauges, which were installed on the runner blade of a Francis hydroelectric turbine of a power 245 

plant in Quebec (Canada). The measured locations on the blade are close to critical locations where 246 

the highest stress levels are found. For the purpose of this paper, the experimental uncertainties 247 

(ambiance error, human error, error of installation, etc.) are ignored. The interpolation is performed 248 

between different  249 

 250 
Figure 8. ARMs over different operating conditions for this case study and example of ARM histogram (the white bin 251 

corresponds to the null value) 252 

steady-operating conditions of the turbine. Transient operating conditions, such as start-ups or stops, 253 

are not considered in this research because their specific dynamic behaviours do not correlate with 254 

steady-operating conditions. A steady-operating condition is approximately defined as a regime of the 255 

turbine under which the guide vane opening, power and turbine head can be considered as quasi 256 

constant. For the interpolation, steady states are separated by different opening levels of the turbine 257 

guide vane (noted as %OV) (Figure 8). The guide vanes control the flow rate into the runner. 258 

Due to the high quantity of cycles in each strain signal, the ARMs are presented under the 259 

histogram density form with a prior fixed bin number where each bin contains the probability of 260 

occurrence of cycles (Figure 8). The choice of input/output bin number is an important parameter. A 261 

higher number of bins significantly increases the calculation time, while a smaller one leads to 262 
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imprecise results because of the large interval of values covered by each bin.  263 

Fitting a model to the experimental semivariogram is an important step of the interpolation 264 

process. We highly recommend using the cross-validation technique for this step [29]. This technique 265 

removes some point values in the input set and then predicts these values from the remaining points 266 

using fitted semivariogram models. This procedure is repeated several times for each semivariogram 267 

model to observe the interpolation performance of this model. Moreover, other error estimations such 268 

as Root Mean Square Error (RMSE) or Mean Absolute Error (MAE) are additionally used to obtain 269 

the best semivariogram model. In our case study, based on a good cross-validation performance 270 

(Figure 9) and on the small error estimation values (see MAE and RMSE in Table 1), the chosen 271 

semivariogram model was sum-metric model ( see Eq. 6 and Table 1). For each univariate model, 272 ����� was modeled by sum of an exponential model and a Gaussian model, ����� and 273 ������1b�
 + ��. ��
3 was respectively modeled by a Gaussian and an exponential model (Table 1). 274 

ijk
jl�	"���	���Z���� = �mnoo − ���. p1 − qF r._�Z�f	s + ��

�tZ`uu�Z���� = �mnoo − ���. p1 − qF �r.`�=�Z�f	=s + ��  

 

(7) 

where mnoo corresponds to the average variance where the experimental semivariogram stabilizes, 275 

range presents the distance from which no more correlations exist between the data, and �� is a small 276 

value added to the sill parameter to represent a very short-range variability in the dataset (Nugget 277 

effect) [14][27].  278 

 279 
Figure 9. Cross validation performance of sum-metric model (its parameters are presented in Table 1) 280 

The neighbourhood set �� (Eq. 1) is chosen using the cross-validation technique. Several sets with 281 

different numbers of neighbourhood positions are tested and the optimized set is chosen based on the 282 

smallest RMSE and based on the similarity between theoretical and estimated line (see APPENDIX). 283 

Notice that the set of neighbourhoods is applied only for the histogram position “�”, but not for 284 

operating conditions “!”. Thus, the points in a neighbourhood set correspond to the closest points 285 

from the target points in ARMs. In this case study, the set of 9 nearest positions is chosen for the 286 

neighbourhood set �� in Eq. 1 (see APPENDIX). 287 

Table 1 shows the optimized parameters used for this case study. To verify the quality of the 288 

interpolated result, a validation is made using known experimental operating conditions (not included 289 

in the set of interpolation inputs).  290 

 291 

Parameters Semivariogram model parameters (fitted to normalized ES- see Figure 4) 

Input/Output 
histogram bins 

number: 

Optimized sum-metric model (RMSE = 0.0993, MAE= 0.0747) 

Eq. 6: ���	������, �� = �����+ ����� +  ������1b�
 + ��. ��
3 
 Model type Sill �� range � 
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40 × 40 bins 
 

Input operating 
conditions (%OV): 
11, 20, 40, 50, 60, 

70, 90, 100 
 

Variability para. ≈3.87 
 

Number of points 
in neighbourhood 

set: 9 

γ���� 
 

 
Gaussian 

 
0.116 3e-08 2.011 

0.296 

 
Exponential 

 
0.376 0.009 70.025 

γ���� 
 

Gaussian 
 

0.040 0.042 30.007 

������ Kb�
 + ��. ��
L Exponential 0.230 7e-08 60.057 

Table 1. Parameters of the proposed interpolation process adapted for the case study dataset 292 

4. Results and Discussions 293 

The interpolated results (corresponding to each step illustrated in Figure 7) and their comparison with 294 

experimental ones at 55% OV are presented in the Figures 10-12. All the results are normalized to 295 

respect the confidential information.  296 

 297 

 298 
Figure 10. Comparison between experimental and Interpolated ARM histogram at 55% OV 299 

 300 

 301 
Figure 11. Experimental and generated cycles (one simulation) at 55 %OV 302 
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 303 
Figure 12. Comparison between experimental signal and one reconstructed signal at 55 %OV. 304 

Above: 10 seconds of signals. Below: Histogram of whole signal 305 

The interpolated ARM shows the same number of distribution modes (dashed line in Figure 10) as 306 

in the experimental ones; this means that this interpolation did not generate large overestimation in 307 

positions the null bins. Nonetheless, some differences are observed at the frontier positions of each 308 

mode in the interpolation result (Figure 10, 11). Graphically, the reconstructed signal (Figure 12) is 309 

not similar to the experimental one like we have foreseen, however its amplitudes have the same level 310 

as the experimental one. To verify the quality of interpolation process, we have compared the rainflow 311 

strain spectrums (strain range as a function of cumulative number of fatigue cycles) between 500 312 

simulations (sampled from the set of BGDs) and the experimental values at some operating conditions 313 

(Figure 13). 314 

For fatigue assessment, the expected goal in this study is to capture the amplitude/range level of 315 

fatigue cycle (especially high range cycles which cause more damage). At 55 %OV and 65 %OV, the 316 

experimental rainflow (the blue line in Figure 13) is mostly within of the set of simulations while 317 

there seems to be some overestimations at the high ranges at 80 %OV. This difference might be 318 

explained by that there are more operating conditions close to the 55 %OV, 65 %OV in the 319 

interpolation input set (see Table 1).  320 

An unusual variability is observed at 30 %OV. The interpolation result depends on the nature of 321 

known data. The more complicated the combination of phenomena hidden in the signal, the less 322 

confident we might be in the interpolation result. Therefore, at some partial load conditions of turbine, 323 

this unusual variability of the interpolated result occurs when an operating condition with a 324 

complicated dynamic behavior is presented next to the interpolation target condition. Some of those 325 

conditions contain specific fluctuation coming from the vortex in the draft tube [3], which appears and 326 

disappears over limited set of measured operating conditions rendering the interpolation difficult. This 327 

problem provides new challenge for further research, in which we would like to recover such 328 

fluctuation information. 329 
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 330 
Figure 13. Rainflow strain spectrum between experimental values and simulations 331 

For the runner maintenance strategy, even if the reconstructed signal is not similar to the 332 

experimental one (Figure 12), the interpolated strain ranges might be more representative of data 333 

variability and uncertainty than reusing experimental measurements from nearby operating conditions. 334 

Also, the proposed interpolation can be a solution to reduce the measurement requirements for runner 335 

fatigue assessment. 336 

 337 

5. Conclusions 338 

In this article, an interpolation process using kriging has been presented to estimate the strain range at 339 

any steady state operating condition based on rainflow cycle counting for hydroelectric turbine runner 340 

fatigue assessment. A set of bivariate Gaussian distributions were used to smooth the histogram, 341 

allowing quicker simulations of the loading cycles. It must be noted that the proposed interpolation 342 

process is sensitive to the parameters used (i.e., the semivariogram model, etc.), using the error 343 

optimizing methods (such as cross-validation, Mean Absolute Error, etc.) are therefore highly 344 

recommended. The results of the case study show that even when the reconstructed signal is not 345 

similar to the experimental one, our proposed interpolation might be useful to estimate the dynamic 346 

strain level using only the load cycles information of strain signal. 347 

The advantage of the proposed method is that it creates a stochastic process accounting for 348 

uncertainty hence contributing to fatigue risk assessment by generating loading cycles representative 349 

of observed behaviours. Moreover, it can help to optimize the requirements for experimental 350 

measurements. 351 

In the result of this case study, the complicated phenomena hidden in strain signal caused the 352 

unusual variability at some partial load conditions. For further research, preserving other information 353 

of strain signal (not only the strain range information) during the interpolation phase will be interested 354 

to improve the quality of missing data recovery at unmeasured operating conditions. 355 
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Appendix:  The cross-validation performances for several neighbourhood sets 447 

The cross-validation technique was performed for several neighbourhood sets (with the same 448 

semivariogram model). The optimized neighbourhood set for the interpolation is chosen based on the 449 

smallest RSME and based on the similarity between theoretical (black) and estimated line (red) in the 450 

cross-validation. In observing Figure 14, if one chooses a small set (the case of 5 points) or a big set 451 

(the cases of 35 or 49 points), the variation and the RMSE values are larger. In this case study, the set 452 

of 9 neighbourhood points is chosen (row 1 and column 2 in Figure 14). 453 
 454 
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Figure 14. Cross-validation performances for several neighbourhood sets  457 
































