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Abstract

In this article, we consider a closed sample of independent random variables that follow a finite mixture
distribution with parametric components. The sample might contain at most one change in the param-
eters of the first component. If there is a change, the parameters which describe the distribution of the
first component are different before and after the change-point while the other parameters of the mixture
remain the same. To test whether there is a change or not, we introduce two alternative hypothesis tests.
They are based on weighted likelihood ratios that can be computed with standard inference algorithms.
With a technique from Davis et al. (1995), we derive the limit distribution of their statistics under the
null hypothesis in the form of quadratic forms of a multidimensional Brownian motion, with the help
of a dedicated functional limit theorem. We show that validity conditions of the main result hold for
univariate finite Gaussian mixtures within the framework of Hathaway (1985). Numerical applications on
simulated data illustrate the advantage of the alternative tests compared to a standard benchmark test.
An application to Property and Casualty insurance real data is provided for the alternative tests.

Keywords: Change-point detection, parametric mixture, weak limit theorems for dependent sequences,
weighted likelihood quotient test, applications to insurance data.

1 Introduction

On the one hand, finite parametric mixtures of distributions play a central role in applied statistics, as they
allow to describe experiments with different sub-populations (McLachlan and Peel (2000), Lachos Dávila
et al. (2018), Frühwirth-Schnatter et al. (2019) and the references therein). These distributions are often
associated to questions about the identifiability of the mixture model; the estimation of the mixture param-
eters with e.g. with the EM algorithm by Dempster et al. (1977); the number of components in the mixture;
etc.
On the other hand, the detection of at most one change-point in a closed sample is a standard problem for
which techniques already exist, such as the ones in Csörgő and Horváth (1997)1. Applications are numerous
in finance, climatology, oceanography and anywhere some monitoring is needed (Killick and Eckley (2014)).
Dedicated detection techniques for mixtures are not so common because such models raise already so many
difficulties when it comes to the inference of the parameters (including the number of components). To our
knowledge, very few references seem to specifically detect change-points in mixtures with likelihood ratio-
based techniques2 (Pons (2009), Zou et al. (2015)). It turns out that general and standard change-point
detection techniques can be adapted for finite parametric mixtures (Csörgő and Horváth (1997), van der
Vaart (1998), Pons (2018)). However, when it comes to numerical applications, we observed that the stan-
dard approach raises many computational difficulties.

∗Laboratoire de Mathématiques de Bretagne Atlantique, Université de Bretagne Occidentale, dominique.abgrall@gmail.com.
1See also Barber et al. (2011), Chen and Gupta (2012) and the references therein.
2Some of the existing work is dedicated to a Bayesian framework and therefore not in the scope of this article. See e.g.

Giordani and Kohn (2008), Pandya and Jadav (2009), Pandya and Jadav (2010), Wilson et al. (2013), Li et al. (2018) or Ganji
and Mostafayi (2019).
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In this article, we consider a sample of n independent random variables that follow a finite mixture distribu-
tion with parametric components. The sample might contain at most one change (AMOC) in the parameters
of the first component. If there is a change, the r.v. are identically distributed before and after the change-
point: the parameters which describe the distribution of the first component are different before and after
the break-point while the other parameters of the mixture remain the same. For example, a shift occurs in
the mean or in the standard deviation of the first component in the case of a Gaussian mixture. We want to
test whether there is a change or not.
In order to circumvent the problems raised by the standard technique, we suggest a different approach that
takes the form of a weighted likelihood test (WLT)3. In particular, the WL test can be computed using stan-
dard estimation algorithms. With a technique from Davis et al. (1995), we derive the limit distribution of
its statistic under the null hypothesis in the form of a quadratic form of a multidimensional Brownian motion.

We start in Section 2 by the introduction of the model and the validity conditions required for our main
result. In particular, we impose that the change-point cannot occur too close to the first nor the last obser-
vation of the closed sample. In addition, the Maximum Likelihood Estimator (MLE) for the parameters of
the mixture has to be strongly consistent. As in Davis et al. (1995) and Csörgő and Horváth (1997), the test
is based on a likelihood ratio. The main difference from the standard approach lies in the presence of weight
functions that allow to focus on the first component of the mixture. In Section 3, under the null hypothesis,
we first provide asymptotic properties of the MLE (Lehmann and Casella (1998)) before deriving a func-
tional limit result for one term of the log-likelihood ratio in Theorem 3.7. This result is based on multiple
applications of the Continuous Mapping Theorem and a Functional Delta Method in the Skorokhod metric
space of càd-làg functions (Billingsley (1999), van der Vaart (1998)). In Theorem 3.8, the limit distribution
of the test statistic is obtained as a consequence. In Section 4, we suggest an extension of the test (EWLT)
where we scale the contribution of the sample to the weighted likelihood ratio. This improves significantly
the detection frequency of the test in the case of a change (lower type II error). In Section 5, we show that
validity conditions hold for univariate finite Gaussian mixtures within the framework of Hathaway (1985).

Applications in Section 6 consist in two parts. First, with numerical simulations, we illustrate the properties
of the WL and EWL tests and compare them to a benchmark test (BM) obtained from an application of
the standard test (e.g. exposed in Csörgő and Horváth (1997)). Both WL and EWL tests have notably
lower type II errors, especially for large samples of over 10 000 observations. Overall, the EWLT performs
significantly better than the other candidates. The second application is an illustration of the WL and EWL
tests on Property and Casualty insurance real data. The tests are applied for the detection of a change in
the variation over six months of the claim amount. For insurance problems, this application indicates that
the proposed tests can be used for the monitoring of changes, when they are unexpected, and also to assess
their significativity when they are known or suspected.

In Section 7, we give an overview of the conclusions and perspectives of this work.

Additional results, mathematical proofs and further illustrations of the numerical applications are given in
the supplementary material.

2 Description of the model, assumptions and notations

2.1 Model and assumptions

We consider an experiment where we observe a sample of n independent continuous random variables X =
(Xi)1≤i≤n, defined on some probability space (Ω,F ,P), with values in some set X , subset of an Euclidean
space, endowed with Lebesgue’s measure. Each Xi, 1 ≤ i ≤ n, follows a finite mixture distribution with
2 < m <∞ parametric components Pθi , where θi belongs to a convex set of eligible parameters Θ.
More precisely, for m a fixed, deterministic and known integer, the elements of Θ are of following type:

3Weighted likelihood approaches are used in many contexts: see e.g. Dickey (1971), Hu and Zidek (2002), Amisano and
Giacomini (2007), Basu et al. (2011), Song et al. (2018) and the references therein.
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Θ 3 θ = (p1, . . . , pm−1, λ1, . . . , λm), with (p1, . . . , pm−1) in the open set

Θ0 :=

{
(p1, . . . , pm−1) ∈ (0, 1)m−1,

m−1∑
k=1

pk < 1

}

and, for each k ∈ {1, . . . ,m}, λk ∈ Θk, with Θk an open convex subset of some Rdk , with dk ≥ 1. Set
d := m − 1 +

∑m
k=1 dk: then Θ = Θ0 ×

∏m
k=1 Θk is an open convex subset of Rd. Finally, given f1, . . . , fm

some fixed density functions on X , the distribution Pθ, θ ∈ Θ, admits the density

f(x, θ) :=

m∑
k=1

pkfk(x, λk), x ∈ X ,

with pm := 1−
∑m−1
k=1 pk. We first assume that the distributions {Pθ, θ ∈ Θ} are all distinct. This means in

particular that the mixture should be identifiable4. We also add some usual assumptions on the regularity
of the components of the mixture:

� The distributions defined by {f(., θ), θ ∈ Θ} have common support, i.e. the set {x ∈ X , f(x, θ) > 0}
does not depend on θ;

� For almost all x ∈ X , the function θ 7→ f(x, θ) is twice continuously differentiable in θ ∈ Θ with partial
derivatives bounded by a non-negative integrable function of x that does not depend on θ.

In this experiment, the sample is identically distributed before and after the change-point. There is at most
one change (AMOC), deterministic but unknown, or none. Since we are interested in the limit behavior of
the sample of variables when their number tends to infinity, we suppose that the experience takes place in
the time interval [0, 1] and each variable Xi occurs at time i/n, 1 ≤ i ≤ n.
With this approach, if there is a change-point, it occurs at a time denoted by s ∈ (0, 1) such that the parame-
ters which describe the distribution of the first component are different before and after the break-point while
the other parameters of the mixture remain the same. We write θ := θ1 = · · · = θbsnc 6= θbsnc+1 = · · · = θn,
where, for any x ∈ [0, 1], bxc denotes the integer part of x. Since it is not needed to define our test, refer to
Section 6.1 for more details on the alternative hypothesis and how it can be described with the parameters
p1, . . . , pm−1, λ1, . . . , λm.
If there is no change-point, then X is an i.i.d. sample with θ = θ1 = · · · = θn.

For the sake of simplicity, we impose that there is at most one change. A setting with more than one change-
point can be extended with the same logic.

In the sequel we suppose that the following holds for the change-point s:

Assumption 2.1. If there is a change, the change-point s is contained in [s̄, 1 − s̄] where 0 < s̄ < 1/2 is
deterministic and known, i.e. the change does not occur too close to 0 nor 1.

Let us construct the following hypothesis test:

1. The null hypothesis H0 defines the case when there is no change-point;

2. The composite alternative hypothesis H1: a change-point occurs at time s, s ∈ [s̄, 1 − s̄], i.e. the
parameters which describe the distribution of the first component are different before and after s while
the other parameters of the mixture remain the same.

This setting implies that the number of components does not change. Our work provides results when H0

holds; so they do not depend on what happens after the change. However, the test statistic we shall define is
designed to amplify the change in one of the components of the mixture. Hence it makes sense to assume that
the distribution after the change is a well defined mixture (identifiable) with the same number of components.

4See e.g. Redner (1981), Feng and McCulloch (1996), and Section 1.14 in McLachlan and Peel (2000) for discussion on the
identifiability of mixtures.
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After defining a statistic, we will establish a central limit theorem under the assumption that H0 holds. This
is necessary to be able to determine the rejection domain while controlling the type I error (proportion of
false positives). Therefore, in the following, we assume that H0 holds, i.e. X is independent identically
distributed with distribution Pθ. We also consider that the following assumptions hold:

Assumption 2.2. For almost all x ∈ X ,

� Regularity: the density f(x, θ) is three times differentiable in θ = (θ1, . . . , θd) ∈ Θ.

� Integrability: for 1 ≤ j ≤ d, EH0

[
∂
∂θj

log f(X1,θ)
]

= 0.

� Continuity: for any 1 ≤ j, k, l ≤ d, the applications θ 7→ ∂3

∂θj∂θk∂θl
log f(x, θ) are continuous on Θ.

� Dominance: we can find some function κ1(x), x ∈ X , that does not depend on θ and is such that, for

all 1 ≤ j, k, l ≤ d and all θ in Θ,
∣∣∣ ∂3

∂θj∂θk∂θl
log f(x, θ)

∣∣∣ ≤ κ1(x) with EH0
[κ1(X1)] <∞.

Let I be the Fisher information matrix defined by

Ij,k := Cov

(
∂

∂θj
log f(X1,θ),

∂

∂θk
log f(X1,θ)

)
, 1 ≤ j, k ≤ d. (1)

The assumptions we state on I are the following:

Assumption 2.3. The matrix I is positive definite with finite elements and

Ij,k = EH0

[
∂

∂θj
log f(X1,θ)

∂

∂θk
log f(X1,θ)

]
= −EH0

[
∂2

∂θj∂θk
log f(X1,θ)

]
.

We define the log-likelihood of the sample X as a function of the d-dimensional vector θ ∈ Θ by

θ 7→ L(X, θ) :=

n∑
i=1

log f(Xi, θ).

It is well defined since, by assumption, the Xi(ω), ω ∈ Ω and 1 ≤ i ≤ n, can only take values in the set
{x ∈ X , f(x, θ) > 0}.

With Assumptions 2.2 and 2.3, from the usual Limit Theorems5 for Maximum Likelihood Estimators (MLE),
there exist sequences of solutions of the likelihood equations ∂

∂θj
L(X, θ) = 0, 1 ≤ j ≤ d, that exist with proba-

bility tending to one as n→∞ and are consistent. Let us select one of these consistent sequences of solutions
as an estimator for the unknown θ and denote it θ̂ = (p̂1, . . . , p̂m−1, λ̂1, . . . , λ̂m).
Note that this precaution is necessary since MLE might not exist for a finite sample6. In addition, for
numerical applications, it is clear that the search of all roots of the likelihood equations would require un-
reasonable time. Thus the question of uniqueness is not really the problem. For the computation, one might
use the EM algorithm7 or some other approach8. Algorithms, when they converge, ensure to provide some
local maximum but there is no guarantee to find the global maximum. We will see in Section 5 that, for uni-
variate Gaussian mixtures, one can find some Θ that ensures the existence of the estimator θ̂ for finite samples.

In addition to the usual regularity conditions given in Assumptions 2.2 and 2.3, we assume that:

Assumption 2.4. The estimator θ̂ is strongly consistent when H0 holds.

5See e.g. Theorem 5.1 in Lehmann and Casella (1998), Section 6.5.
6For the existence of MLE of Gaussian mixtures, see e.g. Example 6.10 in Lehmann and Casella (1998), Section 6.6. For a

discussion on uniqueness of MLE in general, see Mäkeläinen et al. (1981). Chapter 2 in McLachlan and Peel (2000) gives an
overview of these questions for mixtures.

7See e.g. Dempster et al. (1977), Wu (1983), Hathaway (1983), Redner and Walker (1984), Benaglia et al. (2009) and the
references therein.

8For an overview, see e.g. Section 1.13 in McLachlan and Peel (2000), Tanaka (2009), Chen (2017) and the references therein.
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This is an important restriction compared to the general case because Assumptions 2.2 and 2.3 only ensure
the convergence in probability (Lehmann and Casella (1998)). For the applications in this article, we will
consider the Gaussian case and discuss it in Section 5, using the result from Hathaway (1985). For other
cases, one might use the classical results in the literature that cover a wide range of reasonable sufficient
conditions. One of the first results has been given by Theorem 2 in Wald (1949) when Θ is compact. Theorem
4 in Redner (1981) weakens Wald’s conditions for Θ a compact subset of the quotient topological space of
all possible parameters, with a dedicated result for finite mixtures in Theorem 5. Feng and McCulloch
(1996) proves it for Θ a compact subset of the Euclidean space of possible parameters, i.e. showing that
the question of identifiability does not impact the convergence properties of maximum likelihood estimators.
Other approaches have been proposed by Kiefer and Wolfowitz (1956) or Redner and Walker (1984). For a
wider discussion on mixtures, refer to Section 2.5 in McLachlan and Peel (2000).

Remark 2.1. Since we study asymptotic properties, the main point in Assumption 2.2 is the integrability of
the function κ1. With the continuity condition and the convergence of θ̂ from Assumption 2.4, almost surely,
the boundedness itself follows for n large enough.

For s ∈ [s̄, 1− s̄], by the same logic as for the estimator θ̂, we consider the estimators of θ over the subsamples

(Xi)1≤i≤bsnc and (Xi)bsnc+1≤i≤n, respectively denoted by θ̂0,s and θ̂s,1. For a fixed s ∈ (0, 1), they have the

same properties as θ̂ when n→∞.

To focus our study on only one component of the mixture (the first component), we design a specific weight
function that, in the detection statistic, allows to overweight the density of an observation x when the density
of the first component is dominant compared to others. For that purpose we define the weight function at
point x ∈ X for θ = (p1, . . . , pm−1, λ1, . . . , λm) ∈ Θ by

w(x, θ) :=
p1f1(x, λ1)

f(x, θ)
. (2)

The function w is well defined since, by assumption, the random variables Xi, 1 ≤ i ≤ n, can only take values
in the set {x ∈ X , f(x, θ) > 0} . In addition, by definition, for any x ∈ X and any θ ∈ Θ, 0 ≤ w(x, θ) ≤ 1.
As a consequence of Assumption 2.2, the application

w log f1 : (x, θ) 7→ w(x, θ) log f1(x, λ1) (3)

is twice differentiable in θ ∈ Θ, and, for all 1 ≤ j, k ≤ d and almost all x ∈ X , the application θ ∈ Θ 7→
∂2

∂θj∂θk
(w log f1)(x, θ) is continuous in θ.

Here is an assumption concerning the application w:

Assumption 2.5. (Dominance) There exists some convex subset Θ′ ⊂ Θ such that θ is in the interior of
Θ′, and an application κ2 from X to R that does not depend on θ, such that, for all 1 ≤ j, k ≤ d, θ in Θ′ and

for almost all x ∈ X ,
∣∣∣ ∂2

∂θj∂θk
(w log f1)(x, θ)

∣∣∣ ≤ κ2(x) with EH0
[κ2(X1)] <∞.

For the same reasons as for Assumption 2.2, the essential point here is the integrability of the dominating
function κ2.

2.2 Definition of the Weighted Likelihood Test (WLT)

We now define the test statistic. First we introduce Λn := (Λs,n)s∈[s̄,1−s̄], the underlying càd-làg stochastic

process of the detection statistic:

Λs,n := log

(∏bsnc
i=1 f1(Xi, λ̂0,s,1)w(Xi,θ̂0,s)

∏n
j=bsnc+1 f1(Xj , λ̂s,1,1)w(Xj ,θ̂s,1)∏n

i=1 f1(Xi, λ̂1)w(Xi,θ̂)

)
(4)

=

bsnc∑
i=1

w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1) +

n∑
i=bsnc+1

w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)−
n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1).
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Note that, for an observation Xi with distribution parameter θ, the weight w(Xi, θ) is the probability that Xi

comes from the first component. Conditionally to this fact, the log-likelihood of Xi is given by log f1(Xi, λ1).
Thus the expression w(Xi, θ) log f1(Xi, λ1) in Λs,n somehow reflects the contribution of the first component
in the likelihood of Xi. As a consequence, the response of the statistic is magnified when a change occurs in
the first component.
In addition, the process Λn is defined on [s̄, 1− s̄] in order to ensure that, for n large enough, an asymptotic
behavior can be obtained for each sum. The test statistic is then defined by

Sn := sup
s∈[s̄,1−s̄]

Λs,n. (5)

We refer to this test as the WLT (Weighted Likelihood Test). The test procedure states that there is no
change-point for the first component (i.e. we accept H0) when Sn is smaller than some threshold Lα chosen
with respect to a false alarm constraint. This false alarm can be obtained from the probability of false alarm
α ∈ (0, 1) such that Lα is the α-percentile of the limit distribution of Sn when H0 holds.

The main purpose of this article is to derive the limit distribution of Sn when H0 holds. We follow the work
of Davis et al. (1995) and look at Λs,n as a stochastic process. In the end, we derive the limit distribution of
the detection statistic Sn in Theorem 3.8.

2.3 Notations

We denote by Dθ(.), D
2
θ(.) and D3

θ(.) respectively the vector, matrix and hypermatrix differential operators

in θ ∈ Rd. For θ, θ̃ ∈ Rd, we denote by [θ, θ̃] the segment [θ, θ̃] := {λθ + (1− λ)θ̃, λ ∈ [0, 1]}.

gld(R) denotes the set of matrices of size d× d with real coefficients and GLd(R) the set of invertible d× d-
matrices with real coefficients.
For a given matrix M , its i-th line is denoted by Mi,. and its j-th column is denoted by M.,j . The same logic
is used for hypermatrices: for a given J ∈ Rd×d×d and 1 ≤ i ≤ d, we denote by Ji,.,. := (Ji,j,k,)1≤j,k≤d the
d× d-matrix obtained from J .
For a given matrix M , we denote

(
M−1

)T
by M−1 T .

If Σ2 is a covariance matrix, then it is positive semi-definite, and Σ will denote the unique positive semi-
definite square root of Σ2.

In this paper, the weak convergence of càd-làg paths is to be understood as a weak convergence in the Sko-
rokhod metric space of càd-làg paths. Refer to the supplementary material for additional technical details.

A glossary of notations is given in Section S6 of the supplementary material.

3 Limit distribution of the test statistic

In this section we shall determine the limit distribution of the process Λn as n tends to infinity.
Let us consider the constant

u := EH0
[Dθ(w log f1)(X1,θ)] ∈ Rd, (6)

where the application w log f1 is defined in (3). By Assumption 2.5, u is finite. We indicate that u is not null
in general: we numerically established that u is strictly positive for some examples of Gaussian mixtures9.
The càd-làg real-valued process Λn defined on [s̄, 1− s̄] can be decomposed as follows:

Λs,n = Q1
s,n +Q2

s,n −Q1
1,n, s ∈ [s̄, 1− s̄], (7)

9Using the Strong Law of Large Numbers, a simple numerical simulation for a Gaussian mixture with 3 components shows
that, in general, the constant u is not null. See Section S4 of the supplementary material for an illustration.
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where Q1
n = (Q1

s,n)s∈[s̄,1] and Q2
n = (Q2

s,n)s∈[s̄,1−s̄] are càd-làg real-valued processes defined by

Q1
s,n :=

bsnc∑
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)
− uT I−1

bsnc∑
i=1

Dθ(log f)(Xi,θ),

Q2
s,n :=

n∑
i=bsnc+1

(
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)− w(Xi,θ) log f1(Xi,λ1)

)
− uT I−1

n∑
i=bsnc+1

Dθ(log f)(Xi,θ).

The process Q1
n is defined on [s̄, 1] in order to include the last term of Λs,n in (7) while Q2

n needs only to be
defined on [s̄, 1− s̄]. In addition, we remark that the random processes (Q1

s,n)s∈[s̄,1−s̄] and Q2
n have a similar

structure that differs only by the sub-sample considered. Therefore, in the following, we study the limit of
Q1
n and simply extends the arguments to obtain the limit of Λn.

3.1 Limit distribution of Q1
n

The process Q1
n is the first of the three terms defining the process Λn in (7). We want to derive its limit

distribution with a Donsker-type result. In the following, our purpose is to reorganize the terms so that the
process Q1

s,n is somehow the product of a matrix that converges almost surely uniformly in s ∈ [s̄, 1] to some
constant, and of a vector that converges weakly to some random process. With the help of Slutsky’s Theorem
for random elements10, one can target to derive the limit process of Q1

s,n.
The difficulty here is that the random variable Q1

s,n is not a sum of independent terms, because of the

presence of the estimator θ̂0,s, which depends itself on the whole sub-sample (X1, X2, . . . , Xbsnc). For
that purpose, we expect to develop θ = (p1, . . . , pm−1, λ1, . . . , λm) 7→ w(x, θ) log f1(x, λ1) around θ =

(p1, . . . ,pm−1,λ1, . . . ,λm). This is possible with the help of the two following properties of the estimator θ̂0,s.

First, from Assumption 2.4, we already know that the estimator θ̂ converges almost surely to θ when n→∞.
With the following result inspired from Proposition 3.3 in Dehling et al. (2014), we extend this convergence

property to θ̂0,s, s ∈ [s̄, 1] (for a detailed proof, refer to Section S2 in the supplementary material).

Proposition 3.1. Under H0 and Assumptions 2.1-2.4, the estimator θ̂0,s converges almost surely to θ,
uniformly in s ∈ [s̄, 1].

This will represent a key property for the main result.

Second, almost surely, it is possible to obtain an explicit form for θ̂0,s for n large enough (n depending on ω).

Indeed, the estimator θ̂ is a sequence of solutions of the likelihood equations DθL(X, θ) = 0. Therefore, we
can follow the ideas from the proof of the usual limit theorems for maximum likelihood estimators (see e.g.
Theorem 5.1 in Lehmann and Casella (1998), Section 6.5). As detailed in Section S2 of the supplementary

material, we obtain that, for any s ∈ [s̄, 1], there exists some point θ′0,s on the segment [θ̂0,s,θ], such that the
matrix

Â0,s := − 1

bsnc

bsnc∑
i=1

(
D2
θ(log f)(Xi,θ) +

1

2

d∑
l=1

(
θ̂0,s;l − θl

)
D3
θ(log f)(Xi, θ

′
0,s)l,.,.

)
satisfies Â0,s(θ̂0,s − θ) = 1

bsnc
∑bsnc
i=1 Dθ(log f)(Xi,θ). The following proposition provides an explicit expres-

sion for θ̂0,s and the convergence of Â0,s.

Proposition 3.2. Under H0 and Assumptions 2.1-2.4, almost surely, for n large enough, for all s ∈ [s̄, 1],
the matrix Â0,s is invertible and

θ̂0,s − θ = Â−1
0,s

1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ),

with EH0 [Dθ(log f)(X1,θ)] = 0, and where Â−1
0,s converges almost surely to I−1, uniformly in s ∈ [s̄, 1].

10See e.g. Theorem 18.10 in van der Vaart (1998).
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By Assumption 2.5 and Proposition 3.1, it follows that, with a Taylor-Lagrange decomposition11, almost
surely, we can find some N ≥ 1 (depending on ω) and some θ′0,s ∈ [θ̂0,s,θ] (depending on ω, n and s), such
that, for n ≥ N and for s ∈ [s̄, 1],

bsnc∑
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)

=

bsnc∑
i=1

(
Dθ(w log f1)(Xi,θ)T (θ̂0,s − θ) + (θ̂0,s − θ)TD2

θ(w log f1)(Xi, θ
′
0,s)(θ̂0,s − θ)

)
.

So far, we can rewrite Q1
s,n as follows

Q1
s,n =

bsnc∑
i=1

Dθ(w log f1)(Xi,θ)T

 (θ̂0,s − θ) + (θ̂0,s − θ)T

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)

 (θ̂0,s − θ)

− uT I−1

bsnc∑
i=1

Dθ(log f)(Xi,θ).

From Assumption 2.5, we know that EH0
[|Dθ(w log f1)(X1,θ)|] <∞. Thus we can center the right side sum

of the first term by u:

Q1
s,n =

bsnc∑
i=1

(
Dθ(w log f1)(Xi,θ)T − uT

) (θ̂0,s − θ) + (θ̂0,s − θ)T

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)

 (θ̂0,s − θ)

+ bsncuT (θ̂0,s − θ)− uT I−1

bsnc∑
i=1

Dθ(log f)(Xi,θ).

Choosing n large enough, Proposition 3.2 provides us an explicit expression of θ̂0,s − θ, which permits us to
rewrite Q1

s,n as follows:

Q1
s,n =

 1

bsnc

bsnc∑
i=1

(
Dθ(w log f1)(Xi,θ)T − uT

) bsncÂ−1
0,s

 1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)


+

 1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)T

 bsnc Â−1
0,s

T

 1

bsnc

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)

 Â−1
0,s

 1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)


+ uT

(
Â−1

0,s − I
−1
)
bsnc

 1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)

 . (8)

Remark that, in this reformulation of Q1
s,n, we can recognize several sums of centered i.i.d random variables

which, multiplied by
√
n, can be treated by Donsker’s Theorem and produce at the limit a multi-dimensional

Brownian motion. Further, there are the variables Â−1
0,s, which, by Proposition 3.2, converge a.s. to the

inverse Fischer information I−1. The last line of (8), decomposing bsnc into
√
n bsncn

√
n, makes appear the

term
√
n
(
Â−1

0,s − I
−1
)

. Its limit, when n tends to ∞ and the link with the other components of Q1
s,n have

to be analyzed separately, before we combine all these terms to compute the limit of the process (Q1
s,n)s∈[s̄,1]

in terms of a transformation of a Brownian motion.

11See e.g. Theorem 5.3 in Coleman (2012).
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Firstly, for all s ∈ [s̄, 1], we define the triple ξ̂0,s := (ι̂0,s, û0,s − u, Î0,s) ∈ (Rd)2 × gld(R) by

ι̂0,s :=
1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ) (9)

û0,s :=
1

bsnc

bsnc∑
i=1

Dθ(w log f1)(Xi,θ)

Î0,s :=− 1

bsnc

bsnc∑
i=1

D2
θ(log f)(Xi,θ)

which allows us to rewrite Q1
s,n as

Q1
s,n =

bsnc
n

√
n(û0,s − u)T Â−1

0,s

√
nι̂0,s +

bsnc
n

√
nι̂T0,s Â

−1
0,s

T

 1

bsnc

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)

 Â−1
0,s

√
nι̂0,s

+
bsnc
n
uT
√
n
(
Â−1

0,s − I
−1
) √

nι̂0,s. (10)

Another crucial ingredient of our following discussion is the covariance matrix Σ2 ∈ gl2d+d2(R) under H0 of
the triple (

Dθ(log f)(X1,θ), Dθ(w log f1)(X1,θ)− u,−D2
θ(log f)(X1,θ)− I

)
reorganized in a 2d+ d2-dimensional real vector. As a covariance matrix, Σ2 is positive semi-definite. Then
Σ will denote the unique positive semi-definite square root of Σ2.

Lemma 3.3. Set ξ := (0, 0, I) ∈ (Rd)2 × GLd(R). Under H0, for all s ∈ [s̄, 1], EH0
[ξ̂0,s] = ξ, the sequence

of random variables ξ̂0,s converges a.s. to ξ, uniformly in s ∈ [s̄, 1], and the process
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges weakly as follows
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

D−−−−→
n→∞

(
1

s
ΣWs

)
s∈[s̄,1]

,

where W := (Ws)s∈[0,1] is a standard 2d + d2-dimensional Brownian motion and ΣWs is reorganized as a

triple in (Rd)2 × gld(R).

The next Lemma will help us to handle the term (Â−1
0,s−I

−1) which appears in the last line of the expression

(10) of Q1
0,s. To this aim we introduce the hypermatrix

J := EH0

[
D3
θ(log f)(X1,θ)

]
∈ Rd×d×d. (11)

Lemma 3.4. Almost surely, for large n (depending on ω), the variable Â0,s can be written as

Â0,s = Î0,s −
1

2

d∑
l=1

(
ι̂T0,s

(
Â−1

0,s

T
)
.,l

)
(Ĵ0,s).,.,l,

for all s ∈ [s̄, 1], where Ĵ0,s is the hypermatrix defined by Ĵ0,s := 1
bsnc

∑bsnc
i=1 D3

θ(log f)(Xi, θ
′
0,s). In addition,

under H0, almost surely, Ĵ0,s converges to the hypermatrix J , uniformly in s ∈ [s̄, 1].

Set now, for all s ∈ [s̄, 1] and all n ≥ 1,

ξ̂′0,s := (ι̂0,s, û0,s − u, Â−1
0,s).

It is easy to see with Proposition 3.2 that, when n tends to infinity, ξ̂′0,s converges a.s. to

ξ′ := (0, 0, I−1).

The aim of the next theorem is to establish a Donsker-type result for the process (ξ̂′0,s)s∈[s̄,1]. The result is
obtain with the help of Lemma 3.4.
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Theorem 3.5. Under H0, the process
√
n(ξ̂′0,s − ξ

′)s∈[s̄,1] converges weakly to ( 1
sg(ΣWs))s∈[s̄,1], where g is

the linear map defined for (ι, u, I) ∈ (Rd)2 × gld(R) by

g(ι, u, I) :=

(
ι, u,−I−1

(
I − 1

2

d∑
l=1

(
ιT
(
I−1 T

)
.,l

)
J .,.,l

)
I−1

)
, (12)

and ΣWs is reorganized as a triple in (Rd)2 × gld(R).

The main theorem states that the process Q1
n converges to a quadratic form of the Brownian motion W

introduced in Theorem 3.5. For (ι, u, I;A, J) ∈ (Rd)2 × (gld(R))3, we set first:

q(ι, u, I;A, J) := uTAι+ ιTATJAι+ uT Iι ∈ R, (13)

where we recall the vector u = EH0
[Dθ(w log f1)(X1,θ)] defined in (6). We also consider the application q

defined as follows:
q(z) := q(g(Σz); I−1,U), z ∈ R2d+d2 , (14)

where g is defined by (12), Σz is reorganized as a triple in (Rd)2 × gld(R). Further U is the matrix defined
by

U := EH0

[
D2
θ(w log f1)(X1,θ)

]
. (15)

Remark 3.6. The map z ∈ R2d+d2 7→ q(z) is a quadratic form.

We can now state our main result for Q1
n.

Theorem 3.7. Under H0, the process Q1
n converges weakly as n→∞ to the process ( 1

sq(Ws))s∈[s̄,1].

3.2 Limit distribution of the test statistic

The limit distribution of Λn is obtain as an extension of the result in Theorem 3.7 for Q1
n. In the following

Theorem we derive the limit distribution of the test statistic Sn.

Theorem 3.8. Under H0 and Assumptions 2.1-2.5, the test statistic

Sn
D−−−−→

n→∞
sup

s∈[s̄,1−s̄]

q(Ws − sW1)

s(1− s)

where (Ws)s∈[0,1] is a standard 2d+d2-dimensional Brownian motion and the application q is defined in (14).

The limit distribution obtained is somehow similar to the one given by Csörgő and Horváth (1997), Corollary
1.1.1, for the i.i.d. case of an unconstrained log-likelihood ratio test. Since q is a quadratic form, q(Ws −
sW1)s∈[s̄,1−s̄] is also a quadratic form of a Brownian bridge. The introduction of the weights impacts here
the dimension of the Brownian bridge that is here 2d+ d2, while, in the standard case, the Brownian bridge
is of dimension d.

3.3 Test procedure

In practice, we observe a realization X(ω) for some ω ∈ Ω of the random sample X with n observations. We
propose the following test procedure:

1. Compute the estimators θ̂, (θ̂0,s)s∈[s̄,1−s̄] and (θ̂s,1)s∈[s̄,1−s̄] where s̄ is known from Assumption 2.1.
The three estimators are defined in Section 2.

2. Compute the process (Λs,n)s∈[s̄,1−s̄] and the test statistic Sn using their definitions in Equations (4)
and (5).

3. Compute the constants I−1 defined in (1), U defined in (15), J defined in (11) and the covariance
matrix Σ defined for Lemma 3.3. This requires additional developments: theoretical computation or
numerical approximation.
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4. Compute the distribution of sups∈[s̄,1−s̄]
q(Ws−sW1)
s(1−s) where W is a standard Brownian motion and q is

defined in (14). This requires additional development: theoretical computation or numerical approxi-
mation.

5. Compute the threshold Lα chosen with respect to a false alarm constraint. It can be obtained
from the probability of false alarm α ∈ (0, 1) such that Lα is the α-percentile of the distribution

of sups∈[s̄,1−s̄]
q(Ws−sW1)
s(1−s) . We conclude that no change-point occurs if the statistic Sn is smaller than

the threshold: we should reject H0.

Since, by definition, the estimators θ̂0,s, θ̂s,1 and the process Λs,n are constant piecewise, it is sufficient to
estimate them on a finite set of s ∈ [s̄, 1− s̄].

This test focuses on the first component of the mixture. Obviously, by definition of the mixture and of the
test itself, this can be applied to any other component. Therefore, in practice, it might be relevant to run
a test on each component. Alongside a standard Likelihood Ratio Test that does not focus on a specific
component, the set of tests constitutes a useful detection tool for the industry.

In the next section, we suggest an extended version of this test. Numerical applications indicate that such
an extension increases the detection frequency when a change occurs.

4 Extension: scaling the contributions in the likelihood ratio (EWLT)

In this section, we introduce an extended version of the test defined in Section 2.2. For a fixed s ∈ [s̄, 1], we
define the contribution cs,n by

cs,n :=

bsnc∑
i=1

w(Xi, θ̂0,s) +

n∑
i=bsnc+1

w(Xi, θ̂s,1).

Remark that, from its definition in (4), the log-ratio Λs,n is the difference of (Q1
s,n +Q2

s,n) and Q1
1,n. Then,

cs,n is the contribution of the sample to the term (Q1
s,n+Q2

s,n), and c1,n =
∑n
i=1 w(Xi, θ̂) is the contribution

of the sample to the term Q1
1,n. Under the null hypothesis, by the definition of w(., .) in (2), we can show12

that
cs,n
n

a.s.−−−−→
n→∞

EH0 [w(X1,θ)] =

∫
X

p1f1(x,λ1)

f(x,θ)
f(x,θ)dx = p1,

uniformly in s ∈ [s̄, 1]. It follows that, for a given s ∈ [s̄, 1− s̄], the average contributions cs,n/n and c1,n/n
have the same limit under the null hypothesis. Under the alternative hypothesis, we observed in numeri-
cal applications that these average contributions can play a significant role in the detection performance.
Therefore, we suggest to scale our statistic with the total contributions. We define a new log-ratio process
Λ∗n := (Λ∗s,n)s∈[s̄,1−s̄] by

Λ∗s,n :=
c1,n
cs,n

bsnc∑
i=1

w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1) +

n∑
i=bsnc+1

w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)


−

n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1). (16)

The test statistic is then defined by S∗n := sups∈[s̄,1−s̄] Λ∗s,n. We refer to this test as the EWLT (Extended
Weighted Likelihood Test).

12With the help of Lemma S2.9 in the supplementary material.
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In order to obtain a limit distribution for S∗n, we start by noticing that

Λ∗s,n =
c1,n
cs,n

Λs,n +

(
c1,n
cs,n
− 1

) n∑
i=1

w(Xi, θ̂) log f1(Xi, λ̂1)

=
c1,n
cs,n

Λs,n −
1
n

∑n
i=1 w(Xi, θ̂) log f1(Xi, λ̂1)

1
n
cs,n

bsnc∑
i=1

w(Xi, θ̂0,s) +

n∑
i=bsnc+1

w(Xi, θ̂s,1)−
n∑
i=1

w(Xi, θ̂)

 .

We already know that the ratio c1,n/cs,n converges a.s. to 1 uniformly in s ∈ [s̄, 1]. With the help of Lemma
S2.9 in the supplementary material, we can show that

1
n

∑n
i=1 w(Xi, θ̂) log f1(Xi, λ̂1)

1
ncs,n

a.s.−−−−→
n→∞

EH0
[log f1(Y,λ1)] =: β,

uniformly in s ∈ [s̄, 1], with Y a random variable with density f1(.,λ1). In addition, we can assess numerically
that, in general, β is not null.
Remark that the sum

bsnc∑
i=1

w(Xi, θ̂0,s) +

n∑
i=bsnc+1

w(Xi, θ̂s,1)−
n∑
i=1

w(Xi, θ̂)

has the same form as Λs,n in (4), but without the factor log f1(Xi, λ̂.,.,1). Then, we already see that the limit
distribution of S∗n is obtained with similar arguments that gave us the limit distribution of Sn in Theorem
3.8. As in Section 3, we start by rewriting Λ∗s,n as follows

Λ∗s,n =
c1,n
cs,n

Λs,n −
1
n

∑n
i=1 w(Xi, θ̂) log f1(Xi, λ̂1)

1
ncs,n

(Q1∗
s,n +Q2∗

s,n −Q1∗
1,n)

where, Q1∗
n = (Q1∗

s,n)s∈[s̄,1] and Q2∗
n = (Q2∗

s,n)s∈[s̄,1−s̄] are càd-làg real-valued processes defined by

Q1∗
s,n :=

bsnc∑
i=1

(
w(Xi, θ̂0,s)− w(Xi,θ)

)
− vT I−1

bsnc∑
i=1

Dθ(log f)(Xi,θ), s ∈ [s̄, 1],

Q2∗
s,n :=

n∑
i=bsnc+1

(
w(Xi, θ̂s,1)− w(Xi,θ)

)
− vT I−1

n∑
i=bsnc+1

Dθ(log f)(Xi,θ), s ∈ [s̄, 1− s̄],

and v := EH0
[Dθw(X1,θ)] ∈ Rd. With similar arguments as in Section 3.1, Q1∗

s,n and Q2∗
s,n can be expressed

as functions of the triple (ι̂0,s, v̂0,s − v, Î0,s) with ι̂0,s and Î0,s defined in (9), and

v̂0,s :=
1

bsnc

bsnc∑
i=1

Dθw(Xi,θ).

It follows that Λ∗s,n can be expressed as a function of the quadruple

ξ̂∗0,s := (ι̂0,s, û0,s − u, v̂0,s − v, Î0,s)

and a random variable that depends on s and n and converges a.s. uniformly in s to some finite constant.
We denote by Σ∗ the unique positive semi-definite square root of the covariance matrix under the null
hypothesis of the quadruple(

Dθ(log f)(X1,θ), Dθ(w log f1)(X1,θ)− u, Dθw(X1,θ)− v, −D2
θ(log f)(X1,θ)− I

)
reorganized in a 3d+ d2-dimensional real vector. Still under the null hypothesis, the result of Lemma 3.3 can
be extended to the process (ξ̂∗0,s)s∈[s̄,1] with an application of Donsker’s Theorem. With ξ∗ := (0, 0, 0, I), the

process
√
n(ξ̂∗0,s − ξ

∗)s∈[s̄,1] converges weakly as follows

√
n
(
ξ̂∗0,s − ξ

∗
)
s∈[s̄,1]

D−−−−→
n→∞

(
1

s
Σ∗Ws

)
s∈[s̄,1]

,
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where W := (Ws)s∈[0,1] is a standard 3d + d2-dimensional Brownian motion and Σ∗Ws is reorganized as a

quadruple in (Rd)3 × gld(R).

As for the limit distribution of Sn in Theorem 3.8, the convergence of S∗n is obtained by a functional delta
method (Corollary S3.5 given in the supplementary material) and multiple applications of Slutsky’s Theorem
and the Continuous Mapping Theorem.
To this end, we start by adapting the function g defined in (12), for Theorem 3.5. We define the map g∗ for
a quadruple (ι, u, v, I) in (Rd)3 × gld(R) by

g∗(ι, u, v, I) :=

(
ι, u, v,−I−1

(
I − 1

2

d∑
l=1

(
ιT
(
I−1 T

)
.,l

)
J .,.,l

)
I−1

)
.

Remark that, for a fixed s, g∗(Σ∗Ws) is a quadruple in (Rd)3 × gld(R). Remark also that, when we applied
the delta method in the proof of Theorem 3.5, the vector u did not play a significant role. Here, this is also
the case for the vector v. The result is then extended to the quadruple process

√
n(ξ̂∗0,s − ξ

∗)s∈[s̄,1] without
additional arguments.
Then, similarly to the function q defined in (13), we introduce the map q∗, defined for (ι, u, v, I;A, J, J∗) ∈
(Rd)3 × (gld(R))4 by

q∗(ι, u, v, I;A, J, J∗) = uTAι− βvTAι+ ιTAT (J − βJ∗)Aι+ (uT − βvT )Iι ∈ R.

Last, we set

q∗(z) := q∗(g∗(Σ∗z); I−1,U ,V ), z ∈ R3d+d2 , (17)

where Σ∗z is reorganized as a quadruple in (Rd)3 × gld(R) and with V the matrix defined by

V := EH0

[
D2
θw(X1,θ)

]
and U defined in (15). With the same arguments as in Remark 3.6, q∗ is also a quadratic form. The following
theorem states the limit distribution obtained for S∗n.

Theorem 4.1. Under H0 and Assumptions 2.1-2.5, the test statistic

S∗n
D−−−−→

n→∞
sup

s∈[s̄,1−s̄]

q∗(Ws − sW1)

s(1− s)

where (Ws)s∈[0,1] is a standard 3d + d2-dimensional Brownian motion and the application q∗ is defined in
(17).

The test procedure follows the same steps as described in Section 3.3. We will see in Section 6.2 that this
extension improves significantly the detection quality. In particular the type II error is smaller compared to
the one of the WL test.

Remark 4.2. In Theorems 3.8 and 4.1, and in the results on which they rely, the dimension of the limit
Brownian motion W can be reduced by recognizing that the matrix Î0,s defined in (9) is symmetric: it contains
d(d+ 1)/2 distinct elements. This does not seem to have an impact on the numerical properties of the tests.

In the following section we explicit the test in the case of an univariate Gaussian finite mixture.

5 Example: the univariate finite Gaussian mixture

In this section, we assume that the sample X = (Xi)1≤i≤n follows an univariate Gaussian mixture with
m components. In addition to the weight parameters p1, . . . , pm−1, the mixture is defined by the means
µ1, . . . , µm ∈ R and the standard deviations σ1, . . . , σm ∈ R+

∗ of the m components. We assume that the set
of eligible parameters Θ that contains θ is the subset of Θ0 × (R× R+

∗ )m defined by the parameters

θ = (p1, . . . , pm−1, µ1, σ1, . . . , µm, σm)

such that:
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1. The means are strictly increasing: µ1 < µ2 < · · · < µm.

2. There exists some dispersion boundary 0 < b ≤ 1, deterministic and known, such that the variances
are positive and bounded: for all i ∈ {1, . . . ,m}, σi > 0 and

min

{
σj
σk
, 1 ≤ j, k ≤ m

}
> b.

Note that Θ is an open convex13 subset of R3m−1.

Remark 5.1. We impose that the means of the components cannot be equal in order to ensure that the
mixture is identifiable and that Θ is an open subset of R3m−1. If, under H0, two means are equal, it is
sufficient to define a model that uses one less parameter, i.e. using the same parameter for both means but
with different variances.

The second assumption is a constraint from Hathaway (1985) that ensures the strong consistency of the

estimator θ̂ (Theorem 3.3 in Hathaway (1985)). We obtain the following result.

Proposition 5.2. Under Assumption 2.1 and with the parameter set Θ defined above, the validity conditions
of Theorems 3.8 and 4.1 hold for a finite Gaussian mixture.

Remark that Assumption 2.1 does not concern the choice of distribution and therefore remains a preliminary
condition to be discussed when applying the WL and EWL tests. In the following section, we give a few
applications for the Gaussian case: we start with numerical illustrations of the test, compared to some
standard test available in the literature. Then we show how this test can help detect if a change occurs or
not in a dataset from the non-life insurance industry.

6 Applications

We provide two distinct applications for the case of an univariate finite Gaussian mixture. First, with numer-
ical simulations, we illustrate the properties of the WL and EWL tests compared to a standard benchmark
test that we shall define in the following subsection. Our main interest lies in the detection of changes in
the first component that are not visible to the naked eye (small) but also not too close to 0 (no impact in
practice), for large samples (over 10k observations). The second application is an illustration of the WL and
EWL tests on a Property and Casualty insurance large dataset (15k observations).

6.1 The benchmark test

The book of Csörgő and Horváth (1997) gathers standard likelihood-based approaches for the detection of
change-points in many different frameworks. For the simple at most one change (AMOC) case, one can
consider that each parameter θ = (a, b) ∈ Θ is defined by two sub-parameters a and b. We give below a
standard likelihood-based hypothesis test that aims to detect if a change occurs in the first sub-parameter a
(see e.g. Section 1.1 in Csörgő and Horváth (1997)). Here b is called a nuisance parameter. We test:

� the null hypothesis where no change happens, i.e. θ1 = · · · = θn,

� against the alternative hypothesis where at most one change occurs, i.e. there exists some 1 ≤ k ≤ n
such that a1 = · · · = ak 6= ak+1 = · · · = an and b1 = · · · = bn.

The test is defined with the help of the log-likelihood ratio

Λcsk,n := log

 sup
(a,b),(a′,b)∈Θ

∏k
i=1 f(Xi, (a, b))

∏n
i=k+1 f(Xi, (a

′, b))

sup
θ∈Θ

∏n
i=1 f(Xi, θ)


13In particular, for any t ∈ [0, 1], for any θ and θ′ in Θ, and for any 1 ≤ j, k ≤ m, it holds that

tσj+(1−t)σ′
j

tσk+(1−t)σ′
k
>

tbσk+(1−t)bσ′
k

tσk+(1−t)σ′
k

=

b.
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and the test statistic max1≤k≤n 2Λcsk,n. Csörgő and Horváth (1997) provide its limit distribution14.

For the detection of a change in the first component for a finite parametric mixture with m components, we
set a := (p1, λ1) and b := (p2, . . . , pm−1, λ2, . . . , λm). In other words, the separation between the parameters
of interest a and the nuisance parameters b allows the test to focus on a change in the first component. In
the WL and EWL tests, this role is played by the weight functions.
This setting for a and b also means that we allow the weight parameter of the first component to change
(p1 6= p′1). Looking at the numerator of ΛBMk,n , for both couples (a, b) and (a′, b), the sum of the m− 1 weight

parameters has to be strictly below one. We impose first that
∑m−1
k=1 pk < 1. Then, we assume that the

relative weight of two components for 2 ≤ i, j ≤ m is the same before and after k. The log-likelihood ratio
becomes:

ΛBMk,n := log

 sup
a,a′,b

∏k
i=1 f(Xi, (a, b))

∏n
i=k+1 f(Xi, (a

′, b′))

sup
θ∈Θ

∏n
i=1 f(Xi, θ)

 (18)

with b′ := (
1−p′1
1−p1 p2, . . . ,

1−p′1
1−p1 pm−1, λ2, . . . , λm). Thus the sum of the m − 1 weight parameters of the couple

(a′, b′) is also below one. We refer to the test defined by the test statistic max1≤k≤n 2ΛBMk,n as the benchmark
test.

6.2 Illustration of numerical properties

We illustrate our analysis with simulations of a Gaussian mixture with 3 components such that:

� The sample size is large: n = 1k or 10k observations (obs.) as we are interested in applications to large
datasets (see the application on real data in Section 6.3).

� Under the null hypothesis, the mixture used for the illustrations has equal weight parameters (1/3),
equal standard deviations (0.25) and respective means -1, 0 and 1. The empirical density of the mixture
shows clearly the three components.

� The change occurs in middle of the sample (s = 0.5)15.

� The detection threshold is the 90% percentile of test statistic under the null hypothesis (type I error).

The results are obtained by multiple simulations of the random sample with standard algorithms from the
R software. Note that the detection thresholds are computed with the help of the limit distributions from
Theorems 3.8 and 4.1, which is up to 10 000 times faster than re-simulations of the detection statistic under
the null hypothesis.

Results: detection quality under the alternate hypothesis, i.e. a change occurs in the parame-
ters of the first component

The alternate hypothesis is defined in Section 2.1 as the case when the sample contains one change in the first
component: the parameters which describe the distribution of the first component are different before and
after the change-point while the other parameters of the mixture remain the same. In this application, we
illustrate the potential properties of the WL and EWL tests through three kind of changes in the parameters
of the first component: a shift between -1 and +1 of the mean, a shift between -0.2 and +0.5 of the standard
deviation and a shift between -0.25 and +0.25 of the weight parameter.
The type II error (proportion of false negative) of each test is obtained from multiple re-simulations. Table
1 gives the key impacts that we observed (detailed results are given in Figure S2 in the supplementary ma-
terial). Note that a high-performance test is characterized by a low type II error.

14See Corollary 1.1.1, Theorems 1.3.1. and 1.3.2 in Csörgő and Horváth (1997).
15The simulations for the numerical comparison given in this section require an important run time. In order to reduce

significantly this run time, we computed the illustrations for s = 0.5 (statistic and threshold) and not over the whole process.
We made sure that this does not effect the conclusions. The application on the real data in Section 6.3 is based on a computation
of the whole process.
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in % n=1k obs. n=10k obs.
WL EWL BM WL EWL BM

Mean +0.1 44.4 21.8 42.4 0.4 0.8 30.8
Mean -0.1 42.4 19.0 29.8 0.8 1.2 50.8
Std dev +0.1 33.0 9.2 73.0 0.4 0.6 43.4
Std dev -0.1 9.8 1.0 22.6 1.0 0.2 45.4
Weight +0.1 67.2 42.0 40.8 0.2 0.6 55.4
Weight -0.1 51.8 27.4 34.2 0.6 0.2 27.8

Table 1: Type II error (in %) for a change in the first component (500 re-simulations). Results are given
respectively for the WLT, the EWLT and the benchmark test (BM).

We remind that our main interest lies in the detection of changes in the first component that are not visible
to the naked eye (small) but also not too close to 0 (no impact in practice), for large samples (over 10k ob-
servations). In that sense, Table 1 indicates that the WLT performs significantly better than the benchmark
test for large samples. The EWLT improves the performance of the WLT and makes it the better choice for
almost all cases for 1k obs. samples and for all the cases for 10k obs.
The benchmark test fails to detect properly the change, especially with large samples. To our understanding,
this is mainly due to the optimization problem in the numerator of ΛBMk,n that the algorithm often fails to
solve. Since their estimation algorithms are more robust, the WL and EWL tests have both very low type II
errors for small changes in the parameters on a sample of 10k observation.
We also see in Figure S2 in the supplementary material that there is still room for improvement for large
changes in the weight and the standard deviation, even if large changes do not have a strong importance
since they are visible to the naked eye.

In addition to these performance results under the alternative hypothesis, Figure S5 in the supplementary
material shows that, as the sample size increases, the run time needed to compute the benchmark test in-
creases considerably faster compared to the WLT. It follows that one major advantage of the WLT is that it
can be computed quickly with standard algorithms, making it especially convenient for large datasets.

We conclude that the WLT is a valid candidate for the detection of a change in the first component of a
Gaussian mixture. The EWLT is an improved version that significantly reduces the type II error.

Results: when a change occurs in the second or the third component

As a nice-to-have, we also studied the detection frequency of each test when a change occurs in the second
or third component. We used the same shift ranges as the ones used for a change in the first component. In
this context, a high-performance test is characterized by a low detection frequency. The results are given in
Table 2 with detailed graphs in Figures S3 and S4 in the supplementary material.
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n=1k obs. n=10k obs.

WL EWL BM WL EWL BM
Change in the second component
Mean +0.1 13 11 25 16 8 59
Mean -0.1 15 10 29 23 6 41
Std dev +0.1 44 20 28 99 61 43
Std dev -0.1 62 44 40 100 100 80
Weight +0.1 7 9 27 14 13 61
Weight -0.1 15 16 13 16 14 24
Change in the third component
Mean +0.1 13 14 10 15 13 28
Mean -0.1 15 16 13 15 14 65
Std dev +0.1 11 11 10 90 68 18
Std dev -0.1 6 6 12 7 6 33
Weight +0.1 13 12 15 11 10 29
Weight -0.1 8 9 28 12 12 66

Table 2: Detection frequency (in %) for a change in the second and third components (500 re-simulations).
Results are given respectively for the WLT, the EWLT and the benchmark test (BM).

The main observation is that the EWLT shows the best results and, for large samples of 10k observations,
the WLT is better than the benchmark test. The WL and EWL tests tend to detect a change when there
is a change in the standard deviation of the second or third component. This explained by the role of the
weight functions in their detection statistic that zoom on some range of values around the mean of the first
component: there are significantly more (or less) points that enter this range, increasing the detection fre-
quency. We still observe that the benchmark test behaves poorly for large samples.
One could expect that a high-performance test would have a detection frequency that stays close to the type
I error (10%). This is the case for the WL and EWL tests when a change occurs in the weight parameter
(Figures S3f and S4f in the supplementary material). However, from Figure S3 in the supplementary material,
we remark that the three tests show systematic patterns for a wide range of possible deviations for a change
in the mean and the standard deviation. It follows that there is still some room for improvement regarding
this criterion.

In the next section, we study briefly an illustration to a Property and Casualty insurance large dataset (15k
observations).

6.3 Illustration of the WL and EWL tests on P&C insurance data

In this section, we give an example of application of these two tests to a problem from the insurance industry,
in particular the bodily injuries from the motor claims. Each claim is known by the insurer from its decla-
ration date that is the starting point of observation: we set t = 0, t being expressed in years. We denote by
Ct the real-valued random variable that represents the amount that, at time t, the insurer expects to pay
eventually. This amount varies over time when the claim is reviewed, until it is settled. The evolution of
the amount Ct depends on structural factors (e.g. the type of injury), internal factors (e.g. a change in the
revision policy) and external factors (e.g. new elements are known by the insurer, a court decision sets the
final amount, etc.). For bodily injuries, the claims takes time to resolve (over 2 years in average). After the
settlement, we assume that Ct is fixed and possibly null or negative.

In this application, we know that a change of the revision process happened at some point in the past. The
question is then to determine whether or not this change impacted significantly the observed variations of
claim amount over time. For that purpose, we consider the random variable Z = sgn(C1−C0.5) log(1+ |C1−
C0.5|) that gives the variation of the claim amount between the 6th and the 12th month in log-scale, where
sgn(.) is the function that gives the sign of a real number taking respectively the values -1, 0 and 1 when this
number is negative, null or positive. From a first analysis of the data, a Kolmogorov-Smirnov hypothesis test
does not reject the assumption that observed realizations of Z before the change follow a finite parametric
mixture with 12 components (Figure 1a).
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(a) Empirical density of the variation in claims amount
between the 6th and the 12th development months, before
the change of process (7k obs).

(b) Log-ratio processes Λn and Λ∗n of the WL and EWL
tests for the detection of a change in the 5th component of
the mixture (15k obs).

Figure 1: Application of the WL and EWL tests to a change in the variation of incurred claims amount
(Motor bodily injuries claims).

For internal reasons, the insurance company is particularly interested in the 5th component of the mixture,
highlighted in Figure 1a by a red arrow. This component represents slight decreases of claim amounts. We
applied the WL and EWL tests to a sample of 15k claims where the first third of the sample is known to con-
tain claims that are not impacted by the change of process. Under the null hypothesis that no change occurs
in the 5th component of the mixture, both tests reject this hypothesis with a p-value below 10−4. Figure 1b
illustrates the underlying processes Λn and Λ∗n and their respective thresholds: the change is significant and,
according to both tests, it seems to occur from the time 1.07.
This conclusion allowed the insurance company to investigate further the quantification of the change.

This application shows that the WL and EWL tests can be used in the industry for the monitoring of changes,
when they are unexpected but also to assess their significativity when they are known or suspected. For other
topics that tackle change-point problems in non-life insurance, we refer for example to Dhaene et al. (2002),
Andersen et al. (2009), Kwon and Vu (2017), Peštová and Pešta (2017) or Maciak et al. (2020).

7 Conclusion

In this article, we consider a closed sample of independent random variables that follow a finite mixture
distribution with parametric components. The sample might contain at most one change in the parameters
of the first component. If there is a change, the r.v. are identically distributed before and after the change-
point: the parameters which describe the distribution of the first component are different before and after
the break-point while the other parameters of the mixture remain the same.
To test whether there is a change or not, we proposed two alternative tests (WLT and EWLT). Each test
statistic is built upon a càd-làg process obtained from a likelihood ratio (see (4) and (16)). The specificity of
these tests is that they can be computed using known inference algorithms. The WLT uses weight functions
to help the likelihood ratio to zoom on the first component. In the EWLT, we added an adjustment that
helps improve the type II error, as explained in Section 6.2.

With a technique from Davis et al. (1995), we derived in Theorems 3.8 and 4.1 the limit distribution of the
test statistics under the null hypothesis in the form of a quadratic form of a multidimensional Brownian mo-
tion, with the help of a dedicated functional limit theorem. In particular, the proof is based on a functional
delta method16 and multiple applications of Slutsky’s Theorem and the Continuous Mapping Theorem. We
showed in Section 5 that validity conditions of the main result hold for univariate finite Gaussian mixtures

16See Corollary S3.5 in the supplementary material.
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within the framework of Hathaway (1985).

Numerical applications on simulated data for the Gaussian case showed that second version of the test
outperforms significantly a benchmark test exposed in Csörgő and Horváth (1997) and defined by (18):
the type II error is considerably reduced (when a change occurs in the first component) and the detection
frequency remains low in most cases when a change occurs in another component.
Two issues of the benchmark test are that usual optimization algorithms have an unrealistic convergence
run time for large samples, and that they fail to compute properly its statistic. However, in the case of
simulated data, we assess that, without this computational issue, the benchmark test would have a lower
type II error than our tests. Therefore the extended version of our tests remains so far the best candidate
even if a dedicated algorithm for computing more robustly the statistic of the benchmark test would be an
improvement.
In addition, in some cases, the three tests still detect a change when a change occurs in another component
(i.e. not the first one). Extensions of our work could consider adding a penalization term to the likelihood
ratio in order to improve this aspect.
We end the applications by a brief illustration of the proposed tests on variations of claim amounts for bodily
injuries motor claims (real data), in the context of a change of process in the claims handling department
of an insurance company. A change is detected in the fifth component of the Gaussian mixture with 12
components: the insurance company could therefore assess the change and investigate further its causes.
From the numerical applications, the WL and EWL tests are valid candidates when looking for a change in
one component of a finite parametric mixture. In addition, the results obtained under the null hypothesis in
Theorems 3.8 and 4.1 allow us to reduce significantly the calibration run time of the detection thresholds: the
marginal run time of one simulation is divided by 10 000. Beyond these promising results, the possibilities
for other techniques still exist and are worth to be explored.
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