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Abstract

This supplement contains additional results, the proofs of the results from the main paper and further
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S1 Notations

The numbering of sections, results and equations of this supplement begin with ‘S’ while the sections, as-
sumptions, results and equations of the main paper do not. For example (1) refers to the equation that
defines the Fisher information matrix in Section 2.1 of the main paper while (S1) refers to the equation below
that defines the Skorokhod metric in this supplement. With this specification, we omit to indicate whether
the reference is in the main paper or in this supplement.

We denote by Dθ(.), D
2
θ(.) and D3

θ(.) respectively the vector, matrix and hypermatrix differential operators

in θ ∈ Rd. For θ, θ̃ ∈ Rd, we denote by [θ, θ̃] the segment [θ, θ̃] := {λθ + (1− λ)θ̃, λ ∈ [0, 1]}.

gld(R) denotes the set of matrices of size d× d with real coefficients and GLd(R) the set of invertible d× d-
matrices with real coefficients.
For a given matrix M , its i-th line is denoted by Mi,. and its j-th column is denoted by M.,j . The same logic
is used for hypermatrices: for a given J ∈ Rd×d×d and 1 ≤ i ≤ d, we denote by Ji,.,. := (Ji,j,k,)1≤j,k≤d the
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d× d-matrix obtained from J .
For a given matrix M , we denote

(
M−1

)T
by M−1 T .

For d1, d2 > 0, we endow the space F = Rd1 × gld2
(R) with the norm ‖.‖2 defined for the pair x = (y, Z) ∈

Rd1 × gld2
(R) by ‖x‖22 :=

∑d1

i=1 y
2
i +

∑
1≤i,j≤d2

Z2
i,j . The norm used for y in Rd1 is the Euclidean norm. The

norm used for Z ∈ gld2
(R) is the entrywise 2-norm, also known as the Frobenius norm.

The space of càd-làg functions, defined on some interval E ⊆ [0, 1] with values in F , is denoted by D(E,F )
and referred as the Skorokhod metric space with the Skorokhod metric dD(E,F )(., .) defined for ζ1 and ζ2 in
D(E,F ) by

dD(E,F )(ζ1, ζ2) := inf
τ∈ΓE

max

{
sup
s∈E
|τ(s)− s|, sup

s∈E
‖ζ1(s)− ζ2 ◦ τ(s)‖2

}
(S1)

with ΓE the set of continuous and strictly increasing bijections from E to itself. For some arguments, we
also consider the norm ‖.‖2 on D(E,F ) defined for ζ ∈ D(E,F ) by ‖ζ‖2 := sups∈E ‖ζ(s)‖2.
Refer to Section 12 in Billingsley (1999) for a detailed construction of the Skorokhod topology and the space
D(E,F ).

If Σ2 is a covariance matrix, then it is positive semi-definite, and Σ will denote the unique positive semi-
definite square root of Σ2.

A glossary of notations is given in Section S6.

S2 The estimators θ̂0,s and θ̂s,1

In this section, we give some detailed properties concerning the estimators θ̂0,s and θ̂s,1 defined in Section 2.1.

From Assumption 2.4, we already know that the estimator θ̂ converges almost surely to θ when n→∞. With
the following result inspired from Proposition 3.3 in Dehling et al. (2014), we can extend this convergence

property to θ̂0,s, s ∈ [s̄, 1], and to θ̂s,1, s ∈ [s̄, 1− s̄].

Lemma S2.1. If a sequence (un)n≥1 ⊂ Rd converges to some finite limit u, then the sequence ubsnc converges
to u, uniformly in s ∈ [s̄, 1].

Proof. Fix ε > 0. Let N such that for all n ≥ N , |un − u| ≤ ε and set N ′ :=
⌊
N
s̄

⌋
+ 1. Then, for any

n ≥ N ′, [s̄, 1] ⊂ [Nn , 1], thus, for any n ≥ N ′, bnsc ≥ N and, by the choice of N ,
∣∣ubsnc − u∣∣ ≤ ε. The result

follows.

Corollary S2.2. If a sequence (un)n≥1 ⊂ Rd converges to some finite limit u, then the sequence ubsnc
converges to u, uniformly in s ∈ [s̄, 1− s̄].

Reasoning ω by ω, this result implies directly that the almost sure convergence of θ̂0,s and θ̂s,1 is ω-wise
uniform in s. This will represent a key property for the main result.

Proposition S2.3. Under H0 and Assumptions 2.1-2.4, the estimator θ̂0,s (resp. θ̂s,1) converges almost
surely to θ, uniformly in s ∈ [s̄, 1] (resp. in s ∈ [s̄, 1− s̄]).

For n large enough, it is possible to obtain an explicit form for θ̂0,s. Indeed, the estimator θ̂ is a sequence
of solutions of the likelihood equations DθL(X, θ) = 0. Therefore, we can follow the ideas from the proof of
the usual limit theorems for maximum likelihood estimators (see e.g. Theorem 5.1 in Lehmann and Casella
(1998), Section 6.5).

Corollary S2.4. Under H0 and Assumptions 2.1-2.4, almost surely, the estimator θ̂ exists for n large enough.
Moreover, for almost all ω ∈ Ω, we can find some N(ω) ≥ 1 that does not depend on s ∈ [s̄, 1− s̄] such that,

for all n ≥ N(ω), the three estimators θ̂, θ̂0,s and θ̂s,1 are respectively the unique solutions of the likelihood
equations

DθL(X, θ) = 0, DθL((X1, . . . , Xbsnc), θ) = 0, and DθL((Xbsnc+1, . . . , Xn), θ) = 0. (S2)
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Proof. The existence of θ̂ follows from the almost sure convergence. Indeed, by assumption, Θ is an open
convex subset of Rd in which θ0 belongs. Then, we obtain that, for n large enough, θ̂ also belongs to this
open convex set. The proof for the three estimators is a direct application of Proposition S2.3.

Remark S2.5. It is clear that the number N in Corollary S2.4 depends on ω. However, since, in this
subsection, we always work ω by ω on the set of full probability where the three estimators converge, this will
not pose any problem.

In the sequel, the expression “for n large enough” will always implicitly imply that θ̂ belongs to Θ and solves
(S2). In particular, due to the regularity Assumption 2.2, the following Taylor expansion is well defined as

soon as θ̂ belongs to Θ: for 1 ≤ j ≤ d,

DθL(X, θ̂)j = DθL(X,θ)j+

d∑
k=1

D2
θL(X,θ)j,k

(
θ̂k − θk

)
+

1

2

d∑
k=1

d∑
l=1

(
θ̂l − θl

)
D3
θL(X, θ′)j,k,l

(
θ̂k − θk

)
(S3)

for some θ′ on the segment [θ̂,θ] ⊂ Rd.

Set

Â := − 1

n

n∑
i=1

(
D2
θ(log f)(Xi,θ) +

1

2

d∑
l=1

(
θ̂l − θl

)
D3
θ(log f)(Xi, θ

′)l,.,.

)
. (S4)

Because of (S2), the left hand side of (S3) vanishes. Thus, replacing L(.,θ) by its explicit expression, we get
the equality between the two vectors

Â
(
θ̂ − θ

)
=

1

n

n∑
i=1

Dθ(log f)(Xi,θ).

The limit of Â, when n tends to infinity, is given by the next Proposition. We follow the standard proof
of the usual limit theorems for maximum likelihood estimators (e.g. Theorem 5.1 in Lehmann and Casella
(1998)) and extend it to the almost sure convergence.

Proposition S2.6. Under H0 and Assumptions 2.2-2.4, the matrix Â converges almost surely to the Fisher
Information Matrix I.

Proof. With Assumption 2.2, the result follows by essentially the same logic as in the proof of the convergence
in probability (see e.g. Theorem 3.10, in Lehmann and Casella (1998), Section 6.3).

Corollary S2.7. Almost surely, the inverse matrix Â−1 exists for large n, and converges to the inverse
Fisher Information Matrix I−1 as n→∞.

Proof. It follows from Proposition S2.6 that det(Â)
a.s.−−−−→
n→∞

det(I). Now recall that, by Assumption 2.3, I

is definite positive and, in particular det(I) > 0. It follows that, for n large enough, det(Â) 6= 0 and Â−1

exists. The result follows.

In the same way as above, for any s ∈ [s̄, 1], there exists some point θ′0,s on the segment
[
θ̂0,s,θ

]
, such that

the matrix

Â0,s := − 1

bsnc

bsnc∑
i=1

(
D2
θ(log f)(Xi,θ) +

1

2

d∑
l=1

(
θ̂0,s;l − θl

)
D3
θ(log f)(Xi, θ

′
0,s)l,.,.

)
(S5)

satisfies

Â0,s(θ̂0,s − θ) =
1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ). (S6)
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And, for any s ∈ [s̄, 1− s̄], there exists some point θ′s,1 on the segment
[
θ̂s,1,θ

]
, such that the matrix

Âs,1 := − 1

n− bsnc

n∑
i=bsnc+1

(
D2
θ(log f)(Xi,θ) +

1

2

d∑
l=1

(
θ̂s,1;l − θl

)
D3
θ(log f)(Xi, θ

′
s,1)l,.,.

)

satisfies

Âs,1(θ̂s,1 − θ) =
1

n− bsnc

n∑
i=bsnc+1

Dθ(log f)(Xi,θ).

To sum up, the following lemma provides an explicit expression for θ̂0,s and θ̂s,1 and the convergence of Â0,s

and Âs,1.

Proposition S2.8. Under H0 and Assumptions 2.1-2.4, almost surely, for n large enough,

� for all s ∈ [s̄, 1], the matrix Â0,s is invertible and

θ̂0,s − θ = Â−1
0,s

1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ), (S7)

with EH0 [Dθ(log f)(X1,θ)] = 0, and where Â−1
0,s converges almost surely to I−1, uniformly in s ∈ [s̄, 1],

� for all s ∈ [s̄, 1− s̄] the matrix Âs,1 is invertible and

θ̂s,1 − θ = Â−1
s,1

1

n− bsnc

n∑
i=bsnc+1

Dθ(log f)(Xi,θ)

with EH0
[Dθ(log f)(X1,θ)] = 0, and where Â−1

s,1 converges almost surely to I−1, uniformly in s ∈
[s̄, 1− s̄].

Proof of Propositions 3.2 and S2.8. For n large enough, Â−1
0,s is well defined and Equation (S7) follows directly

from (S6). Assumption 2.2 guarantees that the expectation EH0
[Dθ(log f)(X1,θ)] vanishes. Finally we use

Corollary S2.7 and Lemma S2.1 to obtain the almost sure convergence of Â−1
0,s to I−1, uniformly in s ∈ [s̄, 1].

The proof of the analogue result for θ̂s,1 and Âs,1 is the same.

The explicit expression obtained for θ̂0,s − θ and θ̂s,1 − θ already points out the direction of the next steps:

since Â−1
0,s and Â−1

s,1 converge almost surely to I−1, uniformly in s, and with EH0
[Dθ(log f)(X1,θ)] = 0, we

will be able to establish Donsker-type result for θ̂0,s − θ and θ̂s,1 − θ. This can be used to derive a Donsker-
type result for Q1

s,n and Q2
s,n.

We will need the following variant of Glivenko-Cantelli’s Theorem that exploits the almost sure convergence
of θ̂0,s and θ̂s,1 to θ.

Lemma S2.9. Consider an application h : (x, θ) ∈ X ×Θ 7→ h(x, θ) ∈ R and a convex subset O of Θ, such
that θ is in the interior of O and

1. for almost all x ∈ X , the application θ 7→ h(x, θ) is continuous on O,

2. we can find some application X 3 x 7→ κ3(x), such that, for all θ in O, |h(x, θ)| ≤ κ3(x) and
EH0

[|κ3(X1)|] <∞.

Then, under H0 and Assumptions 2.1-2.4, one has EH0
[|h(X1,θ)|] <∞ and

� for θ′0,s ∈ [θ̂0,s,θ], 1
bsnc

∑bsnc
i=1 h(Xi, θ

′
0,s)

a.s.−−−−→
n→∞

EH0
[h(X1,θ)], uniformly in s ∈ [s̄, 1],

� for θ′s,1 ∈ [θ̂s,1,θ], 1
n−bsnc

∑n
i=bsnc+1 h(Xi, θ

′
s,1)

a.s.−−−−→
n→∞

EH0
[h(X1,θ)], uniformly in s ∈ [s̄, 1− s̄].
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Proof. We only show the case θ′0,s ∈ [θ̂0,s,θ], s ∈ [s̄, 1]. By the second condition of the lemma, θ ∈ O implies
that |h(x,θ)| ≤ κ3(x) for all x ∈ X , thus EH0

[|h(X1,θ)|] ≤ EH0
[|κ3(X1)|] <∞. Let us fix some ε > 0 small

enough so that, with B(θ, ε) the closed ball centered in θ with radius ε, B(θ, ε) ∩ Θ is strictly contained in
the subset O. This is possible since, from the first condition of the lemma, O is a convex subset of Θ such
that θ is in the interior of O. From Proposition S2.3, θ̂0,s

a.s.−−−−→
n→∞

θ, uniformly in s ∈ [s̄, 1]. Therefore, almost

surely, we can find some N ≥ 1 such that for all n ≥ N and for all s ∈ [s̄, 1], θ̂0,s ∈ B(θ, ε) ∩Θ. Since θ′0,s is

a point on the segment [θ̂0,s,θ], it also belongs to B(θ, ε) ∩Θ. It follows that∣∣∣∣∣∣ 1

bsnc

bsnc∑
i=1

h(Xi, θ
′
0,s)− EH0

[h(X1,θ)]

∣∣∣∣∣∣
≤ sup
θ∈B(θ,ε)∩Θ

∣∣∣∣∣∣ 1

bsnc

bsnc∑
i=1

h(Xi, θ)− EH0
[h(X1, θ)]

∣∣∣∣∣∣+
∣∣EH0

[
h(X1, θ

′
0,s)
]
− EH0

[h(X1,θ)]
∣∣ . (S8)

With conditions 1. and 2., thanks to the dominated convergence theorem, the application θ 7→ EH0
[h(X1, θ)]

is continuous on O. Since θ ∈ O, θ̂0,s
a.s.−−−−→
n→∞

θ, uniformly in s ∈ [s̄, 1] and, for all n ≥ 1, θ′0,s ∈ [θ̂0,s,θ], we

have also θ′0,s
a.s.−−−−→
n→∞

θ. Therefore the second term of the right hand side of (S8) converges almost surely to

0, uniformly in s ∈ [s̄, 1], when n→∞.

To conclude the proof, we show that the first term also converges almost surely to 0, uniformly in s ∈ [s̄, 1],
when n→∞. For all fixed θ ∈ B(θ, ε)∩Θ, the following convergence is an application of the Strong Law of
Large Numbers:

Yn(θ) :=
1

n

n∑
i=1

h(Xi, θ)− EH0
[h(X1, θ)]

a.s.−−−−→
n→∞

0.

We deduce from assumptions 1. and 2. that θ → Yn(θ) is continuous. Since B(θ, ε) ∩Θ is compact, we get

the convergence of the supremum supθ∈B(θ,ε)∩Θ |Yn(θ)| a.s.−−−−→
n→∞

0. And finally we can conclude by Lemma

S2.1.

This Lemma concludes the collection of properties that are required for the estimators θ̂0,s and θ̂s,1.

S3 Proofs

Lemma S3.1. Set
ξ := (0, 0, I) ∈ (Rd)2 ×GLd(R). (S9)

Under H0, for all s ∈ [s̄, 1], EH0 [ξ̂0,s] = ξ, the sequence of random variables ξ̂0,s converges a.s. to ξ, uniformly

in s ∈ [s̄, 1], and the process
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges weakly in the Skorokhod metric space of càd-làg

paths D[s̄,1] := D([s̄, 1], (Rd)2 × gld(R)), as follows

√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

D−−−−→
n→∞

(
1

s
ΣWs

)
s∈[s̄,1]

,

where W := (Ws)s∈[0,1] is a standard 2d + d2-dimensional Brownian motion and ΣWs is reorganized as a

triple in (Rd)2 × gld(R).

Proof of Lemmas 3.3 and S3.1. Under H0, the random vector ξ̂0,s is the sum of independent identically
distributed random variables. In addition, we already know that

� from Assumptions 2.2 and 2.3, EH0 [Dθ(log f)(X1,θ)] = 0 and EH0

[
−D2

θ(log f)(X1,θ)
]

= I,

� by the expression for u in (6), EH0
[Dθ(w log f1)(X1,θ)] = u.
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Therefore EH0 [ξ̂0,s] = ξ, and the uniform a.s. convergence of the random variables ξ̂0,s to ξ is a direct
consequence of Lemma S2.9. The second part of the lemma follows then from Donsker’s Theorem1 and
Slutsky’s Theorem.

Lemma S3.2. Almost surely, for large n (depending on ω), the variable Â0,s can be written as

Â0,s = Î0,s −
1

2

d∑
l=1

(
ι̂T0,s

(
Â−1

0,s

T
)
.,l

)
(Ĵ0,s).,.,l, (S10)

for all s ∈ [s̄, 1], where Ĵ0,s is the hypermatrix defined by

Ĵ0,s :=
1

bsnc

bsnc∑
i=1

D3
θ(log f)(Xi, θ

′
0,s).

In addition, under H0, almost surely, Ĵ0,s converges to the hypermatrix J , uniformly in s ∈ [s̄, 1].

Proof of Lemmas 3.4 and S3.2. Recall that the explicit expression of Â0,s in (S5) depends itself on θ̂0,s − θ,
which, by Proposition S2.8, almost surely, can once more be replaced by

Â−1
0,s

1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)

for n large enough. This gives:

Â0,s =

− 1

bsnc

bsnc∑
i=1

D2
θ(log f)(Xi,θ)


− 1

2

d∑
l=1

 1

bsnc

bsnc∑
i=1

Dθ(log f)(Xi,θ)T

( Â−1
0,s

T
)
.,l

 1

bsnc

bsnc∑
i=1

D3
θ(log f)(Xi, θ

′
0,s)l,.,.

 .

The result given in (S10) follows. With Assumption 2.2, the convergence of Ĵ0,s is a direct application of
Lemma S2.9, taking the parameter set Θ as O.

Theorem S3.3. Under H0, the process
√
n(ξ̂′0,s − ξ

′)s∈[s̄,1] converges weakly to ( 1
sg(ΣWs))s∈[s̄,1] in D[s̄,1],

where g is the linear map defined for (ι, u, I) ∈ (Rd)2 × gld(R) by

g(ι, u, I) :=

(
ι, u,−I−1

(
I − 1

2

d∑
l=1

(
ιT
(
I−1 T

)
.,l

)
J .,.,l

)
I−1

)
, (S11)

and ΣWs is reorganized as a triple in (Rd)2 × gld(R).

Before giving the proof of Theorems 3.5 and S3.3, we start by recalling the Functional Delta Method in
normed spaces (van der Vaart (1998)).

Theorem S3.4 (Functional Delta Method in normed spaces, Theorem 20.8 in van der Vaart (1998)). For
D and E two normed linear spaces, consider a map Φ from a subset DΦ of D to E, that is Hadamard
differentiable at θ ∈ DΦ with differential denoted by Φ′θ(.). Consider also a sequence of random maps Xn

with values in DΦ and a sequence of numbers an which tends to infinity as n→∞. If, as n→∞, the sequence
an(Xn − θ) converges weakly to some random map X, then the sequence an(Φ(Xn)−Φ(θ)) converges weakly
to the random map Φ′θ(X).

Proof. The proof is a direct application of the Continuous Mapping Theorem with fn(ζ) := an(Φ(θ+a−1
n ζ)−

Φ(θ)) where the maps fn are defined on the sets {ζ : θ+a−1
n ζ ∈ DΦ}. The Hadamard differentiability ensures

that the conditions of the Continuous Mapping Theorem2 hold.

1See e.g. Theorem 14.1 in Billingsley (1999).
2See e.g. Theorem 18.11 in van der Vaart (1998).
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The space C([0, 1],Rd) of continuous functions [0, 1] → Rd is a linear normed space with the norm ‖.‖2
defined in Section S1, and therefore falls in the scope of Theorem S3.4. However the Skorokhod metric space
D([0, 1],Rd) is not a normed space. We give here a Corollary of the result from van der Vaart (1998) for
càd-làg processes.

Corollary S3.5 (Functional Delta Method in the Skorokhod metric space). For 0 < d1, d2 <∞, consider a
map Φ : DΦ ⊆ D([0, 1],Rd1) → D([0, 1],Rd2). Consider also a sequence of random maps Xn with values in
DΦ and a sequence of numbers an which tends to infinity as n→∞. If, as n→∞,

� the sequence an(Xn − θ) converges weakly to some random map X,

� we can find some linear map Φ′θ(.) from D([0, 1],Rd1) to D([0, 1],Rd2) such that for every sequence
ζn ∈ {z : θ + a−1

n z ∈ DΦ} for which we can find a subsequence ζn′ that converges in D([0, 1],Rd1) to ζ,
the sequence an′(Φ(θ + a−1

n′ ζn′)− Φ(θ)) converges in D([0, 1],Rd2) to Φ′θ(ζ),

then the sequence an(Φ(Xn)− Φ(θ)) converges weakly to the random map Φ′θ(X).

Proof. As for Theorem S3.4, the proof is an application of the Continuous Mapping Theorem where the
Hadamard differentiability is replaced by the second condition.

With this result, we can give below the proof of Theorems 3.5 and S3.3.

Proof of Theorems 3.5 and S3.3. (i) Recall that, by Lemma S3.1,
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges weakly to

( 1
sΣWs)s∈[s̄,1] in D[s̄,1], while, by Proposition S2.8 and Lemma S3.2, the couple (Â−1

0,s, Ĵ0,s) converges a.s.

to (I−1,J) uniformly in s ∈ [s̄, 1]. It follows by Slutsky’s Theorem that the random process (
√
n(ξ̂0,s −

ξ), Â−1
0,s, Ĵ0,s)s∈[s̄,1] converges weakly to ( 1

sΣWs, I
−1,J)s∈[s̄,1] in D([s̄, 1], (Rd)2× gld(R)×GLd(R)×Rd×d×d).

(ii) Using Lemma S3.2, almost surely for n large enough (i.e. n depends on ω but not on s), we can write

ξ̂′0,s = ϕ ◦ g(ξ̂0,s; Â
−1
0,s, Ĵ0,s), s ∈ [s̄, 1],

where, for all (ι, u, I;A, J) ∈ (Rd)2 × (gld(R))2 × Rd×d×d, we define

g(ι, u, I;A, J) :=

(
ι, u, I − 1

2

d∑
l=1

(
ιT (AT ).,l

)
J.,.,l

)
, (S12)

and, for (ι, u, I) ∈ (Rd)2 ×GLd(R),
ϕ(ι, u, I) := (ι, u, I−1).

Remark that g(0, u, I;A, J) = (0, u, I) for all (u, I;A, J) ∈ Rd × (gld(R))2 × Rd×d×d. In particular,

ξ = g(ξ; Â−1
0,s, Ĵ0,s)

because ξ = (0, 0, I) by definition in (S9). Since g(ι, u, I;A, J) is linear in (ι, u, I), then the following equality
holds for each s ∈ [s̄, 1]:

√
n(g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)− ξ) = g(

√
n(ξ̂0,s − ξ), Â−1

0,s, Ĵ0,s).

By (i) and the Continuous Mapping Theorem3, the process

√
n(g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)− ξ)s∈[s̄,1]

converges weakly to g( 1
sΣWs; I

−1,J)s∈[s̄,1].

(iii) By Lemma S3.1, the sequence of random variables ξ̂0,s converges a.s. to ξ, uniformly in s ∈ [s̄, 1]. With

(i), the triple (ξ̂0,s, Â
−1
0,s, Ĵ0,s) also converges a.s. to (ξ, I−1,J), uniformly in s ∈ [s̄, 1]. Then, again by the

3See e.g. Theorem 18.11 in van der Vaart (1998).
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Continuous Mapping Theorem, g(ξ̂0,s; Â
−1
0,s, Ĵ0,s) converges a.s. to ξ, uniformly in s ∈ [s̄, 1].

(iv) Remark that, from Proposition S2.8 and Lemma S3.2, g(ξ̂0,s; Â
−1
0,s, Ĵ0,s) is well defined when Â0,s is invert-

ible. That is the case almost surely for n large enough, uniformly in s ∈ [s̄, 1]: i.e. n depends on ω but not on s.

From Assumption 2.3, I is positive definite with finite components. So I−1 is also positive definite and

0 <
∥∥I−1

∥∥−1

2
<∞. Fix some 0 < r <

∥∥I−1
∥∥−1

2
such that the closed ball B(ξ, r) centered in ξ with radius r

is included in (Rd)2 ×GLd(R). With (iii), we see that, almost surely, the following holds for n large enough,
uniformly in s ∈ [s̄, 1]:

Â0,s is invertible and
∥∥∥g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)− ξ

∥∥∥
2
< r. (S13)

Let ξ̂′′0,. denote the process on [s̄, 1] defined for all ω ∈ Ω, all n ≥ 1 and all s ∈ [s̄, 1] as follows:

ξ̂′′0,s(ω) :=

{
g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)(ω) if (S13) holds,

ξ otherwise.

Then, almost surely,
√
n(ξ̂′′0,s − g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)) is equal to 0 for n large enough, uniformly in s ∈ [s̄, 1]. We

denote by ξ· the constant process such that ξs = ξ for all s ∈ [s̄, 1]. Therefore, by the conclusion from (ii)
and Slutsky’s Theorem and the Continuous Mapping Theorem,

√
n(ξ̂′′0,. − ξ·) =

√
n(g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)s∈[s̄,1] − ξ·) +

√
n(ξ̂′′0,. − g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)s∈[s̄,1])

converges weakly to g( 1
sΣWs; I

−1,J)s∈[s̄,1].

(v) Let us denote by Φ the function from D([s̄, 1], (Rd)2 ×GLd(R)) ⊂ D[s̄,1] onto itself defined by:

Φ(ζ)s := ϕ(ζs), s ∈ [s̄, 1]. (S14)

It follows from the definition of ξ̂′0,s in Section 3.1 that

√
n(ξ̂′0,s − ξ

′)s∈[s̄,1] =
√
n(Φ(ξ̂′′0,.)− Φ(ξ·)) +

√
n(Φ(g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)s∈[s̄,1])− Φ(ξ̂′′0,.)). (S15)

With (iii) and (iv), almost surely,
√
n(ϕ(g(ξ̂0,s; Â

−1
0,s, Ĵ0,s)) − ϕ(ξ̂′′0,s)) is equal to 0 for n large enough, uni-

formly in s ∈ [s̄, 1]. Once more, by Slutsky’s Theorem and the Continuous Mapping Theorem, both processes√
n(ξ̂′0,s − ξ

′)s∈[s̄,1] and
√
n(Φ(ξ̂′′0,.)− Φ(ξ·)) have the same limit distribution.

The remainder of the proof is based on the functional delta method in the Skorokhod metric space given in
Corollary S3.5. This result, applied to the map Φ, would conclude the proof and provide the limit distribution
of
√
n(Φ(ξ̂′′0,.)− Φ(ξ·)).

The first condition of Corollary S3.5 holds by (iv) since
√
n(ξ̂′′0,. − ξ·)

D−−−−→
n→∞

g( 1
sΣWs; I

−1,J)s∈[s̄,1].

To conclude the proof, it now sufficient to show that the second condition of Corollary S3.5 also holds. For
that purpose, we start by noticing that, by (iv), for all n ≥ 1, the process

√
n(ξ̂′′0,. − ξ·) is in the closed ball

B(0, r
√
n) := {ζ ∈ D[s̄,1], ‖ζ‖2 ≤ r

√
n},

where 0 is the null function on [s̄, 1]. Let us consider the sequence of applications γn defined for ζn in
B(0, r

√
n) ⊂ D[s̄,1] by

γn(ζn) :=
√
n

(
Φ

(
ξ· +

1√
n
ζn

)
− Φ(ξ·)

)
.

Further denote the differential of Φ at ξ· by DΦ. The differential is a function from D[s̄,1] onto itself, defined
for ζ = (ζ1, ζ2, ζ3) in D[s̄,1] by4

DΦ(ζ)s := (ζ1(s), ζ2(s),−I−1ζ3(s)I−1), s ∈ [s̄, 1].

4We extend here the well known differential of the inversion of matrices given in Lemma 2.5.5 in Abraham et al. (1988).

8



It is then sufficient to show that the convergence of every sequence ζn ∈ B(0, r
√
n) to ζ ∈ D[s̄,1] implies the

convergence of γn(ζn) to DΦ(ζ).

Let us consider some sequence ζn = (ζ1,n, ζ2,n, ζ3,n) ∈ B(0, r
√
n) and some path ζ = (ζ1, ζ2, ζ3) ∈ D[s̄,1] such

that dD[s̄,1]
(ζn, ζ) → 0 as n → ∞. From the definition of the Skorokhod metric in (S1), this means5 that

there exists some sequence of strictly increasing bijections τ∗n from [s̄, 1] onto itself such that, as n→∞,

sup
s∈[s̄,1]

|τ∗n(s)− s| → 0 and sup
s∈[s̄,1]

‖ζn(τ∗n(s))− ζ(s)‖2 → 0. (S16)

To conclude the proof, we need only to show that sups ‖γn(ζn(τ∗n(.))s)−DΦ(ζ)s‖2 → 0. First, we remark
that

γn(ζn(τ∗n(s))s∈[s̄,1]) =

(
ζ1,n(τ∗n(s)), ζ2,n(τ∗n(s)),

√
n

((
I +

ζ3,n(τ∗n(s))√
n

)−1

− I−1

))
s∈[s̄,1]

and DΦ(ζ) = (ζ1(s), ζ2(s),−I−1ζ3(s)I−1)s∈[s̄,1]. By (S16) and the definition of ‖.‖2 in Section S1, it is
sufficient to show that sups ‖ζ3,n(τ∗n(s))− ζ3(s)‖2 → 0 implies

sup
s

∥∥∥∥∥√n
((

I +
ζ3,n(τ∗n(s))√

n

)−1

− I−1

)
+ I−1ζ3(s)I−1

∥∥∥∥∥
2

→ 0.

Because τ∗n is a bijection from [s̄, 1] onto itself and ζn = (ζ1,n, ζ2,n, ζ3,n) is in B(0, r
√
n), we obtain that, for

all s ∈ [s̄, 1] and n ≥ 1, the random variable
ζ3,n(τ∗n(s))√

n
is in the closed ball B(0, r). In addition, we chose r

such that
∥∥I−1

∥∥
2
< 1/r. Because the Frobenius norm is submultiplicative6, it follows that∥∥∥∥−I−1 ζ3,n(τ∗n(s))√

n

∥∥∥∥
2

< 1.

Therefore, using Theorem 4.16 in Dudley and Norvaǐsa (2011), we can expand the term
(
I +

ζ3,n(τ∗n(s))√
n

)−1

as a Neumann series. We obtain(
I +

ζ3,n(τ∗n(s))√
n

)−1

=

(
Idd + I−1 ζ3,n(τ∗n(s))√

n

)−1

I−1 =

∑
k≥0

(−1)kI−k
(
ζ3,n(τ∗n(s))√

n

)k I−1.

For all s ∈ [s̄, 1] and n ≥ 1,

√
n

((
I +

ζ3,n(τ∗n(s))√
n

)−1

− I−1

)
+ I−1ζ3(s)I−1

=
√
n

∑
k≥2

(−1)kI−k
(
ζ3,n(τ∗n(s))√

n

)k I−1 − I−1
(
ζ3,n(τ∗n(s))− ζ3(s)

)
I−1.

The result follows from the fact that sups ‖ζ3,n(τ∗n(s))− ζ3(s)‖2 → 0 and

sup
s

∥∥∥∥∥∥√n
∑
k≥2

(−1)kI−k
(
ζ3,n(τ∗n(s))√

n

)k I−1

∥∥∥∥∥∥
2

≤ 1√
n

∥∥I−1
∥∥3

2
sup
s
‖ζ3,n(τ∗n(s))‖22

∑
k≥0

(∥∥I−1
∥∥

2√
n

sup
s
‖ζ3,n(τ∗n(s))‖2

)k
. (S17)

We already know that the constant
∥∥I−1

∥∥
2

is finite. From Lemma 12.1 in Billingsley (1999), ‖ζ3‖2 is a
finite constant since ζ is a càd-làg process with finite values in D[s̄,1]. It follows that sups ‖ζ3,n(τ∗n(s))‖2 ≤
‖ζ3‖2 + sups ‖ζ3,n(τ∗n(s))− ζ3(s)‖2 converges to ‖ζ3‖2 and, for n large enough, the series above can be
dominated by a convergent geometric series. Then (S17) converges to 0 and the result follows.

5See Section 12 in Billingsley (1999) for more details on the Skorokhod topology.
6This property is a consequence of the Cauchy-Schwarz inequality. See e.g. Trefethen and Bau (1997), p.23.
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Remark S3.6. The map z ∈ R2d+d2 7→ q(z) is a quadratic form.

Proof of Remarks 3.6 and S3.6. Remark that, for any A and J , the map (ι, u, I) 7→ q(ι, u, I;A, J) is a
quadratic form but not a norm. Its unique associated symmetric bilinear form7 is given by

(
(ι, u, I), (ι′, u′, I ′)

)
7→

1
2

(
q(ι+ ι′, u+ u′, I + I ′;A, J)− q(ι, u, I;A, J)− q(ι, u, I;A, J)

)
. From Theorem S3.3, we already know that

the map g is linear. It follows that the map

(z, z′) 7→1

2
(q(z + z′)− q(z)− q(z′))

=
1

2

(
q(g(Σ(z + z′)); I−1,U)− q(g(Σz); I−1,U)− q(g(Σz′); I−1,U)

)
is symmetric bilinear. The result follows.

Theorem S3.7. Under H0, the process Q1
n converges weakly as n → ∞ to the process ( 1

sq(Ws))s∈[s̄,1] in
D([s̄, 1],R).

Proof of Theorems 3.7 and S3.7. For all s ∈ [s̄, 1] and n large enough, from (10), we can reorganize the
variable Q1

s,n as follows

Q1
s,n =

bsnc
n

(√
n(û0,s − u)T Â−1

0,s

√
nι̂0,s +

√
nι̂T0,s A

−1
0,s

T
Û0,sÂ

−1
0,s

√
nι̂0,s + uT

√
n
(
Â−1 − I−1

) √
nι̂0,s

)
=
bsnc
n

q(
√
n(ξ̂′0,s − ξ

′); Â−1
0,s, Û0,s), (S18)

with

Û0,s :=
1

bsnc

bsnc∑
i=1

D2
θ(w log f1)(Xi, θ

′
0,s)

and ξ̂′0,s = (ι̂0,s, û0,s − u, Â−1
0,s) from its definition in Section 3.1.

We know from Theorem S3.3 that the process (
√
n(ξ̂′0,s−ξ

′))s∈[s̄,1] converges weakly to the process ( 1
sg(ΣWs))s∈[s̄,1].

Recall that, by Proposition S2.8, Â−1
0,s converges a.s. to I−1, uniformly in s ∈ [s̄, 1]. Further, by Assumption

2.5, Lemma S2.9 can be applied to h(x, θ) = D2
θ(w log f1)(x, θ), taking the set Θ′ as O. Therefore Û0,s

converges a.s. to U , uniformly in s ∈ [s̄, 1]. It follows by Slutsky’s Theorem, that the process(√
n(ξ̂′0,s − ξ

′), Â−1
0,s, Û0,s

)
s∈[s̄,1]

converges weakly to the process ( 1
sg(ΣWs), I

−1,U)s∈[s̄,1]. The map q being continuous, the result follows by
the Continuous Mapping Theorem.

Theorem S3.8. Under H0 and Assumptions 2.1-2.5, the test statistic

Sn
D−−−−→

n→∞
sup

s∈[s̄,1−s̄]

q(Ws − sW1)

s(1− s)

where (Ws)s∈[0,1] is a standard 2d+d2-dimensional Brownian motion and the application q is defined in (14).

Before giving the proof of Theorems 3.8 and S3.8, we start by a result for quadratic forms.

Lemma S3.9. Fix d ≥ 1. If x ∈ Rd 7→ q(x) is a quadratic form, then, for any x, y ∈ Rd and any real s 6= 0,
the following equality holds:

1

s
q (x) +

1

1− s
q (y − x)− q(y) =

q(x− sy)

s(1− s)
.

7See for instance Section 41 in O’Meara (2000).
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Proof. The unique symmetric bilinear form8 associated to q is the application

(x, y) ∈ Rd × Rd 7→ bq(x, y) =
1

2

(
q(x+ y)− q(x)− q(y)

)
.

By definition of bq, we have that q(x) = bq(x, x) and q(x+ y) = q(x) + q(y) + 2 bq(x, y). Further, for any real
s and any x ∈ Rd, q(sx) = s2q(x). It follows that

1

s
q (x) +

1

1− s
q (y − x)− q(y)

=
(1− s)q(x) + s(q(x) + q(y)− 2 bq(x, y))− s(1− s)q(y)

s(1− s)

=
q(x)− 2s bq(x, y) + s2q(y)

s(1− s)
=
q(x) + 2 bq(x,−sy) + q(−sy)

s(1− s)
.

The result follows.

We can now give below the proof of Theorems 3.8 and S3.8.

Proof of Theorems 3.8 and S3.8. Recall that from (S15) and (S18), for s ∈ [s̄, 1], Q1
s,n can be written as

follows for s ∈ [s̄, 1]:

Q1
s,n =

bsnc
n

q
(√

n
(

Φ(g(ξ̂0,t; Â
−1
0,t , Ĵ0,t)t∈[s̄,1])− Φ(ξ·)

)
s
; Â−1

0,s, Û0,s

)
.

We remark from (7) that Q1
s,n and Q2

s,n have a similar structure and differ only from the fact that Q1
s,n

depends from the sample (X1, . . . , Xbsnc) and the estimator θ̂0,s, while Q2
s,n depends from the sample

(Xbsnc+1, . . . , Xn) and the estimator θ̂1,s. With the definition of ξ̂0,s in (9), we can write Q2
s,n for s ∈ [s̄, 1− s̄]

as follows:

Q2
s,n =

n− bsnc
n

q

(
√
n

(
Φ̃

(
g

(
n

n− btnc ξ̂0,1 −
btnc

n− btnc ξ̂0,t; Â
−1
t,1 , Ĵt,1

)
t∈[s̄,1−s̄]

)
− Φ̃((ξ)s∈[s̄,1−s̄])

)
s

; Â−1
s,1, Ûs,1

)

where Φ̃ is the map from the set of càd-làg paths D([s̄, 1− s̄], (Rd)2 ×GLd(R)) onto itself that coincide with
Φ on [s̄, 1− s̄], i.e. for s ∈ [s̄, 1− s̄] and x ∈ D([s̄, 1− s̄], (Rd)2 ×GLd(R)), Φ̃(x)s := ϕ(xs). In addition, the
random variable Q1

1,n can be written as:

Q1
1,n =q

(√
n
(
ϕ(g(ξ̂0,1; Â−1, Ĵ0,1))− ϕ(ξ)

)
; Â−1, Û0,1

)
.

From the three equations above, the process (Q1
s,n, Q

2
s,n,−Q1

1,n)s∈[s̄,1−s̄] can be seen as a function of the
triple process (

ξ̂0,s,
n

n− bsnc
ξ̂0,1 −

bsnc
n− bsnc

ξ̂0,s, ξ̂0,1

)
s∈[s̄,1−s̄]

. (S19)

Recall that, by Lemma S3.1, the process
√
n
(
ξ̂0,s − ξ

)
s∈[s̄,1]

converges weakly to ( 1
sΣWs)s∈[s̄,1] in D[s̄,1].

Then a similar central limit result holds for the triple defined in (S19) and, by a succession of composition of
the applications g, Φ and q along with arguments based on Slutsky’s Theorem and the Continuous Mapping
Theorem, the result obtained for Q1

n is extended to the process (Q1
s,n, Q

2
s,n,−Q1

1,n)s∈[s̄,1−s̄]. To show this, we
reuse the arguments of Theorem S3.3. The functional delta method on the Skorokhod metric space is still

8See for instance Section 41 in O’Meara (2000).
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applicable and the process(
√
n(Φ(g(ξ̂0,t; Â

−1
0,t , Ĵ0,t)t∈[s̄,1])− Φ(ξ·))s,

√
n

(
Φ̃

(
g

(
n

n− btnc
ξ̂0,1 −

btnc
n− btnc

ξ̂0,t; Â
−1
t,1 , Ĵt,1

)
t∈[s̄,1−s̄]

)
− Φ̃((ξ)t∈[s̄,1−s̄])

)
s

√
n(ϕ(g(ξ̂0,1; Â−1, Ĵ0,1))− ϕ(ξ))

)
s∈[s̄,1−s̄]

converges weakly to the process(
g

(
1

s
ΣWs

)
, g

(
1

1− s
Σ (W1 −Ws)

)
, g(ΣW1)

)
s∈[s̄,1−s̄]

in the Skorokhod metric space of càd-làg functions on [s̄, 1− s̄] with values in (Rd)2 ×GLd(R). Then, with
a simple extension of the arguments of Theorem S3.7, the triple

(
Q1
s,n, Q

2
s,n,−Q1

1,n

)
s∈[s̄,1−s̄] converges as

follows: (
Q1
s,n, Q

2
s,n,−Q1

1,n

)
s∈[s̄,1−s̄]

D−−−−→
n→∞

(
1

s
q (Ws) ,

1

1− s
q (W1 −Ws) ,−q(W1)

)
s∈[s̄,1−s̄]

.

From Remark S3.6, q is a quadratic form and, from Lemma S3.9,

1

s
q (Ws) +

1

1− s
q (W1 −Ws)− q(W1) =

q(Ws − sW1)

s(1− s)
, s ∈ [s̄, 1− s̄].

The result follows from a last application of the Continuous Mapping Theorem to the application that sums
the elements of the triple above and takes the supremum over [s̄, 1− s̄].

Theorem S3.10. Under H0 and Assumptions 2.1-2.5, the test statistic

S∗n
D−−−−→

n→∞
sup

s∈[s̄,1−s̄]

q∗(Ws − sW1)

s(1− s)

where (Ws)s∈[0,1] is a standard 3d + d2-dimensional Brownian motion and the application q∗ is defined in
(17).

Proof of Theorems 4.1 and S3.10. The proof follows the same logic as the proof of Theorem S3.8. The
arguments are based on a functional delta method (Corollary S3.5) and multiple applications of Slutsky’s
Theorem and the Continuous Mapping Theorem.

Proposition S3.11. Under Assumption 2.1 and with the parameter set Θ defined above, the validity condi-
tions of Theorems S3.8 and S3.10 hold for a finite Gaussian mixture.

Proof of Proposition 5.2 and S3.11. The result is obtained as soon as we show that Assumptions 2.2-2.5
are valid. First of all, the conditions of the model introduced in Section 2.1 and Assumptions 2.2 and 2.3
are standard prerequisites for limit results of likelihood based estimators (McLachlan and Peel (2000)). In
particular, from Example 6.10 in Lehmann and Casella (1998), one sees that the assumptions of Theorem 5.1
in Lehmann and Casella (1998) hold for identifiable Gaussian mixtures. With condition 1. above, it follows
that Assumptions 2.2 and 2.3 hold.
With condition 2. above, Theorem 3.3 in Hathaway (1985) ensures that Assumption 2.4 is valid, i.e. the

estimator θ̂ is strongly consistent.
Since the parameter set Θ is a convex open subset of Rd that contains the true parameter θ, it is possible to
find a bounded convex set Θ′ ⊂ Θ such that θ is in the interior of Θ′. We show that Assumption 2.5 is valid
for this set Θ′. First we recall that, EH0

[|X1|k] is finite for all k ≥ 0. Thus it is sufficient to show that we
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can find some function θ 7→ κ(θ) with positive values, not depending on x and continuous on Θ′, such that,
for all 1 ≤ i, j ≤ d, θ in Θ′ and x ∈ R,∣∣D2

θ(w log f1)(x, θ)i,j
∣∣ ≤ 6∑

k=0

κ(θ)|x|k. (S20)

On the one hand, since x ∈ R 7→ f1(x, (µ1, σ1)) is the density function of a Gaussian random variable,
log f1(x, (µ1, σ1)) can be written as a second-order polynomial of x. Its coefficients are infinitely differentiable
functions of (µ1, σ1) on R × R+

∗ . It follows that the absolute values of the first and second order partial
derivatives of f1(x, (µ1, σ1)) can be bounded by a second-order polynomial as on the left side of (S20). On
the other hand, by definition, the weight function w(x, θ) takes its values in [0, 1] for all x and all θ. In order
to conclude the proof, we need only to bound the absolute value of the first and second partial derivatives of
w(x, θ).
From the definition of w in (2), its first order partial derivatives can be written as

∂

∂θi
w(x, θ) =

∂
∂θi
f̃1(x, θ)

f(x, θ)
− w(x, θ)

m∑
k=1

∂
∂θi
f̃k(x, θ)

f(x, θ)
, 1 ≤ i ≤ d

where f̃k : (x, θ) 7→ pkfk(x, λk). We can show that

∂
∂θi
f̃k(x, θ)

f(x, θ)
=
pkfk(x, λk)

f(x, θ)
κi,k(x, θ),

where κi,k(x, θ) is a second-order polynomial of x with coefficients that are infinitely differentiable functions
of θ on Θ. Moreover we recognize that pkfk(x, λk)/f(x, θ) is another weight function that takes its values
in [0, 1] for all x and all θ. Thus | ∂∂θiw(x, θ)| can be bounded by a second-order polynomial as on the left
side of (S20). With similar arguments, the absolute value of the second partial derivatives of w(x, θ) can be
bounded by a polynomial of degree four as in the left side of (S20). The result follows.

S4 The constant u

The constant u = EH0
[Dθ(w log f1)(X1,θ)], defined in (6), plays a central role in the proof of Theorems S3.8

and S3.10 since most of the technical difficulties in Section 3 emerge only when u 6= 0. This is the case in
general, as illustrated in the following numerical example.
With the notations of Section 5, we consider a numerical simulation for an univariate Gaussian mixture with
3 components defined by

θ :=
(
(1/3, 1/3), (−1.00, 0.25), (0.00, 0.25), (1.00, 0.25)

)
.

For 105 simulations, the Monte-Carlo approximation of EH0

[
∂
∂µ2

(w log f1)(X1,θ)
]

converges to a non null

limit (Figure S1). This illustrates that u is not null in general.

Figure S1: Convergence of the Monte-Carlo approximation of EH0

[
∂
∂µ2

(w log f1)(X1,θ)
]
.
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S5 Additional numerical results

(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure S2: Type II error for a change in the first component
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure S3: Detection frequency for a change in the second component
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(a) Change in the mean (1k obs.) (b) Change in the mean (10k obs.)

(c) Change in the standard deviation (1k obs.) (d) Change in the standard deviation (10k obs.)

(e) Change in the weight parameter (1k obs.) (f) Change in the weight parameter (10k obs.)

Figure S4: Detection frequency for a change in the third component
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Figure S5: Run time of the benchmark and the WL and EWL tests for an increasing sample size.
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S6 Glossary of notations

Â = − 1
n

∑n
i=1

(
D2
θ(log f)(Xi,θ) + 1

2

∑d
l=1

(
θ̂l − θl

)
D3
θ(log f)(Xi, θ

′)l,.,.
)

defined in (S4).

Â0,s or Âs,1 Âs1,s2 = − 1
bs2nc−bs1nc

∑bs2nc
i=bs1nc+1

(
D2
θ(log f)(Xi,θ)

+ 1
2

∑d
l=1(θ̂s1,s2;l − θl)D3

θ(log f)(Xi, θ
′
s1,s2)l,.,.

)
defined in (S5).

β = EH0 [log f1(Y,λ1)], with Y a r.v. with density f1(.,λ1). See Section 4.

cs,n =
∑bsnc
i=1 w(Xi, θ̂0,s) +

∑n
i=bsnc+1 w(Xi, θ̂s,1), defined in Section 4.

d dimension of the parameter set Θ, see Section 2.1.

D[s̄,1] = D([s̄, 1], (Rd)2 × gld(R)). Skorokhod metric space of càd-làg paths, see Lemma S3.1.
fk(., λk) density function of the k-th component, see Section 2.1.

g(., ., .; ., .) map defined in (S12) for (ι, u, I;A, J) ∈ (Rd)2 × (gld(R))2 × Rd×d×d by

(ι, u, I;A, J) 7→
(
ι, u, I − 1

2

∑d
l=1(ιT (AT ).,l)J.,.,l

)
.

g(., ., .) linear map defined in (S11) for (ι, u, I) ∈ (Rd)2 × gld(R) by

(ι, u, I) 7→
(
ι, u,−I−1(I − 1

2

∑d
l=1(ιT (I−1 T ).,l)J .,.,l)I

−1
)

.

ι̂0,s = 1
bsnc

∑bsnc
i=1 Dθ(log f)(Xi,θ), defined in (9).

Î0,s = − 1
bsnc

∑bsnc
i=1 D2

θ(log f)(Xi,θ), defined in (9).

I = −EH0

[
D2
θ(log f)(X1,θ)

]
. Fisher information matrix defined in (1).

Ĵ0,s = 1
bsnc

∑bsnc
i=1 D3

θ(log f)(Xi, θ
′
0,s) defined in Lemma S3.2.

J = EH0

[
D3
θ(log f)(X1,θ)

]
defined in (11).

λk density function parameter of the k-th component, see Section 2.1.

λ̂1 see θ̂.

λ̂0,s,1 or λ̂s,1,1 see θ̂0,s or θ̂s,1.
Λn = (Λs,n)s∈[s̄,1−s̄]. Detection process of the WL test, defined in (4).
Λs,n = Q1

s,n +Q2
s,n −Q1

1,n defined in (4) (see also (7)).
Λ∗n = (Λ∗s,n)s∈[s̄,1−s̄]. Detection process of the EWL test, defined in (16).

Λ∗s,n =
c1,n
cs,n

Λs,n +
(
c1,n
cs,n
− 1
)∑n

i=1 w(Xi, θ̂) log f1(Xi, λ̂1) defined in (16).

m number of components in the mixture, see Section 2.1.
pk weight of the k-th component in the mixture, see Section 2.1.
Φ(.) map defined in (S14) by (xs)s∈[s̄,1] 7→ (ϕ(xs))s∈[s̄,1].
q(., ., .; ., .) map defined in (13) by (ι, u, I;A, J) 7→ uTAι+ ιTATJAι+ uT Iι.

q(.) map defined in (14) by z ∈ R2d+d2

7→ q(g(Σz); I−1,U).

q∗(.) map defined in (17) for z ∈ R3d+d2

by z 7→ q∗(g∗(Σ∗z); I−1,U ,V ).
Q1
n = (Q1

s,n)s∈[s̄,1] defined in Section 3.

Q1
s,n =

∑bsnc
i=1

(
w(Xi, θ̂0,s) log f1(Xi, λ̂0,s,1)− w(Xi,θ) log f1(Xi,λ1)

)
−uT I−1∑bsnc

i=1 Dθ(log f)(Xi,θ) defined in Section 3.
Q2
n = (Q2

s,n)s∈[s̄,1−s̄] defined in Section 3.

Q2
s,n =

∑n
i=bsnc+1

(
w(Xi, θ̂s,1) log f1(Xi, λ̂s,1,1)− w(Xi,θ) log f1(Xi,λ1)

)
−uT I−1∑n

i=bsnc+1 Dθ(log f)(Xi,θ) defined in Section 3.

s̄ ∈ (0, 0.5). We assume that the change-point is in [s̄, 1− s̄] if it exists (Assumption 2.1).
Sn = sups∈[s̄,1−s̄] Λs,n defined in (5). Detection statistic of the WL test.

S∗n = sups∈[s̄,1−s̄] Λ∗s,n defined in Section 4. Detection statistic of the EWL test.

Σ unique positive semi-definite square root of the covariance matrix of the i.i.d. terms in
the average ξ̂0,1, see Lemma S3.1.
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θ̂ = (p̂1, . . . , p̂m−1, λ̂1, . . . , λ̂m). One consistent sequence of solutions of the likelihood equations
over the sample X1, . . . , Xn, see Section 2.1.

θ̂0,s or θ̂s,1 θ̂s1,s2 = (p̂s1,s2,1, . . . , p̂s1,s2,m−1, λ̂s1,s2,1, . . . , λ̂s1,s2,m). One consistent sequence of solutions
of the likelihood equations over the sample Xbs1nc+1, . . . , Xbs2nc, see Section 2.1.

θ true parameter under the null hypothesis, see Section 2.1.

θ′ point on the segment [θ̂,θ], see (S3).

θ′0,s or θ′s,1 θ′s1,s2 is a point on the segment [θ̂s1,s2 ,θ], see (S5).
Θ0 parameter set for the weights of the mixture components, see Section 2.1.
Θ′ convex subset of Θ for which Assumption 2.5 holds.

û0,s = 1
bsnc

∑bsnc
i=1 Dθ(w log f1)(Xi,θ), defined in (9).

u = EH0 [Dθ(w log f1)(X1,θ)] defined in (6).

Û0,s = 1
bsnc

∑bsnc
i=1 D2

θ(w log f1)(Xi, θ
′
0,s), see proof of Theorem S3.7.

U = EH0

[
D2
θ(w log f1)(X1,θ)

]
defined in (15).

v̂0,s = 1
bsnc

∑bsnc
i=1 Dθw(Xi,θ), see Section 4.

v = EH0 [Dθw(X1,θ)], see Section 4.
V = EH0

[
D2
θw(X1,θ)

]
, see Section 4.

w(x, θ) = (p1f1(x, λ1))/(f(x, θ)) defined in (2).
w log f1 application defined in (3) by (x, θ) 7→ w(x, θ) log f1(x, λ1).

ξ̂0,s = (ι̂0,s, û0,s − u, Î0,s), defined in (9).
ξ = (0, 0, I) defined in (S9).
ξ· constant process s.t. ξs = ξ for all s ∈ [s̄, 1], see proof of Theorem S3.3.

ξ̂′0,s = (ι̂0,s, û0,s − u, Â−1
0,s) defined in Section 3.1.

ξ′ = (0, 0, I−1), see Theorem S3.3.

ξ̂′′0,. = (ξ̂′′0,s)s∈[s̄,1], see proof of Theorem S3.3.

ξ̂′′0,s g(ξ̂0,s; Â
−1
0,s, Ĵ0,s) if (S13) holds, ξ otherwise. See proof of Theorem S3.3.

ξ̂∗0,s = (ι̂0,s, û0,s − u, v̂0,s − v, Î0,s), see Section 4.
ξ∗ = (0, 0, 0, I), see Section 4.
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