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Asymptotic preserving schemes for SDEs driven by
fractional Brownian motion in the averaging regime

Charles-Edouard Bréhier

ABSTRACT. We design numerical schemes for a class of slow-fast systems of stochastic dif-
ferential equations, where the fast component is an Ornstein-Uhlenbeck process and the
slow component is driven by a fractional Brownian motion with Hurst index H > 1/2. We
establish the asymptotic preserving property of the proposed scheme: when the time-scale
parameter goes to 0, a limiting scheme which is consistent with the averaged equation is
obtained. With this numerical analysis point of view, we thus illustrate the recently proved
averaging result for the considered SDE systems and the main differences with the standard
Wiener case.

1. Introduction

Multiscale and stochastic systems propose theoretical and computational challenges in
all fields of science, including for instance fluid dynamics, biology, finance and engineering.
Many models are driven by the standard Wiener process, however the fractional Brownian
motion [8] is another popular model, especially in finance and turbulence modelling.

In this article, we consider stochastic differential equations (SDEs) of the following type:

dX“(t) = g(X(t), m (t))dB" (t),
S dm®(t) = —lme(t)dt + @

€ Ve

with X(0) = zo, m*(0) = m§, where € is the time-scale separation parameter, (B(t))

dB(t),

1s
=0
a standard Wiener process, g : R> — R is a sufficiently regular mapping (see Section for

more details), and (3(t)) 1> 18 a fractional Brownian motion with Hurst index H > 1/2,

such that B and ¥ are independent. Note that m¢ is a standard real-valued Ornstein-
Uhlenbeck process. Since H > 1/2, the evolution equation for X€, i.e. the first equation
in (), is understood in the sense of Young, see for instance [10, [11].

The objective of this article is to build and study the behavior of numerical schemes in the
regime € — 0. In that regime, Hairer and Li proved recently [3] that the following averaging
principle holds (see Section below): the slow component X¢ converges in probability to
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the solution X" of the averaged equation
~(H _~(H
2) X () =X (1)as™ 1),

with initial condition Y(H)(O) = x9, where the averaged coefficient is defined by g(x) =
E, . no1[g(x,m)]. See also |2, [7] for other recent contributions dealing with the behavior
of multiscale systems driven by fractional Brownian motion. It is worth mentioning that
the expression of the averaging principle differs from the case of SDEs driven by standard
Wiener processes in two directions: first, if H = 1/2, the averaged equation is given by

aXM () = (X)) ),

second, if H = 1/2, the convergence only holds in distribution in general. We refer for
instance to [4], 13] and to [12, Chapter 17| for seminal references on the averaging principle
for SDEs driven by standard Wiener processes.

In this article, we revisit the averaging principle from [3] with a numerical analysis
point of view: precisely we consider the notion of asymptotic preserving schemes, see the
recent contribution [I for stochastic systems and references therein. We retrieve the same
differences between the standard and fractional Brownian motion cases at the discrete time
level. Let us now describe the scheme studied in this article: let At denote the time-step
size, then the scheme is given by

Xy =X, + g(XfL,m;H)(ﬁH(th) - BH(tn»

(3) VN e
m,. =€ <m, + 1—e""c v,

where (%)nz , are independent standard Gaussian random variables. Note that the Ornstein-
Uhlenbeck process m¢ is discretized exactly in distribution: m¢ and m(nAt) are equal in
distribution for all n» > 0. The slow component X¢ is discretized using a standard Eu-
ler scheme (with an implicit treatment of the fast component). It is well-known that the
scheme (3) is consistent with the system when At — 0, when the parameter € is fixed,
see for instance [5), 6, [9] for the study of the Euler schemes and variants for SDEs driven by
fractional Brownian motion with Hurst index H > 1/2.

When the time-scale separation parameter vanishes, i.e. € — 0, it is straightforward to
check that for all n > 1, one has m¢, — 7, and X¢ — X?, where the limiting scheme satisfies

(4) X2+1 = Xg + g(Xga 'Yn) (5H(tn+1) - 5H(tn))

The main result of this article is the consistence of the limiting scheme with the
averaged equation (2)), see Theorem below for a rigorous statement: when At — 0, X
converges in probability to X (T'), where T' = NAt. This result means that the scheme
is asymptotic preserving: the following diagram commutes when At e — 0

Xs, 225 X7
(5) leﬂo le%O
X0 2% (7).

In practice, this property means that the time-step size At can be chosen independently of

the time-scale separation parameter €, and that the scheme is both consistent with the model
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when € is fixed and able to capture the limiting averaged equation. Asymptotic preserving
schemes for SDEs driven by standard Wiener processes have been introduced and studied
in the recent preprint [I]. To the best of our knowledge, they have not been studied in the
case of SDEs driven by fractional Brownian motion. Our study reveals that the differences
seen in the averaging principle at the continuous-time level also appear for the discretization:
in the fractional Brownian motion case, the convergence holds in probability (instead of in
distribution) and in the limiting equation the average of g (instead of g*) is computed.
Observe that proposing an asymptotic preserving scheme in a stochastic context is not
trivial. Like in [I], if the Ornstein-Uhlenbeck component was discretized using a implicit

Euler scheme
. 1 ( - [ At )
m = ———(m —Yn),
n+1 1 + At n € 7

€

the associated limiting scheme would be given by

Xn+1 = Xn + g(Xm O) (5H(tn+1) - BH(tn))

instead of (), which is not consistent with (2] in general: it is consistent only if g(z) = g(z,0)
for all . In addition, if the Ornstein-Uhlenbeck process (mE (t)) 150 18 replaced by an arbitrary
ergodic process, the averaging principle still holds (with an appropriate modification of the
definition of ), however there is no known construction of an asymptotic preserving scheme
in this general case, even in the standard Brownian motion case, to the best of our knowledge.

The main result of this article is proved first for a simplified case, assuming that g(x, m) =
g(m) only depends on the variable m — in that case g is a constant. The proof in the
simplified case is elementary, and it is provided in order to exhibit the main ideas and the
main differences compared with the standard Brownian motion case. The main result is then
proved in the general case, using more technical arguments.

This article is organized as follows. Section [2| presents notation and preliminary results:
in particular assumptions concerning the multiscale SDE system are given in Section [2.3]
the averaging principle from [3] is presented in Section , numerical schemes are presented
in Section [2.5] and the main result, Theorem [2.2] is stated and discussed in Section [2.6] The
simplified case (g(z,m) = g(m)) is studied in Section [3| in particular the comparison with
the standard Brownian motion case is performed in Section [3.2] The general case is studied
in Section [4. Section [5|is devoted to concluding remarks and perspectives for future works.

2. General setting

To simplify notation, in this article we consider real-valued processes. Up to straightfor-
ward modifications the results are generalized to higher dimension.

2
motion with Hurst index H, and let (B (t)) 1=o e a standard real-valued Brownian motion.
It is assumed that 87 and B are independent. Let F# = o{BH(t); t > 0} be the o-field
generated by the fractional Brownian motion $%. The conditional expectation operator
E[-|FH] is denoted by Ef[-] in the sequel.
The time-scale separation parameter is denoted by €, without loss of generality € € (0, 1).

The slow variable is denoted by X¢, whereas the fast variable is denoted by m*¢.
3
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2.2. A criterion for convergence in probability. In this article, convergence of
random variables is understood as convergence in probability — except in Section [3.2] where
convergence in distribution needs to be considered.

Let us state an elementary criterion to express convergence in probability in terms of
convergence of averages. We use the following convention throughout this article: a mapping
¢ : R — Ris said to be of class C/* for some K € N if it is bounded and K times continuously
differentiable, and if its derivatives of order 1,..., K are bounded.

LEMMA 2.1. Let (Q, F,P) be a probability space and G < F be a o-field. Let K € N.

Let X be a G-measurable real-valued random variable, and let (XN)NeN be a sequence of
real-valued random variables.

The following statements are equivalent.

(i) Xn converges to X in probability when N — oo: for alln e (0,1),
P(| Xy —X|>n) — 0.

N—o0

(ii) For any function ¢ : R — R of class CI, one has
() E[|E[¢(Xx)[0] - o(X)]] — 0.

The proof of Lemma [2.1]is given in the appendix.

The expression of convergence in probability in the form of @ is convenient for several
reasons. First, it allows us to provide proofs using Taylor expansion arguments. Second, in
the simplified case (g does not depend on x) it allows us to provide an elementary proof and
a comparison with the standard Brownian case. Finally, expression @ may be appropriate
to exhibit a speed of convergence, however this question goes beyond the scope of this article
and is left open for future works.

2.3. The multiscale stochastic system. In this article, we study multiscale stochastic
systems of the type

dX(t) = g(X (), m<(t))dB" (),
(7) 1 V2

dm(t) = ——m(t)dt +
(1) = — om0t + 2
with initial conditions X¢(0) = zo and m*(0) = mg, which are assumed to be deterministic
and independent of the parameter €, for simplicity. Assume that g : R? — R is of class C?,
with bounded derivatives of order 1,2, 3. Then the system admits a unique solution, such
that for all t > 0 one has

dB(1),

t

X() = 20 + j g(X<(s), m<())dB" (5),

0
t
me(t) = e cmg + \@J e T dB(s).
0

Note that m¢ is an Ornstein-Uhlenbeck process, for any value of € € (0,1). The stochastic
integral in the X¢ component is interpreted as a Young integral.
In Section [3| we study a simplified case, where g(x,m) = g(m) for all z,m € R?. The

general case is studied in Section
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2.4. The averaging principle. The goal of this section is to state the averaging prin-
ciple result from [3].
Define the averaged coefficient g : R — R as follows

g(x) = Jg(x, m)dv(m), x¢€R,

where v = N(0, 1) is the standard Gaussian distribution. Note that v is the unique invariant
distribution of the Ornstein-Uhlenbeck process m¢, for all € € (0,1), and for every fixed
t € (0,00) and x € R, one has

Elg(e, m(1))] = g(x).

The mapping g inherits the regularity of the mapping ¢ with respect to the x-variable: g is
of class Ci with bounded derivatives of order 1, 2, 3.
Let (X(t)) 1= Pe the unique solution of the averaged equation

(8) dX(t) = g(X(t))dB" (t),
with initial condition X (0) = zo. One has for all ¢ > 0
¢

X() = 20 + f G(X(s))d6" (s).

0
where the stochastic integral is interpreted in the sense Young sense.
The averaging principle from [3] states that X ¢ converges in probability to X when ¢ — 0.
In this article, we consider a weaker version: for all 7" > 0, X(7") converges in distribution
to X(T). Owing to Lemma , one has the following formulation:

(9) lim E[[E" [¢(X(T))] - o(X(T))|] = 0
for every function ¢ of class Cp.

2.5. Numerical schemes. Let us introduce the numerical scheme studied in this arti-
cle. Let T € (0,0) and let At denote the time-step size. We assume that 7' = NAt where
N e N is an integer. Set ¢, = nAt and 7, = At V2 (B(ty41) — B(t,)) for all n > 0. For any
values of the time-scale separation parameter € and of the time-step size At, the numerical
scheme is defined by the recursion

X:z+1 = X?’el + g(X:wm:Hl)(ﬁH(tn-&-l) - BH(tn))
(10) A 2ne
i1 =€ cmy A\ 1—e ey,

m

with 2§ = 29 and m§ = mg. To simplify notation, the convention 82 = g (t, 1) — B (t,)
is used below.

When € — 0, with fixed time-step size At, it is straightforward to prove that X¢ — X?°
(in probability), for all n = 0, where

(11) Xnar = X5+ 9(X7,7) (87 (1) — 87 (t0)),
with X{ = z.

Let us finally introduce the auxiliary scheme
(12) 7nJrl = 7n + g(yn) (5H<tn+1) - BH(tn))a
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for all n > 0, with X, = . Note that the auxiliary scheme (12)) is the standard Euler
scheme with time-step size At applied to the averaged equation ().

2.6. Asymptotic preserving property. We are now in position to state the main
result of this article.

THEOREM 2.2. The scheme 15 asymptotic preserving: the following diagram com-
mutes

(13) Je—>0 le—»O
X9 22% X(7)

where convergence is understood as convergence in probability, and T = NAt, with arbitrary
fixzed T € (0, 0).
The asymptotic preserving property can be rewritten as follows: for any real-valued map-
ping ¢ of class C, one has
(14)  Jim lim B[[E"[o(X)] = o(X(T))[] = lim lim E[[E"[o(X})] - o(X(T))[] = 0.
The reformulation ((14) is due to the criterion for convergence in probability given by
Lemma In order to prove Theorem [2.2] we only need to prove that the limiting scheme
is consistent with the averaged equation, 7.e. that the following result holds.

PROPOSITION 2.3. Let T € (0,0), and let the time-step size At satisfy T = NAt, with
N e N.
Let (Xg)n>0 be given by the limiting scheme , and let (Yn)wo be given by the auz-

iliary scheme (12)), with X3 = X = .
For any real-valued mapping ¢ of class C3, one has

Jim E[[E[p(X3)] - ¢(Xn)[] = 0.

REMARK 2.4. In the simplified case (Section @, it is sufficient to assume that the func-
tions ¢ are of class C%.

Let us provide the proof of Theorem assuming that Proposition holds.

PROOF OF THEOREM [2.21 On the one hand, for fixed At, X§ converges in probability
to X% when € — 0, by construction of the scheme. Note that the auxiliary scheme ([12)
is consistent with the averaged equation, see for instance [5, 6, @]: when At — 0, Xy
converges in probability to X (7). Owing to Proposition and to Lemma , we deduce
that X% converges to X (7)) in probability when At — 0.

On the other hand, for fixed ¢, the scheme is consistent with when At — 0, in
particular X§, converges in probability to X(7') , see for instance [5], [6, 9]. Owing to the
averaging principle, one has (9)), which means that X(7T") converges to X(T) in probability
when € — 0.

We thus conclude that the diagram ((13) commutes, where convergence is understood as

convergence in probability, thus the scheme is asymptotic preserving. 0]
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It only remains to prove Proposition [2.3] The proof is given first in the simplified case
(g does not depend on x) in Section , then in the general case in Section . The proof
in the simplified case is elementary and is given for pedagogical reasons and to illustrate
the differences with the standard Brownian motion case. The analysis of the general case
requires more technical arguments.

3. Study of the simplified problem

In this section, we assume that the mapping g only depends on m: one has g(z,m) = g(m)
for all (z,m) € R% Then the averaged quantity g is a constant:

7= [ gtmyivom).

In addition, note that one has X, = X(t,) = 2o + g3 (t,) for all n > 0.

REMARK 3.1. In the simplified case, it is sufficient to assume that g is globally Lipschitz
continuous.

Below, first we provide the proof of Proposition [2.3] in this case, second we provide a
comparison with the case where the fractional Brownian motion 8% with H > 1/2 is replaced
by a standard Brownian motion 5. We illustrate the two main fundamental differences: in
the latter case the convergence is understood as convergence in distribution, and the averaged
equation is not given by averaging g — one needs to average g*.

The standard Brownian motion case is already well-understood (see for instance [12]
Chapter 17| for the averaging principle and [1] for the design and analysis of asymptotic
preserving schemes), however we provide details for pedagocial reasons — and the presentation
differs from [I].

3.1. Proof of Proposition in the simplified case.

PROOF OF PROPOSITION [2.3] IN THE SIMPLIFIED CASE. Let us introduce a family of
auxiliary random variables: for all n € {0,..., N}, set

n—1 N—-1
XY =0+ Y. 908 + Y. gln)opH
k=0 k=n

Note that by construction, one has X§ = X](\(,)) and Xy = X](VN). In addition, for all
nef{0,...,N — 1}, set S](\?) =20+ Do GOBE + Z]k\:nlﬂ g(v&)dBH. Then one has

X\ =S¢+ g(y)op!
XUt = 50 4 gapH.

forall ne {0,...,N —1}.
Let o be of class C} (we take K = 2 when applying Lemma in the simplified case).

Observe that X y is F7-measurable, thus one has Ef [p(X )] = ¢(X y). Using a telescoping
7



sum argument and a second-order Taylor expansion, one obtains

E7[p(X3)] — o(Xn) = E¥[p(X )] — EF[p(X )]
(E (X 3] - ET[p(X§H)])

= S EX[o(S + g(1)587)] — EF (S + go8)])
= S BT (S0 (g(m) — 3BT + 3 OB R).

On the one hand, since the random variables (%) are independent, and are inde-

0<n<N-1
pendent of 37 one has

E7 [ (SY)(9(7a) — )] = E7[¢'(SY)IE[g(7a) — 7] = 0

by definition of g. Indeed, observe that S](\T,l) only depends on v;, with k& # n, and on 3.
On the other hand, since the Hurst index satisfies H > 1/2, one has

‘6BH2 _ (At2H71) = 0.

At—0

HMZ

Gathering the estimates then gives the required convergence result: for all functions ¢ of
class CZ, one has

E[[E”[o(X3)] - ¢(XN)[] .= 0
which concludes the proof of Proposition in the simplified case. O

REMARK 3.2. The proof above provides a rate of convergence 2H — 1, which is consistent
with the rate of convergence of the standard Fuler scheme for SDEs driven by fractional
Brownian motion.

3.2. Comparison with the standard Brownian Motion case. The objective of this
section is to provide a comparison with the situation where the fractional Brownian motion
B is replaced by a standard Brownian motion 3 (independent of B). We thus consider the
system

dX(t) = g(m*(t))dB(1),
(15) dme (t) — —%me(t)dt + \/deB(t).

The associated numerical scheme is defined by

X;,-s-l = sz + g(m;+1>(ﬁ(tn+l) - 5(tn))

. At _2At
My =€ cmy+\1—e ",

(16)

with initial conditions X(0) = X§ = 2o and m*(0) = m§ = my.
8



On the one hand, in that setting the averaging principle holds as follows: X¢ converges
in distribution to X defined by

X(t) = 20 + (67)2A(1)

with g2 = { g?dv. Note that in general g2 > 2.
On the other hand, for fixed At > 0, one has the convergence result (in probability)
X¢ — XY for all n € {0,..., N}, where

Xp 1 = X) 4 9(0m) (B(tnsr) — B(ta))-

The scheme ({16)) is asymptotic preserving, when convergence is understood in distribution.

PROPOSITION 3.3. The limiting scheme is consistent, for convergence in distribution,
with the averaged equation. More precisely, let T € (0,0) and let ¢ be of class C3. Then

Jim Tim E[p(X5,)] = limJim E[o(X5)] = E[p(X(T))]

The result above is an immediate consequence of [1l, Theorem 3.7|. However, for pedagog-
ical reasons, we provide a proof of the consistency of the limiting scheme with the averaged
equation, using the same approach as in the proof of Proposition 2.3 above in the simplified
case. This allows us to give a comparison of the standard and fractional Brownian motion
cases.

PROOF. As in the proof of Proposition (in the simplified case) above, introduce the
following family of random variables: for all n € {0,..., N} define

n—1 N-1

Xj(vn) = xo + Z (?)%551@ + Z 9(Vk)0 Bk

k=0 k=n

Note that by construction, one has X% = ](\?) and X (ty) = X](VN). In addition, for all
—.1
ne{0,...,N —1}, set S](\T,l) =20+ 0 0 (9%)%08, + ij:_nlﬂ 9(7k)0Bk. Then one has

X3¢ =8 + g(1n)38,

— L
Xg =8P + (62)208,.
9



Let ¢ be of class C3. Using a telescoping sum argument and a third-order Taylor expansion,
one obtains

E7[p(X%)] - o(X(tn)) = E7[p(X)] — E7[p(X{)]

-1

S
=

(E7[o(X )] — E7[p(X§H)])

hd

3
o

=

= N (B [p(SE + g(1)08)] — EX[0(SE + (%) 266.)])

T
Lo
N|=

= N E[¢'(SU) (9(m) — ()

=0

)055]

3

N—

5 O B IY(SY) () — )55)

n=

Z O([85,[%).

[y

+
=]

The first order term vanishes in expectation, since the increments of the standard Brownian

motion f are independent. Indeed, observe that the random variables SJ(\?), v, and 03, are
independent: for all n € {0,..., N — 1}

E[E"[¢'(S8")(9(v) — (47)%)3Bul] = EL&'(SK")Elg(r) — (67) *EL56.] = 0,
using E[d5,] = 0.
The second order term vanishes almost surely by the definition of the averaged coefficient

g% for all n € {0,..., N — 1}, using the independence of the increments of the standard
Brownian motion 5 one has

N

B[ (SV) (9 (%) — 6%)87] = B[ (S{)|Elg* (7) — ¢?|At = 0.
Finally, the last term satisfies > ' E|05,> = O(Atz) O
Gathering the estimates gives the required convergence result
Jim [E[o(X%)] ~ E[o(X(T))]| = 0
and concludes the proof. 0

In the proof above, we can exhibit the two main differences between the fractional and
standard Brownian motion case. In the latter case, the first order terms of the Taylor ex-
pansion only vanishes in expectation, hence the need to consider convergence in distribution.
In addition, the averaging procedure is only visible in the second order terms of the Taylor
expansion, hence a different expression of the averaged coefficient, whereas it is visible in the
first order term in the fractional Brownian motion case.

4. Study of the general case

The analysis of the general case requires more involved techniques compared with the

simplified case. We first state the useful auxiliary results in Section [4.1, and give the proof
10



of Proposition [2.3] in Section [4.2] The proof of an auxiliary result stated in Section [4.1] is
given in Section [4.3]

4.1. Auxiliary results. Let us state the main auxiliary results which are used in Sec-
tion [4.2] below to prove Proposition [2.3]
Let T' € (0,00) be fixed. For all a € (0,1), if f:[0,7] — R is a real-valued function, set

fla= sup MU= S

Osti<tr<T  |t2 — 11

Recall that f is a-Holder continuous if | f|, < 0.

First, the trajectories of a fractional Brownian motion (3 (t))0 <o With Hurst index H
are a-Holder continuous, for all « € (0, H). More precisely, for all « € (0, H), there exists an
almost surely finite random variable C,, such that

(17) 187N < Ca,

moreover E[C?"] < oo for all m € N. The property is a consequence of the Kolmogorov
regularity criterion, using the equality E[|8% (o) — 87 (t1)|?] = |tz — t1/* and the fact that
B is a Gaussian process.

Next, in order to study discrete-time processes, it is convenient to introduce the following
variant of the Holder semi-norms. Let At denote the time-step size, with the condition
T = NAt for some N € N. For every t € [0,T], let £(t) € [0, T] be defined by ¢(t) = nAt for
all t € [nAt, (n+1)At), n € {0,...,N —1} and ¢(T) = T. To simplify notation, we omit the
dependence of ¢ with respect to At. For all o€ (0,1) and 0 <a<b<T,if f:[0,7] - R
is a real-valued function, set

||f”a,b,a,At = sup M

a<t1<t2<b;€(t1):t1 |t2 - t1|

Observe that the only change in the definition is the condition ¢(t;) = ¢;. The dependence
with respect to the left and right hand points of the interval is also made explicit (we only
need a = 0 and b = T for the standard version | - ||,).

In the sequel, we employ the following result to estimate Young integrals.

LEMMA 4.1. Let z = (z(t))0<t<T be a a-Hélder continuous real-valued function with

ae€ (0,1). Let M €N, and let F : RM — R be a continuously differentiable function.
Assume that real-valued mappings yu, . .., yn Satisfy |Ymllar.ar < 00 forallm =1,..., M,
for some o' € (0,1) such that a + o/ > 1.
Then there exists C' € (0,00), which does not depend on At, such that the following holds:
for all s,t € [0, T] such that {(s) = s, one has

t

|J F(y(e(r))dz(r)| < Csup [F(y(¢(r))l]a(t —s)*

s s<r<t

(18) M
+ 25 sup [0, FyEr)Iymlssaaelzlalt — )7,

m=1 s<r<t

where to simplify notation F(y(¢(r)) = F(y (fl(r)), ey (U(r))).



Lemma is a variant of [6], Lemma A.l|, where the dependence with respect to
|Ymlls.tar,ae When m varies is made more explicit. This is instrumental in the proof of
Lemma below, where bounds for derivatives are proved succesively. We refer to [6]
for the proof. Note that the standard inequalities for Young integrals, considering the stan-
dard Holder semi-norm |- |, cannot be applied, since r — y(¢(r)) is piecewise constant, and
thus in general is not (Holder) continuous.

Let us now introduce a generalized version of the auxiliary scheme : for all n €
{0,...,N}, ke{n,...,N — 1} and x € R, set

Xopir (@) = X () + (X p(2)) 3B

Xpn(z) = 2.
The definition above is indeed a generalization of : one has X, = X, (z) for all
ne{0,...,N}.

Finally, let us introduce the auxiliary functions w,, for n € {0,..., N}, as follows. Given
a real-valued mapping ¢ : R — R of class C}, define

for all n € {0,..., N} and = € R. To simplify notation, the dependence of u,, with respect
to the time-step size At is omitted. Note that uy = ¢. Observe that the u,’s are random
functions. They satisfy the following property: for all n € {0,..., N — 1} and all 2 € R, one
has

(21) Un () = tns1 (2 + G(2)BY).

Indeed, by construction X, 1 (:U + ﬁ(x)éﬂf) = X, (7).
We are now in position to state the main auxiliary result of this section.

(19)

LEMMA 4.2. Assume that ¢ is of class C3. There exist an almost surely finite random
vartable A, and an almost surely positive random variable Atqy < T, such that for all At €

(0, Aty) one has

(22) sup sup <|un(x)] + |u, (x)| + \uﬁ(:v)]) < A.
0<n<N zeR

The proof of Lemma is technical and is postponed to Section [£.3] The arguments
are similar to those used in [6] to prove boundedness of the solutions of Euler or Milstein
schemes applied to SDEs driven by fractional Brownian motion. Indeed, the proof consists
in first expressing the first and second order derivatives of u, using solutions 7, x and ¢,
of variation equations (see equations and below), second in proving appropriate
bounds.

REMARK 4.3. In the standard Brownian motion case (Section[3.9), the role of u, would

be played by a function defined as E[o(X, n(x))]. The Markov property would play a key
role in the analysis, and by homogeneity it would be sufficient to look at the properties of the

mapping Elp(Xon(2))].

In the fractional Brownian motion case, the Markov property is not satisfied, and taking
expectation is not relevant. Instead of the Markov property, the flow property 15 satisfied.
Observe that the auxiliary functions u, need to be random. In addition, u, needs to be defined

in terms of X, n, instead of Xo n_n, since the process is not time homogeneous.
12



Even if the increments of the fractional Brownian motion (5ﬁf)0<n<N71 are not indepen-
dent, the definition of the random functions u,, above makes sense. In the property ,

this lack of independence results in the following property: u, ., is not independent of 634 .

4.2. Proof of Proposition in the general case. The objective of this section is
to provide the proof of Proposition The guideline of the proof is similar to the approach
in the simplified case, except for the first step:

e the error is written in terms of the functions w, defined by with a telescoping
sum argument

e then the property and a second order Taylor expansion argument are used

e the first order term vanishes by definition of the averaged coefficient g

e the second order term is handled using the boundedness of u,, uniformly in At,
obtained in Lemma [4.2] using the condition H > 1/2 for the Hurst index.

PROOF OF PROPOSITION [2.3] IN THE GENERAL CASE. Let ¢ be of class C}, and let u,
be defined by , for n = 0,..., N. Recall that EZ[-] denotes the conditional expectation
with respect to the o-field F¥ generated by the fractional Brownian motion 4. On the one
hand, by definition of ug one has ¢(X n) = ug(xo) = Ef[ug(z0)], where 29 = X = X§ (uq is
a FH-measurable random variable). On the other hand, one has p(X$) = uy(X%). Using
a telescoping sum argument, one then obtains

E[o(X3)] = ¢(X ) = B [un (X)) — B [uo(X7)]

= D (B [uns1 (X0)] = B [un (X)])

3 E e (X0 9% 90008 — s (X2 + GXD0E)].
n=0
where in the last line we have used the definition of the limiting scheme, and the
property of the functions wu,,.
A Taylor expansion argument then gives, for all n € {0,..., N — 1}

IEH[unH (Xg +g(X?, vn)éﬂf) — Upy1 (X,? + §(X2)5ﬁf)]
= E" g1 (X)) (9(X0: ) — G(X0) 1685 + R,
with |R,| < C'sup|ul,,()[(685)?%, since g is assumed to be bounded.

Assume that At satisfies the condition At < Aty where the random variable Atg is given
in Lemma . On the one hand, using the Holder continuity property of the fractional
Brownian motion, with o € (%, H) and the bound for the second order derivative of u,, stated
in Lemma [4.2] there exists an almost surely finite constant A, which does not depend on At,
such that

|R,| < AA#*
for all n € {0,..., N — 1}, if At < Aty.

On the other hand, using the definition of § and conditioning with respect to X°, one
obtains the key property

E" [uy, 1 (X3) (9(X0, 1) — 9(X3))] = 0,

which means that the first-order term vanishes for all n e {0,..., N — 1}.
13



Finally, one obtains

N-—1
E7[o(X%)] ~ ¢(Xn)| < 3 |Ral < ATA — 1,
n=0 -

almost surely, since « is chosen such that 2a > 1.
Since ¢ is assumed to be bounded, by the dominated convergence theorem the almost
sure convergence implies

E[|[ET[p(X})] — ¢(Xn)|] — 0.

This holds for all functions ¢ of class C}.
This concludes the proof of Proposition in the general case. 0

REMARK 4.4. The proof above also handles the simplified case treated in Section[3, with a
slightly different point of view. In that case u,(x) = @(x+g03H2), and the proof of Lemma
15 straightforward in this simplified case.

4.3. Proof of Lemma [4.2] It remains to give the proof of Lemma [£.2] which first
requires to introduce additional notation. By the definition of the functions u,,, one has
the following expressions for «, () and ! (z):

U (2) = @' (X n (%)) 110, v ()
un(2) = @' (Xnn (2))n () + ¢ (@) (X, v (2)) (1,5 (2)),
where for allne {0,...,N —1}, ke {n,...,N — 1} and x € R, one has

(24) N1 (2) = N () + 7 (X (%)) 00,1 ()08

and

(25) Cukr1(2) = Cu () + 7 (X v ()G (2)0B5 + T (X (2)) (1, (2)) 6B

with initial conditions 7, ,(z) = 1 and (,,(x) = 0.

The expressions in are obtained by recursion arguments. In the sequel, to simplify
notation, we let X, = X, (), Tox = Mox(z) and (i = Gur().

Let us introduce auxiliary continuous-time processes X, M and én, defined on the interval
[tn, T] (with t,, = nAt), forall n e {0,..., N —1}: forall k € {n,..., N — 1}, if t € [tg, tx1+1),
then

(23)

One has Xn(tk) = Xk, Tn(tr) = Mny and fn(tk) = (pp foralln <k < N.
We are now in position to prove Lemma [4.2]

PROOF OF LEMMA .2l The proof is divided into three steps, where bounds for X, 7,

and (, are proved successively.
14



Step 1. The auxiliary process X, satisfies the following property: forallt, < s <t <T,
such that s = ¢(s), one has
t

<&w—Xu@=f%@umwmwm,

where Fy = 7.
Using Lemma with & = o € (3, H), and using the boundedness of g and 7', one
obtains the inequality

[Kallssast < Colg, 187 o) (1 + (¢ = )| Kallosast)-

Let 79 be a positive random variable, chosen such that
o 1
Colg, 18”175 < 5,
and 7o < T

Then if s = (s) < t satisfy t — s < 79, one obtains

HXan,t,a,At < 2Co(g, HﬁHHa)a
which gives ) .
[ Xa ()] < [Xau(s)| + 275 Colg, | B"]a)-
If the time step size At satisfies At < 7y, one thus obtains
<

[Xnko| < [X nk1|+27800(g,||6HHa)

for integers k; < ko such that (ko — k1)At < 79, and iterating the argument and using the
condition X, ,, = x, one obtains

[ Xons| < |2] +2No75Co (g, 16 [la)

where the integer Ny is chosen such that Nomg = T, for all k€ {n,... N}, if At <7y
Step 2. The auxiliary process 7, satisfies the following property: for all t, < s <t < T,
such that s = ¢(s), one has

M (t) = 7n(s) = J Fy (X (€(r)), 71 (0(r)))dB™ (r),

where F(x,n) = g'(x)n. Note that |Fy(x,n)| + |0, Fi(z,n)| < C|n| and |0,Fi(z,n)| < C.
Using Lemma [4.1) with o« = o € (5, H), and using the boundedness of g, g’ and g”, one
obtains the inequality

fiallsexse < Cr(@)18™ a0
+ Cr@) 1B alt = ) (Inloto | Kallsnasr + Vil e )

where |7, .0 = sup |7 (r)].

re[s,t]
Owing to Step 1, if t — s < 79, one has | X,,|sta.a: < 2Co(g, |7 ). In addition, one has

[7nllsc0 < 1 ($)] + (8 = 5)*[]s1.080-
One thus obtains an inequality of the type

finllssaa < Cr(g, 181a) (1n()] + (£ = ) |nlosa0)
15



if t >s=1{(s)and t — s < 79. Let 7y be a positive random variable, chosen such that
1

Ci(g, |Bla)m < 5

and 7 < 7p.
Then if s = /(s) < t satisfy t — s < 71, one obtains

17l 0,80 < 2C1(g, [ Blla) 7n(s)],
which gives

[ (B)] < (1 + 2C1(g, [Bla)Ti) [ia(s)]-
If the time step size satisfies At < 71, one thus obtains

ko] < (14 2C1(g, 180)70") M|

for integers k; < ko such that (ky — k1)At < 71, and iterating the argument and using the
condition 7, , = 1 one obtains

o Ny
el < (14 2C1(g, |Bla)m)

where the integer N; is chosen such that Nym > T, for all k € {n,..., N}, if At < 7. This
implies the uniform bound

(26) 17 ll6n,700 < C1(9, 18" ]la)
which holds for all At <7 and all n e {0,..., N}.
Step 3. The auxiliary process (, satisfies the following property: for all ¢, < s <t < T,
such that s = ¢(s), one has
t

Calt) — Cals) = f (K (1), 7)), 7 (0(r)))AB (),

where Fy(z,7,(¢) = 7'(2)¢ + g"(z)n*. Note that |Fy(z,n, ()| + |0, Fa(z,1,¢)| < CI¢] + C|nf?,
|&77F2(x,n,(’)| < C1|77| and |54F2($7777 C)| <C.

Using Lemma with « = o’ € (%, H), and using the boundedness of g, ¢, §” and g®,
one obtains the inequality

Culstase < CoONB oIl o + 17120
+ Co(@)18" Ja(t = ) ((ICalsroo + Vinl2 o) 1 Kl st + Winllsiolinlsanse + [Galssaae)

where [7us0c = sup [7(r)| and [Galssoe = sup [Gu(r)].

re[s,t] re(s,t]

Owing to Steps 1 and 2, if ¢ — s < 71, one has | X, |scaac < Ch(g, |87 4) and |7, ] 540 <
Ci(g,]8% ), and one has the uniform bound |7,]:, 700 < Ci(g,8%]a) if At < 7. In
addition, one has [[(ulst0 < [Cu(s)] + (£ — 8)¥C]s.t.0,at-

One thus obtains an inequality of the type

Callspeat < Calg. 181a) (1 + 1a(o)] + (¢ = 51l

ift >s=4{(s) and t — s < 79. Let 7» be a positive random variable, chosen such that

1
Colg 18178 < 5

and To < T1.
16



Then if s = {(s) < t satisfy t — s < 7, one obtains

[Galls tanae < 2Ca(g, [Bla) (1 + |Ca(5)]),

which gives ) )

[Ga(®] < (1+2Ca(g, |18la)75) [Ga ()] + 2Ca(g, |Ba)7s"
If the time step size satisfies At < 75, one thus obtains

[Ga < (1 +2C2(9, 1810)75) 1| + 2C2(g, [1Bla) s

for integers k; < ko such that (ko — k1)At < 71, and iterating the argument and using the
condition (,, = 0 one obtains

Cok] < (142C5(g, 18]a)75) "™

where the integer Ny is chosen such that Ny = T, for all k € {n,..., N}, if At < 75. This
implies the uniform bound

(27) [Gallenrco < Ca(g, 187 1),
which holds for all At < 7 and all n€{0,...,N}.
Conclusion

Owing to the expressions for u! (z) and u”(x), and to the bounds and for
NN = Tn(T) and ¢, v = (,(T'), one obtains

sup (Jun@)] + [, ()| + i (w)]) < A

for all n € {0,..., N}, where A is an almost surely finite random variable, if At < Aty = 1
where 7 is the positive random variable constructed in Step 3 above.
This concludes the proof of .
O

5. Discussion

In this article, we have studied a class of Euler schemes for slow-fast systems of sto-
chastic differential equations . The slow component X€ is driven by a fractional Brownian
motion with Hurst index H > 1/2, and converges in probability to a process X, owing to
the averaging principle recently proved in [3]. We have proved that well-chosen numerical
schemes are able to reproduce a version of the averaging principle at the discrete-time level:
they satisfy the asymptotic preserving property stated in Theorem [2.2] In particular, the
time-step size At can be chosen independently of the time scale separation parameter e. We
have illustrated the differences with the standard Brownian motion case treated in the recent
work [1].

We have left open the important question of proving error estimates: is it possible to
prove a uniform accuracy property (as in [1] in the standard Brownian case), i.e. an error
estimate depending on At, uniform with respect to €? Studying this question may require
more involved techniques (such as the ones employed in [6] and references therein) than
those used in this manuscript. More precisely, it is challenging to prove error estimates for

E[[E7[o(X5)] - E[o(X)]|]

when € — 0, for fixed At > 0, which are uniform with respect to At.
17



Note that obtaining nice error estimates when At — 0 and/or ¢ — 0 may provide an
alternative proof of the averaging principle from [3] by a temporal discretization technique
(similar to the one proposed in the seminal article [4] in the standard Brownian motion
case). In this article, we have assumed that the Hurst index satisfies H > 1/2. To the
best of our knowledge, the validity and the expression of the averaging principle for SDEs
driven by a fractional Brownian motion with Hurst index H < 1/2 is not known. The
construction of well-chosen numerical schemes, with associated nice error estimates, may
provide a strategy to generalize the averaging principle to the case H < 1/2. The scheme
would then be asymptotic preserving — but stating this property needs to identify the limit
at the theoretical level. We leave the challenging question of the generalization for H < 1/2
for future works.

As mentioned at the beginning of Section [2] it is straightforward to generalize the results
of this manuscript to higher dimensional situation. It would also be straightforward to
consider systems of the type

AX(t) = FOXmYdt+ 5 g, (X4(6), me(1))dB 1),

J=1

ame(t) = —Lmetyar + Y2o(X(0)dB(b),
€ Ve

where X(t) e R 0; : R? x R — R, and " are independent fractional Brownian motions.
In particular the treatment of the drift term f has been performed in [1], this is why assuming
that f(xz,m) = 0 in the present article is legitimate, in order to focus on the main features due
to the fractional Brownian motion. Assuming that o(z) = 1 also simplifies the presentation,
however it is straightforward to check that the proof of Proposition remains unchanged
(up to modifying notation), thus Theorem also holds in this case.

Instead of using the standard Euler scheme to discretize the slow component X°¢
of , in order to increase the performance it would be tempting to employ the scheme
studied in [6], of the type

1
X:L-‘rl = X:L + g(X:n mf’L-i—l) (BH(tn-H) - /BH(tn)) + §(V$99> (Xqiv m;+1)At2H°
The definition of m, is not modified from (3)). When € — 0, one obtains the limiting scheme
1
X2+1 = Xg + g(Xga F}/n) (5H(tn+l) - 5H(tn)) + _(vxgg) <X727 F}/n)At2H

2
This scheme is consistent (when At — 0) with the solution of the averaged equation, however
it is not clear that the good performance of the modified scheme is preserved when € = 0:
we have E[g(-,7,)] = g(-), however in general one may have E[(V,99) (-, )] # (V.99)(-) -
however observe that the equality holds if d = 1. The construction of more efficient methods
than the standard Euler scheme when both € > 0 and € = 0 may be investigated in future
works.
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Appendix A. Proof of Lemma 2.1

PROOF. Proof that (i)=(ii). Assume that Xy — X in probability. For any function ¢
of class C, ¢ is bounded and Lipschitz continuous, thus there exists C(p) € (0,0) such
that

E[|E[¢(Xw)IG] — (X)]] < E[Jo(Xn) - p(X)]]
< ] — —
< C(p)E[min(| Xy — X|,1)] e 0,
where the last step is a consequence of convergence in probability. As a consequence (i)
implies (ii).
Proof that (ii)=(i). Introduce an auxiliary function ¢ : R — R be such that

e ¢ is of class C*
o p(z) =0if 2] <2
e p(x)=0if x| =1
e 0<p(r)<1lif <2<
For every k € Z and n € (0, 1), introduce the interval I}, = [%, (kgl)"), My = % and

the function
P =207 (- — miy)).

Then ¢y, is of class Cf (where K is an arbitrary integer).
For all n € (0,1), one has

P(| Xy — X| >n) = D E[Ljxy—xi=nlxer, ]
keZ
Owing to the dominated convergence theorem — one has E[]I‘XN_X|>,7]1XeIk}U] < P(X € Ii,)
with >, ,P(X € I;,) = 1 — it suffices to prove that for all k£ € Z one has

E[1xy—x>nlxer., ] v U

Note that combining the conditions | Xy — X| > n and X € I, implies that ¢y, (Xn) =1
and ¢y ,(X) = 0. Using the fact that X is G-measurable, one thus obtains

E[enn(Xn)1xer,, |
|E[©nn(Xn)|G]Lxer,, |
[(Elrn(Xn)IG] = rn(X)) Lxer, ]
LB (X2)I] — p1a(X)] = 0,

0

E[]1|XN—X\>n]lXe]km]

INCININN
E & =

using the assumption that (ii) holds, with ¢ = ¢y .

Applying the dominated convergence theorem then gives

P(| Xy —X|>n) — 0,
N—

for all n € (0,1). As a consequence Xy converges to X in probability when N — oo, and (ii)
implies (i).

This concludes the proof. 0]
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