N
N

N

HAL

open science

The averaging principle for stochastic differential

equations driven by a Wiener process revisited
Charles-Edouard Bréhier

» To cite this version:

Charles-Edouard Bréhier. The averaging principle for stochastic differential equations driven by a

Wiener process revisited. Comptes Rendus. Mathématique, 2022, 360, pp.265-273. 10.5802/cr-

math.297 . hal-03211903

HAL Id: hal-03211903
https://hal.science/hal-03211903

Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03211903
https://hal.archives-ouvertes.fr

The averaging principle for stochastic differential
equations driven by a Wiener process revisited

Charles-Edouard Bréhier

ABSTRACT. We consider a one-dimensional stochastic differential equation driven by a
Wiener process, where the diffusion coefficient depends on an ergodic fast process. The
averaging principle is satisfied: it is well-known that the slow component converges in dis-
tribution to the solution of an averaged equation, with generator determined by averaging
the square of the diffusion coefficient.

We propose a version of the averaging principle, where the solution is interpreted as the
sum of two terms: one depending on the average of the diffusion coefficient, the other giving
fluctuations around that average. Both the average and fluctuation terms contribute to the
limit, which illustrates why it is required to average the square of the diffusion coefficient
to find the limit behavior.

1. Introduction

Multiscale and stochastic systems are ubiquitous in all fields of science and engineering.
Averaging and homogenization techniques [16] are popular methods to derive lower dimen-
sional problems, which are easier to understand and simulate. In this article, we focus on
the averaging principle for the following class of stochastic differential equations (SDEs)

(1) dX(t) = o (X(t), m(t/€))dB(t),

where ¢ « 1 is the time scale separation parameter, § is a standard real-valued Brownian
motion, and the diffusion coefficient o is a smooth function. See Section for precise
assumptions. The fast component of the system is given by an ergodic Markov process
(m(t)) 1507 evolving at the time scale t/e. The averaging principle states that one can elimi-
nate the fast process when € — 0, precisely the slow component X converges (in distribution)
to the solution X of an autonomous evolution equation called the averaged equation. In the
case of the system , the averaged equation is a SDE of the type

2) IX(t) = S(X(£))d5 (1),
where
2() = o%() = f o, m)du(m),

and  denotes the invariant probability distribution of the fast ergodic process (m(t)) 120"
1991 Mathematics Subject Classification. 60H10.
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In this article, we revisit this problem, and propose an original point of view which
explains why the limit equation is not given by simply averaging the diffusion coefficient o,
which would give

dX (1) = 7(X ())dB(t).

Note that one has 2 = 02 > &2, thus the averaging principle may be interpreted as exhibiting
enhanced diffusion. The approach used in this article can be explained as follows: we
introduce a decomposition X¢ = Y + Z€ of the slow component, where

dY*“(t) = a(Y*(t) + Z°(t))dp(t)

dZ(t) = (U(Ye(t) + Z(t),m(t)) —a(Y(t) + Zs(t)))dﬁ(t).
Observe that Y€ is defined in terms of @, and thus may be interpreted as an average term,
whereas Z may be interpreted as a fluctuation term. The reason behind the expression of the
averaged equation in terms of ¢? is the fact that Z¢ converges to a non-trivial limit when

e — 0. Precisely, the main result of this article, Theorem [2.1] states that (Y(T), Z¢(T))
converges in distribution, when ¢ — 0, to (Y/(7), Z(T)), for all T' = 0, given by

{ dY (t) = 5(Y (t) + Z(t))dB}
dZ(t) = {o)(Y (t) + Z(t))dp;,

where (Btl) and (@2) 1>0 are two independent standard real-valued Wiener processes, and

(3)

(4)

(oY = (0 —7)? 5) It is then straightforward to retrieve the standard version of the averaging
principle: X(T') = Y(T) + Z(T) — Y(T') + Z(T), and one checks that Y (T') + Z(T) is
equal to X(T T) in distribution. That identity is due to the following observation: one has
7% + (0)? = 62. The decomposition into average and fluctuation terms then clearly explains
the diffusion enhancement in the averaged equation (|2)).

The main result of this article has an elementary formulation. Even if the averaging
principle has been extensively studied by many authors, to the best of our knowledge, it
seems that the point of view proposed in this article is original and that Theorem is
a new result in the mathematical literature. The analysis is performed for a simple one-
dimensional SDE, it may be generalized to more complicated problems.

Let us review the literature concerning the averaging principle for SDEs. The list of
references is not exhaustive. We refer to the seminal article [11] by Hasminkskii and to the
standard monograph [8] (in particular Chapter 7). See also [16] (in particular Chapter 17)
for a recent overview of the averaging and homogenization techniques for SDEs. Let us also
mention [19], and the recent works [17), 18]. In the last decade, the averaging principle
has been extensively studied for systems of stochastic partial differential equations, see for
instance [4}, [5], contributions of the author [1, 2] and references therein. Recently Hairer
and Li [9] have extended the averaging principle for SDE systems of the type where the
standard Brownian motion f3 is replaced by a fractional Brownian motion A% with Hurst
index H > 1/2: in Section {| below we explain how the point of view developped in the
present article is related to that generalization. Finally, numerical methods for systems
of the type (1) which are efficient when ¢ « 1 have been studied: see for instance the
heterogeneous multiscale method proposed in [7] and the asymptotic preserving schemes
proposed in [3].
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The proof of the main result Theorem [2.T]employs two standard tools when studying the
behavior of multiscale stochastic systems: solutions of Kolmogorov and Poisson equations.
We refer for instance to [12] and to the series of articles [13], 14}, [15] for similar computations.
See also [T, 2] where weak error estimates in the averaging principle for SPDEs are proved
using such techniques, and [17, 18]. An original feature of the proof of Theorem below is
to consider the solutions of two Poisson equations (one related to the average behavior, one
related to the fluctuations), whereas the standard approach to the averaging principle only
requires a single Poisson equation. This may be surprising since the system only depends
on two time scales t and ¢/e. The use of two Poisson equations is standard in homogenization
or diffusion approximation problems, where three time scales ¢, t/e and t/e® appear, see for
instance [6], 10| and [13), 14, 15]. The list of references is not exhaustive.

This article is organized as follows. Section [2]is devoted to state the assumptions (Sec-
tion and the main result (Section of this article. The proof of Theorem is
provided in Section Concluding remarks and perspectives for future works are given in
Section [l

2. Setting and main result

Let (5(t)) 1= Pe a standard real-valued Wiener process. Let € € (0,1) denote the time-

scale separation parameter. We consider the following SDE on the one-dimensional torus
T

() dX*(t) = o (X(), m"(t))dB(t),

with initial condition X§ = zy € R (assumed to be deterministic and independent of e for
simplicity). Assumptions for the diffusion coefficient o and the fast process m¢ are given in
Section 2.1] below.

Working in the one-dimensional torus T simplifies the presentation, however one may
replace T by R with minor modifications in the setting. Generalization to higher dimensional
problems is mentioned in Section [4]

2.1. Assumptions. The diffusion coefficient ¢ is assumed to satisfy the following con-
ditions.

ASSUMPTION 1. The mapping o : T x R — R is of class C*, with bounded derivatives
with respect to the second variable m. In addition, assume that for all x € T, the mapping
o(x,-) is not constant.

In particular, note that ¢ is Lipschitz continuous, this ensures the global well-posedness
of for all € > 0.
The fast process m€ is assumed to satisfy the following conditions:

ASSUMPTION 2. Foralle e (0,1) and allt = 0, one has m(t) = m(t/e), where (m(t))t>0
1s a real-valued ergodic Markov process which is independent of 3. We assume that the initial

condition m(0) = myq is a given deterministic real number. Assume that sup E[|m(t)|*] < cc.
=0

Let 1 denote the unique tnvariant probability distribution of the process (m(t))t>0, and

let L denote its infinitesimal generator.
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Define, for all x € T,

7(2) = | ote.m)du(m)

(o) \/f o, m) — 5(2)) du(m).

We assume that for all x € R, the Poisson equations

{ —Lapy (z, ) o(z, ) 0(33)

—Lips(x,-) = (o(2 ()" = (o)(x)?

admit solutions wl, oy — without loss of generality one assumes that for all x € T one has
§ 1 (@, m)dp(m) = §o(x, m)du(m) = 0 — and that the solutions 1,12 are of class C* on

T xR. In addztzon the deriwatives are assumed to grow at most quadratically with respect
to m.

(7)

Note that the mappings @ and {(c)? inherit the regularity properties from the mapping
o with respect to the w-variable: in particular they are of class C* on the torus T. Recall
that for all z € T the mapping o(z, ) is not constant (owing to Assumption [1)), thus one has
(o)Y*(x) > 0 for all x € T. As a consequence, (o) then inherits the regularity properties from
{0)?, in particular it is of class C*.

Note that the solvability of the Poisson equations is possible since the right-hand
sides satisfy the required centering conditions by definitions @ of @ and {(0)*. Observe also
that for all x € T one has

(8) 7(2)* + {o)(2)* = o*(w) = JU(% m)*dpu(m).

Let us provide a standard example for the fast process: (m(t)) +>0 can be the solution of
the SDE

dm(t) = =V'(m(t))dt + v/ 2dW (t),

with appropriate assumptions on the potential V : R — R — for instance V(x) = z?/2, which
gives an Ornstein-Uhlenbeck process. In that example the fast process (mﬁ(t)) 1= SOlves the
SDE
V'(me(t 2
dme(t) — L) gy £dW(t),
€ Ve

and the invariant distribution u is given by
du(m) = Z 7V exp(=V (m))dm

with the normalization constant Z = {exp(—V(m))dm. In that example, it is straightfor-
ward to check that the conditions in Assumption [2| are satisfied (with appropriate regularity

and growth assumptions on V).
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2.2. Main result. The objective of this article is to propose a version of the averaging
principle with an original point of view. First, recall that the standard version states that
when € — 0, the solution X of (5)) converges in distribution to the solution X of the averaged
equation

(9) dX(t) = S(X(t))dB(t)

with initial condition X (0) = z¢, where

S(z) = A/ o2(x).

Note that ¥(z) > 7(x), owing to the identity and Assumption I} We refer for instance
to [16], Chapter 17| (and the other references mentioned in Section.

The version of the averaging principle studied in this article requires to introduce two
auxiliary processes Y and Z¢ as follows: we consider the system

{ dY*“(t) = oa(Y*(t) + Z°(1))dB(t)
dZ°(t) = (o(Y*(t) + Z°(t), m“(1)) — T(Y(t) + Z°(1)))dB(1)

with initial conditions Y¢(0) = 0 and Z¢(0) = zo. Observe that by construction, one has the
identity

(10)

X(t) =Y (t)+ Z(¢)
for all ¢t > 0.
The main result of this article is the convergence in distribution of (Y¢(7'), Z¢(T)) to

(Y(T), Z(T)), where the process (Y (t), Z(t))t>0 is defined as follows:
an dY (t) = 5(Y () + Z(t))dB;
dZ(t) = {o)(Y (1) + Z(t))dBF,

where (Btl) =0 and (ﬂf) +=o are two independent standard real-valued Wiener processes.
We are now in position to state the refined version of the averaging principle.

THEOREM 2.1. For all T € (0,00), one has the convergence in distribution
(VA(T), Z5(T)) = (Y (1), Z(T)).
Note that the standard version of the averaging principle is a straightforward corollary

of Theorem [2.1] On the one hand, one has the almost sure equality X<(T) = Y(T') + Z<(T).
On the other hand, set X (¢) = Y (¢) + Z(t), then one has

dX (t) = G(X(1))dB, + {o)(X(t))dB;.
The associated infinitesimal generator is given by
1 1—
S () + @), = 52 (@)2, = 35 PE,,

owing to the identity . As a consequence X and X are Markov processes with the same
infinitesimal generator, and X (0) = X (0) = x¢: we thus obtain the equality X(7") = X (T)
in distribution. Finally, Theorem [2.1] implies

X(T) = Y(T) + Z(T) — Y(T) + Z(T) = X(T)

1

where the convergence and the equality are understood to hold in distribution.
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The refined version is an explanation of the well-known fact that X(z) > & (z) — which
is often justified by the observation that one needs to average the infinitesimal generator of
the process instead of its coefficients. It also illustrates why the convergence only holds in
distribution. To the best of our knowledge, Theorem is a new result.

Let us present a simplified case to illustrate Theorem assume that o(xz,m) = o(m)
only depends on m. In that case, & and (o) are constants, the system ([10) is rewritten as

dY“(t) = 7dB(t)
{ dZ<(t) = (o(m(t)) — 7)dB(t).

In particular, the distribution of Y¢(T') is N'(0,52) does not depend on e¢. Owing to The-
orem [2.1 Z¢(T) converges in distribution to Z(T) ~ N(0,{c)*T). In fact, more pre-
cisely (Y(T'), Z°(T')) converges in distribution to the non-degenerate Gaussian distribution
N(0,Q) with diagonal covariance matrix @, such that Qi1 = 7T, Qo = {0)*T. Finally,
Y(T) + Z¢(T) converges in distribution to N(0,02T), since 52 + (o) = 2. This confirms
how Theorem [2.1] is a refinement of the standard averaging principle in the simplified case

3. Proof of Theorem 2.7

The objective of this section is to give the proof of Theorem [2.1] Before proceeding, let
us first introduce some of the main arguments of the proof.

Assume that ¢ : T2 — R is a mapping of class C*. We prove below that the weak error
satisfies

(12) [Elp(Y(T), Z2(T))] = Elp(Y(T), Z(T))]| < C(T, ¢, z0)e

for some C(T,p,z9) € (0,00). By a standard approximation argument, the weak error
estimate implies that one has

Elp(Y(T), Z(T))] — Elp(Y(T), Z(T))]

for all continuous mappings ¢ : T? — R, which means the convergence in distribution
stated in Theorem It thus suffices to establish the weak error estimate to prove
Theorem 2,11

To prove the weak error estimate , it is convenient to introduce two auxiliary map-
pings v and ® from [0, 7] x T? x R to R. First, u is the solution of the Kolmogorov equation
associated with the SDE system for (Y (2), Z(t))t>0:

1 1
(13) owu(t,y, z) = §E(y + 2)28§yu(t, y,z) + §<0>(y + 2)20% u(t,y, 2),

with initial condition u(0,y,z) = ¢(y, z) for all (y,z) € T?. Using Assumption [I] and (6],
one checks that u is of class C* with respect to (y, z) and of class C' with respect to t.
Second, for all t > 0, (y,2) € T? and m € R, set

_ 1,
(14) @ty z,m) = 5y + 2)0.u(T = t,y, 2)th1(y, 2,m) + ST = t,y, 2)¢a(y, 2,m).
One checks that @ is of class C! with respect to ¢, and of class C? with respect to (y, z,m),

with at most quadratic growth with respect to m.
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PROOF OF THEOREM [2.1l Expressing the weak error in terms of the solution u of the
Kolmogorov equation , and applying [t6’s formula, one obtains

Ele(Yr, Z7)] = Ele(Yr, Z7)]
= E[U(O, Y;W Z%)] - E[U(T7 }/067 ZS)]

T
:J E[—ou(T —t,Y¢, Z5)]dt

0
1 (7T
* §J E[G(YS + Z)?0,u(T — t, Yy, Z7) | dt
0
T

+ f E[a(Y; + Z) (oY) + Zi,m) —o(Yy + Z5)) Oyu(T — .Yy, Z) |dt
0
1 T € € € = € € 2’32 € ¢
+§ E[(U(Y; +Zt7mt) _O-(Y;‘, +Zt)) (/zzu(T_t7Y; ’Zt>]dt
0
T
= | BIo 0 20 (o0 Zim) - 7 4 20)) BT~ 1Y Z0)
0
1 T
+5 | B0+ Zim) — o4 + 20)° )+ Z0) 2l ~ 1Yy Z0)
0

where the last line comes from replacing d,u using the Kolmogorov equation .

Observe that the two terms in the right-hand side above have a nice form, since the
factors in parenthesis are centered with respect to the invariant distribution p in the m
variable, and the other factors do not depend on m. Recall that the auxiliary functions
11 and 1y are defined as solutions of the Poisson equations . As a consequence, by the
definition of the auxiliary function ®, the weak error satisfies the identity

(15) El(VE, Z6)] — Elo(Yr. Zr)] = — j E[LO(t, Y}, Z{,mS)]d.

Applying It6’s formula, one has

T 1 T
+J E[A(I)(t,}{f,Zf,mg)]dtJr—J E[LD(t, Y, ZF, mS)]dt,
0 € Jo

where the auxiliary differential operator A is given by
1_ _ _ 1
A= 8t+§U(y+2)26§y+a(y+z)(a(y+Z, m)—o(y+z))0a, + ( (y+ 2, m)—a(y+2)) 2.

Finally, the weak error estimate satifies

E[o(Yr, Z7)] — Elo(Yr, Zr)] = €(E[®(0, Y, Z5, mp)] — E[®(T, Y}, Z;, m7)])

T
f E[A®(t, Y, Z;, m§)|dt



using the regularity properties of ® and the moment estimate

sup sup E[[m(¢)[*] = sup E[|m(t)[*] < o
ec(0,1) =0 =0
owing to Assumption [2]
This concludes the proof of the weak error estimate and of Theorem . O

Observe that the proof of Theorem requires to exploit the solutions v and 15 of two
auxiliary Poisson equation. On the one hand, the proof of the standard averaging principle
exploits the solution v of a single Poisson equation, namely

—ﬁ@/}(l’, ) = 0-2(17’ ) - ?(l’)
On the other hand, using the solutions of two Poisson equations is standard in homog-
enization theory, where the infinitesimal generator has an expansion of the form L =
Lo+ e 1Ly + e 2L — whereas it is of the form £¢ = Ly + ¢ 'L in the averaging regime

we consider. The two Poisson equation appears to deal with different scales € and e~ ! in
that problem.

4. Discussion

In this article, we have revisited the averaging principle for the class of stochastic differ-
ential equations given by . Contrary to the standard approach, we propose to decompose
X =Y+ Z (see (L0))), where Y is defined in terms of the average & (with respect to the
fast variable) of the diffusion coefficient, and Z¢ represents fluctuations around the average.
Our main result, Theorem , states that (Y, Z¢) converges in distribution to a non-trivial
limit (Y, Z). The key observation is that Z is not equal to 0, this explains why the limit X
for X¢ is defined in terms of the average o2 of the square of the diffusion coefficient. Note
that 02 > 7 by the Cauchy-Schwarz inequality (see (§)), i.e. diffusion is enhanced in the
averaging procedure, and the behavior of the fluctuation term Z¢ quantifies the increase in
the diffusion.

The approach to prove Theorem is based on a classical strategy when studying multi-
scale stochastic systems: weak error estimates are proved using solutions of the Kolmogorov
equation associated with the limit, and of Poisson equations associated with the behavior of
the fast component. The solvability of the Poisson equations requires centering conditions to
be satisfied, which identify limit. The proof of Theorem is original since we employ the
solutions of two Poisson equations, instead of only one in the standard proof of the averaging
principle.

Our study is limited to one-dimensional SDEs. It is expected that generalizing the result
to higher-dimensional SDEs and SPDEs is possible. This may be studied in future works.
Note also that it would be straightforward to include drift terms in the SDE : since for
those terms one would only need to average the drift term, one would only need to modify
the definition of the average term Y ¢, whereas the definition of the fluctuation term Z¢ would
not be modified.

To conclude this article, let us mention that recently the averaging principle was proved
for stochastic differential equations driven by a fractional Brownian motion with Hurst index
H > 1/2, see [9]:

dX;(t) = o(X(t),m(t/e))dB" (¢).
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The expression of the averaged equation is different from @D: it is of the type
dxX" (1) = 7(X" (1)dB" (1)

1.e. one simply needs to average the diffusion coefficient. In that case, the decomposition
X =Y+ Z¢ would give Z¢ — 0 when € — 0, ¢.e. the fluctuation term does not contribute
to the limit if H > 1/2 — in the same way as it does not contribute for drift terms. Our
result thus illustrates the differences in the averaging principle between the standard and
fractional Brownian motion cases. Note that, to the best of our knowledge, the validity and
expression of the averaging principle if the Hurst index satisfies H < 1/2 is not known. The
approach introduced in this article may be suitable to investigate this challenging question
in future works.
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