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HOMOGENIZATION OF A MICROSCOPIC PEDESTRIANS MODEL

ON A CONVERGENT JUNCTION

N. El Khatib1,* , N. Forcadel2,3 and M. Zaydan1

Abstract. In this paper, we establish a rigorous connection between a microscopic and a macroscopic
pedestrians model on a convergent junction. At the microscopic level, we consider a “follow the leader”
model far from the junction point and we assume that a rule to enter the junction point is imposed.
At the macroscopic level, we obtain the Hamilton-Jacobi equation with a flux limiter condition at
x = 0 introduced in Imbert and Monneau [Ann. Sci. l’École Normale Supér. 50 (2017) 357–414]. To
obtain our result, we inject using the “cumulative distribution functions” the microscopic model into
a non-local PDE. Then, we show that the viscosity solution of the non-local PDE converges locally
uniformly towards the solution of the macroscopic one.
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1. Introduction

In the literature, several papers proposed mathematical models of pedestrian flows based on partial differential
equations, see [7–9, 26, 31, 34]. Macroscopic pedestrian models are effective for describing pedestrian flows at
large scales but from the modeling point of view, since the dynamics of each pedestrian can’t be described
individually, they are hardly justifiable and incapable to predict all possible situations (for example panic
during an evacuation). At the opposite, microscopic models are strong from the modeling point of view but
complicated to implement at large scales. Among the works modeling pedestrians at the micro scale, we refer
to [21, 23–25, 35].

A rigorous way to justify these macroscopic models is to establish a connection between them and microscopic
ones, we refer for example to [3, 12, 13, 22, 37].

The “follow-the-leader” (FTL) can be used in modeling at the microscopic scale, the traffic and the pedestrian
flows, see [35]. In this paper, we consider the FTL model on a convergent junction and we establish a micro-
macro connection. More precisely, we consider a microscopic pedestrians model, and prove that the cumulative
distribution function on each branch will converge to the solution of a Hamilton-Jacobi equation studied by
Imbert and Monneau in [28] and then in [6, 33]. We obtain our convergence result by using the theory of viscosity

Keywords and phrases: Specified homogenization, Hamilton-Jacobi equations, pedestrians, non-local operators, Slepčev
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Figure 1. The junction J .

solution (see [10, 11]). The first homogenization result in this framework was obtained in [32] and since then,
several works considered this problem. For more details, the reader can refer to [1, 15, 16, 20].

1.1. Presentation of our results

Since the global strategy to get the convergence result is similar to that in [17–19], we focus on the presentation
of the new ideas and we refer the reader to [17] for some technical proofs. The control of oscillations of the
solution is an important result that allows us to determine bounds on the gradient of the limit solution. In
this paper, we provide a shorter proof (compared to [17]) of this result using the idea introduced in [4] and the
definition of the security distance. In addition, we obtain better gradient estimates far from zero. A similar (but
global) result is also needed when constructing the correctors. In this case, we should compare the components
of the solution of an approximated problem on two different branches. We use here the definition of a new
distance d0 which can be seen as a security distance while crossing the junction point. We present our results in
the case of a convergent junction with two incoming roads and one outgoing one to simplify the presentation of
our work and lessen the article. In fact, we will see that in the case of a convergent junction with N branches
(see Appendix A), the mathematical results can be easily extended but need additional “cumulative distribution
functions” and additional partial differential equations.

2. Main result

2.1. The microscopic model

We consider a microscopic pedestrians model on a convergent junction with two incoming roads and one
outgoing road. The junction is defined by J = J1 ∪ J2 ∪ J3 where J1 and J2 are the incoming roads and
isometric to R− and J3 is the outgoing road and isometric to R+. The branches of the junction are glued at
the point 0. The point 0 is called the junction point and for all k = 1, 2, 3, we define J∗k = Jk \ {0}. To be more
precise, the definitions of the branches are given by

Jk = (−∞, 0] · ek for k = 1, 2, J3 = [0,+∞) · e3,

with e1, e2 and e3 being three different unit vectors in R2 (see Fig. 1).
Let x, y ∈ J with x = xk · ek, y = yl · el: the distance d(x, y) in J is defined by

d(x, y) =

{
|xk − yk| if k = l,

|xk|+ |yl| if k 6= l.

Before writing the mathematical model, we describe its purpose.
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Figure 2. Initial distribution of pedestrians.

Purpose of the model. The microscopic model on the junction J describes the following behavior: pedes-
trians on J1 and J2 enter the branch J3 in a periodic manner. Each one of them knows its turn to enter and
will not violate the imposed rule. Such behavior is observed in many real life situations. For example, during
the COVID 19 pandemic, some supermarkets decided to reduce the number of customers shopping inside the
supermarket and a security agent was organizing the customers flow into the supermarket. Usually, in such
situations, we observe the formation of many people lines that converge to the entrance. In order to simplify the
presentation of our model, we assume that we have two lines of people and the security agent lets them enter
in an alternating way, that is one from J1 and then one from J2 then one from J1, etc.

Pedestrian’s initial distribution. We denote by Wi(t) the position of pedestrian i at time t ≥ 0. For i ∈ Z,
we define the following sets: {

L1 = {i ∈ Z, i = −(2k + 1), k ∈ N} ,
L2 = {i ∈ Z, i = −2k, k ∈ N} .

(2.1)

We assume that at time t = 0, the position Wi(0) ∈ J∗1 (resp. J∗2 , J3) if i ∈ L1 (resp. i ∈ L2, i ∈ N∗). Moreover,
we have for all i, j ∈ Z,

d(Wi(0),Wj(0)) > 0.

We refer to Figure 2 which describes pedestrian’s initial distribution on the J .

The leaders. Let Wi(t) be the position of the pedestrian i at time t ≥ 0. For i ∈ Z, we have

Wi(t) ∈ J ⇐⇒Wi(t) = Ui(t) · ek, (2.2)

with 
Ui(t) ≥ 0 and k = 3 if i ∈ N∗,
(Ui(t) < 0 if k = 1) or (Ui(t) ≥ 0 if k = 3) if i ∈ L1,

(Ui(t) < 0 if k = 2) or (Ui(t) ≥ 0 if k = 3) if i ∈ L2.

We denote by di(t) the distance to its leader. For t ≥ 0, the distance di is defined by

di(t) = Ui+1(t)− Ui(t) if i ∈ N
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Figure 3. Schematic representation of φ̄.

and for i ∈ Z− N,

di(t) =

{
Ui+2(t)− Ui(t) if Wi(t) ∈ J∗1 ∪ J∗2 , d(0,Wi(t)) ≥ R1

Ui+1(t)− Ui(t) if (Wi(t) ∈ J3) or if (Wi(t) ∈ J∗1 ∪ J∗2 , d(0,Wi(t)) < R4)

where R1 and R4 are two positive constants defined in (2.3). This means that far before the junction point (resp.
after the junction point), the leader is Wi+2 (resp. Wi+1). As in the “follow-the-leader” model, the velocity of
pedestrian i is a distance of di(t). To ensure a continuous passage from (Ui+2(t)− Ui(t)) to (Ui+1(t)− Ui(t)),
we introduce a function φ̄. The function φ̄ : R× R× R→ R is defined as follow, for R1 > R2 > R3 > R4,

φ̄(x, a, b) =



a if x ≤ −R1,(
a−min(a, b)

R2 −R1

)
(x−R1) + a if −R1 < x ≤ −R2,

min(a, b) if −R2 < x ≤ −R3,(
b−min(a, b)

R3 −R4

)
(x+R4) + b if −R3 < x ≤ −R4,

b if x > −R4

(2.3)

where a, b ∈ R (see Fig. 3).

Optimal velocity functions. We assume different optimal velocity functions on each branch. The velocity
on branch J1 (resp. J2, J3) is V1 (resp. V2, V3). We make the following assumptions.

Assumptions (A)

(A1) For i = 1, 2, 3, the function Vi : R → R+ is Lipschitz continuous, non-negative and non-decreasing
on R.
(A2) There exists h0 ∈ (0,+∞) such that for all h ≤ h0, Vi(h) = 0.
(A3) There exists hmax > h0 such that for all h ≥ hmax, Vi(h) = Vmax.
(A4) There exists a strictly negative real number p3 (resp. p1, p2) such that the function p 7→ pV3(−1/p)
(resp. p 7→ pV1(−3/2p), p 7→ pV2(−3/p)) is decreasing on [−1/h0, p3) (resp. [−3/2h0, p1) ,[−3/h0, p2) )
and increasing on [p3, 0) (resp. [p1, 0) ,[p2, 0) ).
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The behavior near the junction point. Let i, j ∈ Z− N∗: if i < j, then Wj will enter the junction point
before Wi. As we mentioned above, we assume that pedestrians respect the imposed rule: one passes the junction
point coming from J1, and then another one coming from J2. This is the most restrictive assumption of the
paper. This means that W0 enters first, then W1, then W2, etc. To model this phenomena, we introduce the
function ω : R3 → R defined by

ω(x, y, p) = α(x) + (1− α(x))β(y, p) (2.4)

with α being a lipschitz continuous function defining the zone in which the pedestrian Wi ∈ J∗1 (resp. Wi ∈ J∗2 )
starts spotting the position of Wi+1 on the other branch J2 (resp. J1) . It’s defined in the following way:

α(x) =

{
1 if x < −R3 − r or x > r,

0 if −R3 < x < 0
(2.5)

where 0 < r < R1 −R3.
The function β is a lipschitz continuous function describing the fact that if pedestrian Wi+1 is after the

junction point, its influence on Wi disappears since collision is not possible in this case. It’s defined by

β(y, p) =

{
1 if y > r ,

ζ(p) if y ≤ 0 ,
(2.6)

where ζ is a lipschitz function modeling the fact that Wi+1 will enter the junction point before Wi,

ζ(p) =

{
1 if p > d0 + r,

0 if p ≤ d0,
(2.7)

with

d0 > 0. (2.8)

Remark 2.1 (Comments on ω). The role of the function ω is to manage the order of entrance through the
junction point. Let i ∈ L1. If Wi(t) is too close to the junction, that is −R3 < Wi(t) < 0, then it will stop
(ω = 0) if Wi+1 ∈ J∗2 and if

|Wi(t)| − |Wi+1(t)| < d0.

The distance d0 can be interpreted as a security distance when crossing the junction point. Remark also that
when Wi+1 enters the branch J3 i.e. Wi+1(t) > r, the influence of ω disappears (ω = 1). Finally, let us remark
that the definition of the function α on [−R3, 0] means that the influence of ω begins directly when the driver’s
velocity tends to depend on the distance to Wi+1 (see Fig. 4).

We are now ready to write our model. We assume

U0(0) > −R4 and U1(0) > r. (2.9)
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Figure 4. The role of ω.

Our model is described by the following differential equations,
U
′

i (t) = V3(Ui+1(t)− Ui(t)) if i ∈ N,
U
′

i (t) = F (Ui(t), Ui+1(t), V1(Ui+2(t)− Ui(t)), V3(|Ui+1(t)| − Ui(t))) if i ∈ L1,

U
′

i (t) = F (Ui(t), Ui+1(t), V2(Ui+2(t)− Ui(t)), V3(|Ui+1(t)| − Ui(t))) if i ∈ L2\{0},

with

F (x, y, a, b) = φ̄ (x, a, b) · ω (x, y, |x| − |y|) .

Using the definition of φ̄ and ω (see (2.3) and (2.4)), we can reformulate our model in the following way,{
U
′

i (t) = F (Ui(t), Ui+1(t), V1(Ui+2(t)− Ui(t)), V3(|Ui+1(t)| − Ui(t))) if i ∈ L1 ∪ N∗,
U
′

i (t) = F (Ui(t), Ui+1(t), V2(Ui+2(t)− Ui(t)), V3(|Ui+1(t)| − Ui(t))) if i ∈ L2.
(2.10)

Remark 2.2. Inequalities in (2.9) allow us to simplify the presentation. In fact if one of the two conditions in
(2.9) is violated, we are not able to rewrite the model using only two differential equations as in (2.10). Note
that the following equality does not necessarily hold

V3(U1(t)− U0(t)) = F (U0(t), U1(t), V2(U2(t)− U0(t)), V3(U1(t)− U0(t))) .

2.2. The macroscopic model

Let k0 = 1/h0. For k = 1, 2, 3, we define Hk : R→ R by

H1(p) =


−p− 2k0 for p < −2k0,

−V1

(
−2

p

)
|p| for − 2k0 ≤ p ≤ 0,

p for p > 0,

(2.11)

H2(p) =


−p− 2k0 for p < −2k0,

−V2

(
−2

p

)
|p| for − 2k0 ≤ p ≤ 0,

p for p > 0,

(2.12)
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and

H3(p) =


−p− k0 for p < −k0,

−V3

(
−1

p

)
|p| for − k0 ≤ p ≤ 0,

p for p > 0.

(2.13)

Note that for all k = 1, 2, 3, the function Hk is continuous, coercive and because of (A4), there exists a unique
point pk ≤ 0 such that {

Hk is decreasing on (−∞, pk),
Hk is increasing on (pk,+∞).

(2.14)

We denote by

H0 = max
k∈{1,2,3}

Hk
0 (2.15)

with

Hk
0 = min

p∈R
Hk(p). (2.16)

We introduce now the definition of the gradient of a function defined on J . If x ∈ J , then we define

ux(x) =

{
∂iu(x) if x ∈ J∗i ,
(∂1u(0), ∂2u(0), ∂3u(0)) if x = 0,

with ∂iu(x) the derivative of the function u with respect to x ∈ Ji. We denote by J∗ = J\{0}. The macroscopic
model is the Hamilton-Jacobi equation with flux limiting condition at the junction point as considered by Imbert
and Monneau in [28] and given byu0

t +Hk(u0
x) = 0 for (t, x) ∈ (0,+∞)× J∗k ,

u0
t + FA

(
u0
x

)
= 0 for (t, x) ∈ (0,+∞)× {0},

u0(0, x) = u0(x),
(2.17)

where A is the flux limiter and FA is defined by

FA(p1, p2, p3) = max
(
A,H

+

1 (p1), H
+

2 (p2), H
−
3 (p3)

)
, (2.18)

with

H
−
k (p) =

{
Hk(p) if p ≤ pk,
Hk(pk) if p ≥ pk,

and H
+

k (p) =

{
Hk(pk) if p ≤ pk,
Hk(p) if p ≥ pk.

(2.19)

Remark 2.3. In [29], authors showed that equation (2.17) is equivalent (deriving in space) to the model
introduced in [30].
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2.3. The micro-macro connection

To establish the micro-macro connection, we need to introduce two cumulative functions ρ and σ. Unlike the
case of simple road (like in [19]), the pedestrians are not well ordered. In fact, if i ∈ L1 and j ∈ L2, and i < j,
we don’t necessarily have Ui(t) < Uj(t). However, we know that if i, j ∈ L1 ∪ N∗, and i < j, then

Ui(t) < Uj(t). (2.20)

Similarly, (2.20) holds if i, j ∈ L2 ∪ N∗. We have ρ(t, Ui(t)) = −i (resp. σ(t, Ui(t)) = −i) for i ∈ L1 ∪ N∗ (resp.
i ∈ L2 ∪ N∗). The functions ρ and σ are defined as follows,

ρ (t, y) = −

∑
i≥1

H(y − Ui(t)) +G(y − U−1(t)) + 2
∑

i=−2k−1,k∈N∗
G(y − Ui(t))

 (2.21)

and

σ (t, y) = −

∑
i≥1

H (y − Ui(t)) + 2
∑

i=−2k,k∈N∗
G(y − Ui(t)

 , (2.22)

with

H(x) =

{
1 if x > 0
0 if x ≤ 0.

and

G(x) =

{
0 if x > 0
−1 if x ≤ 0.

The main result of this paper is given by the following theorem.

Theorem 2.4 (Junction condition by homogenization: application to pedestrians flow). Assume (A) and that
at initial time, we have {

Ui(0) ≤ Ui+1(0)− h0 if i ∈ N ,

Ui(0) ≤ Ui+2(0)− h0 if i ∈ Z− N .
(2.23)

We also assume that there exists R > 0 such that
Ui+2(0)− Ui(0) = h1 if i ∈ L1 and Ui(0) < −R,
Ui+2(0)− Ui(0) = h2 if i ∈ L2 and Ui(0) < −R,
Ui+1(0)− Ui(0) = h3 if i ∈ N∗ and Ui(0) ≥ R.

(2.24)

with h1, h2, h3 ≥ h0. We define two functions u0 and v0 as follows

u0(x) = − 2

h1
x1{x<0} −

1

h3
x1{x≥0},

v0(x) = − 2

h2
x1{x<0} −

1

h3
x1{x≥0}.
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Let ε > 0 and χε : R+ × J → R be the function defined by

χε(t, x) =


ρε(t,−d(0, x)) if x ∈ J∗1 ,
σε(t,−d(0, x)) if x ∈ J∗2 ,
ρε(t, d(0, x)) if x ∈ J3.

(2.25)

with

ρε(t, x) = ερ

(
t

ε
,
x

ε

)
, σε(t, x) = εσ

(
t

ε
,
x

ε

)
.

We define

u0(x) =


u0(−d(0, x)) if x ∈ J∗1 ,
v0(−d(0, x)) if x ∈ J∗2 ,
u0(d(0, x)) if x ∈ J3.

Then there exists a unique A ∈ [H0, 0] such that the function χε converges towards the unique solution u0 of
(2.17).

Remark 2.5. The proof of this result will be done through three steps.

1) Inject the cumulative distributions function into a non-local PDE.
2) Couple the PDE with suitable initial conditions and prove the convergence to the solution of (2.17).
3) Deduce Theorem 2.4.

3. The non-local equation

In this section, we first define the non-local operators and then show that (ρ, σ, τ) is a viscosity solution of a
non-local PDE. To do this, we use the function φ(x, a, b) = −φ̄(x,−a,−b) where φ̄ is defined in (2.3). We remark
that φ(x, a, ·) and φ(x, ·, b) are non-decreasing functions which is a crucial property to obtain the comparison
principle (see Prop. 4.2).

3.1. Definition of the non-local operators

In this subsection, we give the definition of the non-local operators. To do this, we first introduce the following
functions. Let a ∈ R. We define

Ea(z) =

{
0 if z ≥ a
1 if z < a,

Ẽa(z) =

{
0 if z > a

1 if z ≤ a,
(3.1)

and

F (z) =

{
0 if z > −1

−1 if z ≤ −1,
F̃ (z) =

{
0 if z ≥ −1

−1 if z < −1.
(3.2)
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Let U, V : R→ R. We define the following non-local operators: for i = 1, 2,

Mi(U)(x) =

∫ +∞

0

V ′i (z)E−2 (U(x+ z)− U(x)) dz − Vmax, (3.3)

N(U, [V ])(x) =

∫
z≥x

V ′3(|z| − x)E−1 (V (z)− U(x)) dz − Vmax, (3.4)

and

K(U, [V ])(x) =

∫
R
ωz(x, z, |x| − |z|)F (V (z)− U(x)) dz + 1, (3.5)

with ω defined in (2.4). Using the non-local operators defined above, we introduce

R1 (x, U, [V ]) (x) = φ (x,M1(U)(x), N(U, [V ])(x))K(U, [V ])(x), (3.6)

R2 (x, V, [U ]) (x) = φ (x,M2(V )(x), N(V, [U ])(x)) ·K(V, [U ])(x). (3.7)

Remark 3.1 (Comments on the non-local operators definition). Using the non-local operators defined above,
we can inject the ODE (2.10) into a non-local PDE (see Lem. 3.4). In particular, we have that

M1 (ρ(t, ·)) (Ui(t)) = −V1(Ui+2(t)− Ui(t)) if i ∈ L1,

M2 (σ(t, ·)) (Ui(t)) = −V2(Ui+2(t)− Ui(t)) if i ∈ L2\{0},
N(ρ(t, Ui(t)), [σ(t, ·)])(Ui(t)) = −V3(|Ui+1(t)| − Ui(t)) if i ∈ L1 ∪ N∗,
N (σ(t, Ui(t)), [ρ(t, ·)]) (Ui(t)) = −V3(|Ui+1(t)| − Ui(t)) if i ∈ L2,

K(ρ(t, Ui(t)), [σ(t, ·)])(Ui(t)) = ω (Ui(t), Ui+1(t), |Ui(t)| − |Ui+1(t)|) if i ∈ L1 ∪ N∗,
K (σ(t, Ui(t)), [ρ(t, ·)]) (Ui(t)) = ω (Ui(t), Ui+1(t), |Ui(t)| − |Ui+1(t)|) if i ∈ L2.

Remark that in the definition of Mi, the variable z is positive since it models the distance between Ui and
its leader whose position is on the same branch or on J3 (looking ahead). In the definition of N , the variable z
models the leader on the other branch, Ui+1. We take z > x since for z ≤ x, the velocity of Ui is zero due to
the function ω. In the definition of K the variable z ∈ R since it’s modeling the pedestrian Ui+1.

In the same way, we define M̃i, Ñ and K̃ replacing Ea and F respectively by Ẽa and F̃ and then we get the
definition of R̃1 and R̃2. Finally, we can easily remark that

−Vmax ≤ R1 (x, U, [V ]) (x), R2 (x, V, [U ]) (x) ≤ 0. (3.8)

For ε > 0, we define the following non-local operators: for i = 1, 2,

Mε
i (U)(x) =

∫ +∞

0

V ′i (z)E−2 (U(x+ εz)− U(x)) dz − Vmax (3.9)

Nε(U, [V ])(x) =

∫
z≥ xε

V ′3

(
|z| − x

ε

)
E−1 (V (εz)− U(x)) dz − Vmax, (3.10)

and

Kε(U, [V ])(x) =

∫
R
ωz

(x
ε
, z,
∣∣∣x
ε

∣∣∣− |z|)F (V (εz)− U(x)) dz + 1. (3.11)
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We then define

Rε1

(x
ε
, U, [V ]

)
(x) = φ

(x
ε
,Mε

1 (U)(x), Nε(U, [V ])(x)
)
·Kε(U, [V ])(x), (3.12)

Rε2

(x
ε
, V, [U ]

)
(x) = φ

(x
ε
,Mε

2 (V )(x), Nε(V, [U ])(x)
)
·Kε(V, [U ])(x). (3.13)

In the same way, we define M̃ε
i , Ñ

ε and K̃ε replacing Ea and F respectively by Ẽa and F̃ and then we get
the definition of R̃ε1 and R̃ε2.

3.2. The non-local PDE

In this subsection, we prove that (ρ, σ) is a discontinuous viscosity solutions of the following non-local PDE,{
ρt(t, x) +R1 (x, ρ(t, x), [σ(t, .)]) (x)|ρx(t, x)| = 0 for (t, x) ∈ R+ × R ,

σt(t, x) +R2 (x, σ(t, x), [ρ(t, .)]) (x)|σx(t, x)| = 0 for (t, x) ∈ R+ × R ,
(3.14)

with R1 and R2 defined in (3.6) and (3.7). We use the definition of viscosity solutions introduced in [36]. This
definition allows to have a stability result for the non-local term. We refer to Proposition 4.2 of [15] for the
corresponding stability result. We give now the definition of viscosity solutions of (3.14).

Definition 3.2 (Viscosity solutions for (3.14)). Let u, v : (0,+∞) × R → R be upper semi-continuous (resp.
lower semi-continuous) functions. We say that (u, v) is a viscosity sub-solution (resp. super-solution) of (3.14)
on (0,+∞)× R, if we have the following:

1) if ϕ ∈ C1([0,+∞)×R) such that u−ϕ reaches a maximum (resp. a minimum) at the point (t, x), we have

ϕt(t, x) +R1 (x, u(t, x), [v(t, .)]) |ϕx(t, x)| ≤ 0,

(resp. ϕt(t, x) + R̃1 (x, u(t, x), [v(t, .)]) |ϕx(t, x)| ≥ 0) .

2) If ϕ ∈ C1([0,+∞) × R) such that v − ϕ reaches a maximum (resp. a minimum) at the point (t, x), we
have

ϕt(t, x) +R2 (x, v(t, x), [u(t, .)]) |ϕx(t, x)| ≤ 0,

(resp. ϕt(t, x) + R̃2 (x, v(t, x), [u(t, .)]) |ϕx(t, x)| ≥ 0) .

We say that (u, v) is a viscosity solution of (3.14) if (u∗, v∗) and (u∗, v∗) are respectively a sub-solution and a
super-solution of (3.14).

We have the following theorem.

Theorem 3.3. The function (ρ, σ) is a discontinuous viscosity solution of (3.14). Conversely, if (u, v) are
bounded and continuous viscosity solution of (3.14) satisfying for some time T > 0, and for all t ∈ (0, T )

u(t, ·), v(t, ·) are decreasing,

then the points Ui(t), defined by {
u(t, Ui(t)) = −i for i ∈ L1 ∪ N∗,
v(t, Ui(t)) = −i for i ∈ L2 ∪ N∗,
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are viscosity solutions of (2.10) on (0, T ) .

The proof of Theorem 3.3 is an easy adaptation of the proof of Theorem 7.1 in [17] using the following lemma.

Lemma 3.4. Let (Ui)i∈Z be the solution of (2.10). Then we have{
U ′i(t) = −R1 (Ui(t), ρ(t, Ui(t)), [σ(t, ·)]) (Ui(t)) if i ∈ L1 ∪ N∗,
U ′i(t) = −R2 (Ui(t), σ(t, Ui(t)), [ρ(t, ·)]) (Ui(t)) if i ∈ L2.

(3.15)

Proof. We skip the detailed proof of this technical lemma since it can be obtained by simple calculations using
the definition of the non-local operators. We refer to the Proof of Lemma 7.2 in [17].

4. Results for the non-local PDE with initial conditions

In this section, we consider the following PDE:


ut(t, x) +R1 (x, u(t, x), [v(t, .)]) (x)|ux(t, x)| = 0 for (t, x) ∈ R+ × R ,

vt(t, x) +R2 (x, v(t, x), [u(t, .)]) (x)|vx(t, x)| = 0 for (t, x) ∈ R+ × R ,

u(0, x) = u0(x) for x ∈ R,
v(0, x) = v0(x) for x ∈ R.

(4.1)

We will give first some classical results like the comparison principle and existence via Perron’s method, then
we will prove a gradient estimate result far from the junction point. The initial conditions u0 and v0 are lipschitz
continuous functions. In addition, to control the gradient of the limit solution of (2.17), we need the following
assumption. Let k0 = 1/h0.

(A0) The functions u0 and v0 are non-increasing. Let R1 the positive parameter appearing in the
definition (2.3) of φ̄. We assume that for y < x < −R1,{

−2k0(x− y)− 2 ≤ u0(x)− u0(y),

−2k0(x− y)− 2 ≤ v0(x)− v0(y),

and for x > y > 0,

−k0(x− y)− 1 ≤ u0(x)− u0(y).

Remark 4.1. The constante k0 is the maximal pedestrian’s density. The initial conditions u0 and v0 in
Theorem 2.4 satisfy condition (A0). The definition of u0 and v0 is crucial to get the homogenization result
in Theorem 2.4.

4.1. Recall some existence and uniqueness results for (4.1)

The definition of viscosity solutions for (4.1) is the same as in Definition 3.2 for t > 0 and for t = 0, we will
add the following inequality for the sub-solution (resp. super-solution),

u(0, x) ≤ u0(x) and v(0, x) ≤ v0(x),

(resp. u(0, x) ≥ u0(x) and v(0, x) ≥ v0(x)).
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We begin first with the comparison principle.

Proposition 4.2 (Comparison principle for (4.1)). Assume (A). Let (u, v) be a visocsity sub-solution of (4.1)
and (û, v̂) be a viscosity super-solution of (4.1) in the sense introduced of Definition 3.2. Let us also assume
that there exists a constant K > 0 such that for all t > 0,

u(t, x) ≤ u0(x) +Kt and − û(t, x) ≤ −u0(x) +Kt for x ∈ R,

v(t, x) ≤ v0(x) +Kt and − v̂(t, x) ≤ −v0(x) +Kt for x ∈ R.

Then we have for all t > 0,

u(t, x) ≤ û(t, x) for x ∈ R,

v(t, x) ≤ v̂(t, x) for x ∈ R.

Proof. The proof is very similar to the one in [18] and uses the monotony of E−2, F, φ and w, so we skip it.

In the proof of convergence (see Sect. 6), we need a comparison principle on bounded sets. For a given point
(t0, x0) ∈ (0, T )× R and for r,R > 0, we define the set

Pr,R(t0, x0) = (t0 − r, t0 + r)× (x0 −R, x0 +R). (4.2)

Theorem 4.3 (Comparison principle on bounded sets for (4.1)). Assume (A). If (u, v) and (û, v̂) are respectively
sub-solution and super-solution of (4.1) on the open set Pr,R such that

u ≤ û, v ≤ v̂ outside Pr,R,

then

u ≤ û, v ≤ v̂ in Pr,R.

Proof. The proof of this theorem is similar to the one of Proposition 4.2, so we skip it.

Lemma 4.4 (Existence of barriers for (4.1)). Assume (A0) and (A). Let K = 2Vmaxk0. We define

(u+(t, x), v+(t, x)) = (Kt+ u0(x),Kt+ v0(x)),

(u−(t, x), v−(t, x)) = (u0(x), v0(x)).

Then (u+, v+) and (u−, v−) are respectively super and sub solution of (4.1).

Proof. The proof is very simple. We just use the bounds of R1 and R2 (see (3.8)) and the gradient bounds
(A0).

Applying Perron’s method (see [2] or [27] to see how to apply Perron’s method for problems with non-local
terms), joint to the comparison principle, we obtain the following result.
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Theorem 4.5 (Existence and uniqueness of viscosity solutions for (4.1)). Assume (A0) and (A). Then, there
exists a unique continuous solution of (4.1) which satisfies

|u(t, x)− u0(x)| ≤ Kt, and |v(t, x)− v0(x)| ≤ Kt. (4.3)

4.2. Gradient estimates

In the following theorem, we obtain gradient estimates for the solution of (4.1). We use a localization argument
in order to get precise gradient bounds on each branch.

Theorem 4.6 (Control of the oscillations). Assume (A0)-(A). Let T > 0 and (u, v) be the solution of (4.1) on
(0, T ) given in Theorem 4.5. For all t > 0, the functions u(t, ·) and v(t, ·) are non-increasing. Let x < −R1 and
h > 0 small enough such that x+ h < −R1 and h < h0. For all t ∈ (0, T ), we have

−2k0h− 2 ≤ u(t, x+ h)− u(t, x), (4.4)

−2k0h− 2 ≤ v(t, x+ h)− v(t, x). (4.5)

Let x > 0 and 0 < h < h0. For all t ∈ (0, T ), we have

−k0h− 1 ≤ u(t, x+ h)− u(t, x). (4.6)

Proof. The proof of monotony is similar to the one in Theorem 4.10 of [19]. We will only do the proof of (4.4)
since the other inequalities can be proved in the same way. We use the technique introduced in [4] for the proof
of local gradient estimates. Let x0 < −R1 and δ > 0 small enough such that{

h+ 2δ < h0,

x0 + h+ δ < −R1.
(4.7)

We will prove for all t ∈ (0, T ), y ∈ Bδ(x0) and x ∈ Bδ(x0 + h), that

−2k0(x− y)− 2− Lδ(y − x0)2 − Lδ(x− x0 − h)2 ≤ u(t, x)− u(t, y) (4.8)

with Lδ =
KT

δ2
and K defined in (4.3). In particular, taking y = x0 and x = x0 + h, we obtain (4.4). To prove

(4.8), we introduce

∆ = [0, T )×Bδ(x0 + h)×Bδ(x0)

and consider the following supremum

M = sup
(t,x,y)∈∆

{
u(t, y)− u(t, x)− 2k0(x− y)− 2− Lδ(x− x0 − h)2 − Lδ(y − x0)2

}
.

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test function. For η > 0 small, we define

ϕ(t, x, y) = u(t, y)− u(t, x)− 2k0(x− y)− 2− Lδ(x− x0 − h)2 − Lδ(y − x0)2 − η

T − t
.
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Since ϕ is continuous, it reaches a maximum on ∆ at a point that we denote by (t̄, x̄, ȳ). Classically we have for
η small enough,

0 <
M

2
≤ ϕ(t̄, x̄, ȳ).

Step 2: t̄ > 0. By contradiction, assume first that t̄ = 0. Then we have

η

T
< u0(ȳ)− u0(x̄)− 2k0(x̄− ȳ)− 2 ≤ 0,

where we used (A0).

Step 3: |x̄− x0 − h| 6= δ and |ȳ− x0| 6= δ. By contradiction, assume that |x̄− x0 − h| = δ. Using the barriers
and (A0), we get that

0 <
η

T
≤ u0(ȳ)− u0(x̄)− 2k0(x̄− ȳ)− 2−KT − Lδδ2

≤ K1T − Lδδ2 = 0

where we used the definition of Lδ. In the same way, we have |ȳ − x0| 6= δ.

Step 4: using of the equation. By doing a duplication of the time variable and passing to the limit in this
duplication parameter, we get that

η

(T − t̄)2
≤ M̃1 (u(t̄, ·)) (x̄) · |−2k0 − 2Lδ(x̄− x0 − h)|

−M1 (u(t̄, ·)) (ȳ) · |−2k0 + 2Lδ(ȳ − x0)| (4.9)

where we used the fact that φ̄(x, a, b) = a and ω(x, y, p) = 1 for x < −R1. We claim that

M1 (u(t̄, ·)) (ȳ) = 0. (4.10)

In fact if (4.10) is true we will obtain a contradiction in (4.9) since M̃1 ≤ 0. The definition of M1 can be written
for z ≥ h0 since for z < h0, we have V ′1 = 0. We have

M1 (u(t̄, ·)) (ȳ) =

∫ +∞

h0

V ′1(z)E−2(u(t̄, ȳ + z)− u(t̄, ȳ))dz − Vmax.

Using that ϕ(t̄, x̄, ȳ) > 0, we have

u(t̄, x̄)− u(t̄, ȳ) < −2.

If z > h0, using (4.7), we have

ȳ + z > x0 − δ + h0 > x0 + δ + h > x̄.

Since u(t, ·) is non-increasing, we get for z > h0,

u(t̄, ȳ + z)− u(t̄, ȳ) ≤ u(t̄, x̄)− u(t̄, ȳ) < −2
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which implies E−2(u(t̄, ȳ + z)− u(t̄, ȳ)) = 1 and then (4.10). This ends the proof.

5. Construction of correctors

In this section, we construct the corrector far and near the junction point, which allow us to use the perturbed
test method introduced by Evans in [14].

5.1. Corrector far from the junction point

Proposition 5.1 (Homogenization far from the junction point). Assume (A). For p ≤ 0, we define the following
non-local operator:

Mp
i (U)(x) =

∫ +∞

0

V ′i (z)E−2 (U(x+ z)− U(x) + pz) dz − Vmax, (5.1)

Mp(U, [V ])(x) =

∫ +∞

0

V ′3(z)E−1 (V (x+ z)− U(x) + pz) dz − Vmax (5.2)

with Ea defined in (3.1).

1) For every p ≤ 0, there exists a unique λ1 ∈ R such that there exists a viscosity solution u of{
Mp

1 (u)(x)|p+ ux| = λ1 x ∈ R
u is bounded.

(5.3)

2) For every p ≤ 0, there exists a unique λ2 ∈ R such that there exists a viscosity solution v of{
Mp

2 (v)(x)|p+ vx| = λ2 x ∈ R ,

v is bounded.
(5.4)

3) For every p ≤ 0, there exists a unique λ3 ∈ R such that there exists a viscosity solution (u, v) of
Mp(u(x), [v])(x)|p+ ux| = λ3 x ∈ R ,

Mp(v(x), [u])(x)|p+ vx| = λ3 x ∈ R .

u, v are bounded.

(5.5)

In particular, λi = Hi(p) with Hi defined in (2.11),(2.12) and (2.13).

Proof. We can easily verify that



u = 0 is a solution of (5.3) with λ1 = −|p|V1

(
−2

p

)
v = 0 is a solution of (5.4) with λ2 = −|p|V2

(
−2

p

)
(u, v) = (0, 0) is a solution of (5.5) with λ3 = −|p|V3

(
−1

p

)
.

The uniqueness of λi is a classical result and the reader can refer to [32] for the proof.
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5.2. Correctors at the junction point

In this subsection, we will construct correctors near the junction point. To do this, we will consider the
following equation: for λ ∈ R, we consider a viscosity solution (u, v) of{

R1 (x, u(x), [v]) (x)|ux| = λ x ∈ R,
R2 (x, v(x), [u]) (x)|vx| = λ x ∈ R

(5.6)

where the non-local operators R1 and R2 are defined in (3.6) and (3.7). We now prove the existence result of
the corrector. For A ≥ H0 with H0 defined in (2.15), we introduce the real numbers p1

−, p
2
− and p3

+ satisfying

H1(p1
−) = H

−
1 (p1
−) = A, H2(p2

−) = H
−
2 (p2
−) = A, H3(p3

+) = H
+

3 (p3
+) = A.

Theorem 5.2 (Existence of a global corrector for the junction). Assume (A).
i) (General properties) There exists a constant Ā ∈ [H0, 0] such that there exists a solution (u, v) of (5.6)

with λ = A and such that there exists a constant C and a globally Lipschitz continuous function m such that

|u(x)−m(x)| ≤ C, |v(x)−m(x)| ≤ C. (5.7)

ii) (Rescaling ) For ε > 0, we set

uε(x) = εu
(x
ε

)
, vε(x) = εv

(x
ε

)
.

Then (along a subsequence εn → 0), we have the following convergence locally uniformly: uε −→
ε→0

U and vε −→
ε→0

V

with U and V satisfying 
|U(x)− U(y)| ≤ C|x− y| for all x, y ∈ R,
H1(Ux) = A for all x < 0,
H3(Ux) = A for all x > 0,

(5.8)

and 
|V (x)− V (y)| ≤ C|x− y| for all x, y ∈ R,
H2(Vx) = A for all x < 0,
H3(Vx) = A for all x > 0.

(5.9)

In particular, we have (with U(0) = V (0) = 0)

U(x) = p3
+x1{x>0} + p1

−x1{x<0}, (5.10)

V (x) = p3
+x1{x>0} + p2

−x1{x<0}. (5.11)

iii)(Uniqueness of the flux limiter A) We define the following set of functions

S = {(u, v) s.t. ∃Lipschitz function m and C ≥ 0 satisfying (5.7)} .

Then we have

A = inf {λ ∈ R : ∃ (u, v) ∈ S solution of (5.6)} .
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5.3. Proof of Theorem 5.2

This subsection contains the proof of Theorem 5.2. Let R > R1 (R1 the constant appearing in (2.3)), we
want to find λR, such that there exists a solution (uR, vR) of{

G1
R

(
x, uR(x), [vR], uRx

)
= λR if x ∈ [−lR, lR],

G2
R

(
x, vR(x), [uR], vRx

)
= λR if x ∈ [−lR, lR],

(5.12)

with

G1
R(x, U, [V ], q) = ψ−R(x)ψ+

R(x)φ (x,M1(U)(x), N(U, [V ])(x))K(U, [V ])(x)|q|

+ (1− ψ−R(x)) ·H−1 (q) + (1− ψ+
R(x)) ·H+

3 (q), (5.13)

G2
R(x, V, [U ], q) = ψ−R(x)ψ+

R(x)φ (x,M2(V )(x), N(V, [U ])(x))K(V, [U ])(x)|q|

+ (1− ψ−R(x)) ·H−1 (q) + (1− ψ+
R(x)) ·H+

3 (q), (5.14)

and ψ+
R , ψ

−
R ∈ C∞, ψ±R : R→ [0, 1], with ψ−R(x) = ψ+

R(−x),

ψ+
R ≡

{
1 on [−∞, R]
0 outside [R+ 1,+∞),

and ψ+
R non-increasing,

and lR >> R + 1 � max(hmax, R
3 + r). To each operator GiR, we associate G̃iR which is defined in the same

way but replacing the non-local operators Mi, N and K by M̃i, Ñ and K̃.

Proposition 5.3 (Comparison principle). Let λ ∈ R,

1) Let us consider the following problem,{
G̃1
R (x, û(x), [v̂], ûx) ≥ λ if x ∈ (0, lR],

G̃2
R (x, v̂(x), [û], v̂x) ≥ λ if x ∈ (0, lR],

and for ε > 0 {
G1
R (x, u(x), [v], ux) ≤ λ− ε if x ∈ (0, lR],

G2
R (x, v(x), [u], vx) ≤ λ− ε if x ∈ (0, lR].

If

u(0) ≤ û(0), v(0) ≤ v̂(0),

then for all x ∈ [0, lR] , we have

u(x) ≤ û(x), v(x) ≤ v̂(x).

2) Let us consider the following problem,

G̃1
R (x, û(x), [û], ûx) ≥ λ if x ∈ [−lR,−R1),
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and for ε > 0

G1
R (x, u(x), [u], ux) ≤ λ− ε if x ∈ [−lR,−R1).

If

u(x) ≤ û(x) for x ∈ [−R1 − hmax,−R1],

then for all x ∈ [−lR,−R1] , we have

u(x) ≤ û(x).

3) Let us consider the following problem,

G̃2
R (x, v̂(x), [v̂], ŵx) ≥ λ if x ∈ [−lR,−R1),

and for ε > 0

G2
R (x, v(x), [v], vx) ≤ λ− ε if x ∈ [−lR,−R1).

If

v(x) ≤ v̂(x) for x ∈ [−R1 − hmax,−R1],

then for all x ∈ [−lR,−R1] , we have

v(x) ≤ v̂(x).

Proof. The proof of this proposition can be done using classical arguments of viscosity solutions theory, (see
[5, 10]. Let us remark that the initial comparison between sub-solution and super-solution in points 2)-3) is
given on the interval [−R1 − hmax,−R1]. This condition will ensure, when doing the proof, that the maximum
points (x, y) satisfy x+ z, y + z < −R1 for z ∈ [0, hmax].

Proposition 5.4 (Existence of correctors). There exists a unique λR ∈ R such that there exists a solution
(uR, vR) of (5.12). Moreover, there exists a constant C , and a Lipschitz continuous function mR such that

H0 ≤ λR ≤ 0,
|mR(x)−mR(y)| ≤ C|x− y| for x ∈ [−lR, lR],
|uR(x)−mR(x)| ≤ C for x ∈ [−lR, lR],
|vR(x)−mR(x)| ≤ C for x ∈ [−lR, lR].

(5.15)

Proof. In order to construct a corrector on the truncated domain, we will consider the approximated problem{
δuδ +G1

R

(
x, uδ(x), [vδ], uδx

)
= 0 if x ∈ [−lR, lR],

δvδ +G2
R

(
x, vδ(x), [uδ], vδx

)
= 0 if x ∈ [−lR, lR].

(5.16)
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Step 1: Construction of the solution.

Lemma 5.5. There exists a unique viscosity solution (uδ, vδ) of (5.16) such that


0 ≤ uδ(x) ≤ |H

1
0 |
δ

,

0 ≤ vδ(x) ≤ |H
2
0 |
δ

.
(5.17)

Proof. We can easily show that,

(u−, v−) = (0, 0) and (u+, v+) =

(
|H1

0 |
δ

,
|H2

0 |
δ

)
are respectively sub-solution and super-solution of (5.16). Using the comparison principle and the Perron’s
method, we construct a unique viscosity solution (uδ, vδ) satisfying (5.17).

Step 2: A new super-solution.

Lemma 5.6. Let b0 = max(g0, k0) and g0 = 1/d0 with d0 defined in (2.7). Let

(u++, v++) =

(
−2b0(x− lR) +

|H3
0 |
δ

,−2b0(x− lR) +
|H3

0 |
δ

)
.

Then (u++, v++) is a super-solution of (5.16).

Proof. Since x ∈ [−lR, lR], we have u++, v++ ≥ |H
3
0 |
δ

. In addition, using the definition of H−k , we remark that

for k = 1, 2, 3,

Hk(−2b0) ≥ Hk(−2k0) = H−k (−2k0) ≥ 0.

We recall that for i = 1, 2, 3, we have

Vi(h) = 0 if h ≤ h0, and ω(x, y, p) = 0 for x ∈ [−R3, 0], y < 0 and p ≤ d0. (5.18)

We claim that

M1(u++)(x) = 0 if x ≤ −R3,
M2(v++)(x) = 0 if x ≤ −R3,
K(u++(x), [v++])(x) = 0 K(v++(x), [u++])(x) = 0 if x ∈ (−R3,−d0],
N(u++(x), [v++])(x) = 0 N(v++(x), [u++])(x) = 0 if x ≥ 0.

In addition, on (−d0, 0), we have

K(u++(x), [v++])(x) = 0 K(v++(x), [u++])(x) = 0 if h0

2 < d0,

N(u++(x), [v++])(x) = 0 N(v++(x), [u++])(x) = 0 if h0

2 ≥ d0.



HOMOGENIZATION OF A MICROSCOPIC PEDESTRIANS MODEL ON A CONVERGENT JUNCTION 21

We prove only four equalities since others are done in the same way. First, let x ≤ −R3,

M1(u++)(x) + Vmax =

∫ +∞

0

V ′1(z)E−2

(
u++(x+ z)− u++(x)

)
dz

=

∫ +∞

h0

V ′1(z)E−2 (−2b0z) dz.

For z ≥ h0, −2b0z ≤ −2. Using the definition of E−2 (see (3.1)), we get

M1(u++)(x) =

∫ hmax

h0

V ′1(z)dz − Vmax = 0.

Second, let x ∈ (−R3,−d0],

K(u++(x), [v++])(x)− 1 =

∫
R
ωz(x, z, |x| − |z|)F

(
v++(z)− u++(x)

)
dz

=

∫
R
ωz(x, z, |x| − |z|)F (−2b0(z − x)) dz

=

∫
R−

ωz(x, z, |x| − |z|)F (−2b0(z − x)) dz

+

∫
R+

ωz(x, z, |x| − |z|)F (−2b0(z − x)) dz.

Let z ≤ 0: using (5.18), we remark that we can assume that z ≥ x + d0. In that case, we have −2b0(z − x) ≤
−2b0d0 = −2 < −1. The last inequality is also true if we take z > 0. Using the definition of F (see (3.2)), we
obtain

K(u++(x), [v++])(x) = −
∫ 0

x+d0

ωz(x, z, |x| − |z|)dz −
∫
R+

ωz(x, z, |x| − |z|)dz + 1

= −ω(x, 0, |x|) + ω(x, x+ d0, d0)− 1 + ω(x, 0, |x|) + 1 = 0

where we used in the last line the fact that ω(x, z, p) = 1 if z � 0. Finally, let x ∈ (−d0, 0): if h0

2 ≤ d0,
then using (5.18), we evaluate K(u++(x), [v++])(x) only for z ∈ R+ since x + d0 > 0 > z. If z ≥ 0, then
−2b0(z − x) ≤ 2b0x ≤ −2b0

h0

2 ≤ −1, and we get

K(u++(x), [v++])(x) = −
∫
R+

ωz(x, z, |x| − |z|)dz = −1 + ω(x, 0, |x|) + 1 = 0

where we used that |x| = −x < d0. Assume now h0

2 > d0. We have

N(u++(x), [v++])(x) + Vmax =

∫
z≥x

V ′3(|z| − x)E−1

(
v++(z)− u++(x)

)
dz

=

∫
z≥x

V ′3(|z| − x)E−1 (−2b0(z − x)) dz

=

∫
0>z≥x

V ′3(−z − x)E−1 (−2b0(z − x)) dz

+

∫
z≥0

V ′3(z − x)E−1 (−2b0(z − x)) dz.
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We evaluate the above integral only if z ≥ 0 since if x ≤ z < 0, we get −z − x ≤ −2x < 2d0 < h0 and so
V ′3(−z − x) = 0. If z ≥ 0 and z − x ≥ h0, we get that −2b0(z − x) ≤ 2b0h0 ≤ −1 and using the definition of
E−1, we get

N(u++(x), [v++])(x) =

∫
z≥x+h0

V ′3(z − x)dz − Vmax = 0.

Recalling the definition of G1
R and G2

R (see (5.13) and (5.14)) and using the lower bound of u++ and v++,
we deduce that (u++, v++) is a super-solution of the approximated problem for x ∈ (−lR, lR). Let us now treat
the boundary conditions. Consider a test function ϕ touching u++ from below at x = −lR (resp. x = lR). We
have that

δϕ(−lR) +H−1 (ϕx(−lR)) ≥ H−1 (u++
x (−lR)) = H−1 (−2b0) ≥ 0,

(resp. δϕ(lR) +H+
3 (ϕx(lR)) ≥ δu++(lR) +H3

0 ≥ 0).

We can argue in the same way for the function v++. This implies that (u++, v++) is a super-solution of the
approximated problem for x ∈ [−lR, lR]. Using the stability of viscosity super-solution, we can construct a new
super-solution,

(min(u+, u++),min(v+, v++)).

The comparison principle then implies that{
0 ≤ uδ(x) ≤ min(u+, u++),

0 ≤ vδ(x) ≤ min(v+, v++).
(5.19)

Remark 5.7. We need the non-constant new super-solution to ensure (after passing to the limit in δ and R)
that the flux limiter A satisfies A ≥ H0.

Step 3: bounds for the solution.

Lemma 5.8. Let (uδ, vδ) be the solution of (5.16). The functions uδ and vδ are non-increasing and we have
the following bounds,

−1 ≤ uδ(x)− vδ(x) ≤ 1 if 0 ≤ x ≤ lR, (5.20)

and

−1 ≤ uδ(x)− vδ(x) ≤ 1 if −R3 ≤ x ≤ 0, . (5.21)

Proof. The proof of monotony is similar to that in Lemma 5.5 of [19] so we skip it.

We will do the proof of the lower bound in (5.21) (the proof of the upper bound is treated in the same way).

Let −R3 < z0 < 0, a > 0 small and La >
|H2

0 |
δa2

. We will prove that for x ∈ Ba(z0),

uδ(x)− vδ(x) ≥ −1− La(x− z0)2.
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If the above inequality is true, then taking x = z0, we obtain the first inequality in (5.21). For ε > 0, we
define

Mε = sup
x,y∈Ba(z0)

{
vδ(y)− uδ(x)− 1− La(x− z0)2 − (x− y)2

2ε

}
.

We have that Mε ≥M > 0 and since the functions vδ and uδ are continuous, Mε is reached at a point (x̄, ȳ).
Classically, we have

0 < Mε <
|H2

0 |
δ
− (x̄− ȳ)2

2ε

which implies |x̄− ȳ| → 0 as ε→ 0. If |x̄− z0| = a, and using the definition of La, we obtain

0 <
|H2

0 |
δ
− Laa2 ≤ 0

which gives a contradiction and implies that |x̄ − z0| 6= a and |ȳ − z0| 6= a for ε small enough. Writing the
sub-solution viscosity inequality, we get

δ < δvδ(ȳ) ≤ −G2
R

(
ȳ, vδ(ȳ), [uδ],

x̄− ȳ
ε

)
.

Using the definition of G2
R for ȳ ∈ (−R3, 0), we can see that we obtain a contradiction if we prove that

K
(
vδ(ȳ), [uδ]

)
(ȳ) =

∫
R
ωz (ȳ, z, |ȳ| − |z|)F

(
uδ(z)− vδ(ȳ)

)
dz + 1 = 0. (5.22)

Recalling that ω (x, y, p) = 0 if x ∈ (−R3, 0), y < 0 and p < 0, we can evaluate the above integral for z ≥ 0.
If we prove uδ(z)− vδ(ȳ) < −1 for all z ≥ ȳ, we will get∫ +∞

ȳ

ωz (ȳ, z, |ȳ| − |z|)F
(
uδ(z)− vδ(ȳ)

)
dz = −1

which implies (5.22). Using the supremum Mε, we have

uδ(x̄)− vδ(ȳ) < −1

and since |x̄− ȳ| → 0 as ε→ 0, we have for ε small enough

uδ(ȳ)− vδ(ȳ) < −1.

Using the fact that uδ is non-increasing, we have for z ≥ ȳ,

uδ(z)− vδ(ȳ) ≤ uδ(ȳ)− vδ(ȳ) < −1

which gives the desired result.

The proof of (5.20) is similar. The difference that in this case (always to prove the lower bound), we prove
N
(
vδ(ȳ), [uδ]

)
(ȳ) = 0.
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Step 4: control of oscillations.

Lemma 5.9. Let (uδ, vδ) be a solution of (5.16). Let g0 = 1/d0 and b0 = max(g0, k0). We have that{
−2b0(x− y)− 2 ≤ uδ(x)− uδ(y) ≤ 0 for −lR ≤ y ≤ x ≤ lR,
−2b0(x− y)− 2 ≤ vδ(x)− vδ(y) ≤ 0 for −lR ≤ y ≤ x ≤ lR.

(5.23)

Proof. We will only prove the first inequality in (5.23). To prove the other inequality, we proceed similarly.
We define

N = sup
−lR≤y≤x≤lR

{
uδ(y)− uδ(x)− 2b0(x− y)− 2

}
.

We want to prove that N ≤ 0. Assume by contradiction that N > 0. Classicaly, N is reached at a point (x̄, ȳ)
with x̄ ≥ ȳ. Moreover x̄ 6= ȳ since N > 0. Writing the viscosity inequalities, we get

δuδ(ȳ)− δuδ(x) ≤ G̃1
R

(
x̄, uδ(x̄), [vδ],−2b0

)
−G1

R

(
ȳ, uδ(ȳ), [vδ],−2b0

)
≤ (1− ψ−R(x̄))H

−
1 (−2b0) + (1− ψ+

R(x̄))H
+

3 (−2b0)

−G1
R

(
ȳ, uδ(ȳ), [vδ],−2b0

)
.

We claim that

φ
(
ȳ,M1

(
uδ
)

(ȳ), N
(
uδ(ȳ), [vδ]

)
(ȳ)
)
K
(
uδ(ȳ), [vδ]

)
(ȳ) = 0. (5.24)

If we prove (5.24), using the definition of G1
R, we get

δuδ(ȳ)− δuδ(x) ≤ (1− ψ−R(x̄))H
−
1 (−2b0) + (1− ψ+

R(x̄))H
+

3 (−2b0)

− (1− ψ−R(ȳ))H
−
1 (−2b0)− (1− ψ+

R(ȳ))H
+

3 (−2b0)

= (ψ−R(ȳ))− ψ−R(x̄)))H
−
1 (−2b0) + (ψ+

R(ȳ))− ψ+
R(x̄)))H

+

3 (−2b0).

Using that H−1 (−2b0) ≥ 0, H+
3 (−2b0) ≤ 0 and that ψ− and ψ+ are respectively non-decreasing and non-

increasing, we get a contradiction.
Let us now prove (5.24). Using the definition of φ̄ (see (2.3)), we obtain (5.24) if we prove:

M1

(
uδ
)

(ȳ) = 0 if ȳ < −R3,

N
(
uδ(ȳ), [vδ]

)
(ȳ) = 0 if ȳ > 0,

K
(
uδ(ȳ), [vδ]

)
(ȳ) = 0 if ȳ ∈ [−R3, 0].

(5.25)

We will only show the third equality of (5.25) since the others can be treated in the same way and are even
simpler. Recalling the definition of ω, and assuming that ȳ + d0 < 0, we can write,

K
(
uδ(ȳ), [vδ]

)
(ȳ)− 1 =

∫ +∞

ȳ+d0

ωz (ȳ, z, |ȳ| − |z|)F
(
vδ(z)− uδ(ȳ)

)
dz.
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We claim that vδ(z) − uδ(ȳ) < −1 for all z > ȳ + d0. If the preceding inequality is true, we get
F
(
vδ(z)− uδ(ȳ)

)
= −1 and then

K
(
uδ(ȳ), [vδ]

)
(ȳ) = ω (ȳ, ȳ + d0, d0)− 1 + 1 = 0.

We distinguish two cases:

Case 1: x̄ < z. Using the supremum, we have

uδ(x̄)− uδ(ȳ) < −2.

The fact that uδ is non-increasing implies

uδ(z)− uδ(ȳ) < −2. (5.26)

Combining (5.26) and Lemma 5.8, we get vδ(z)− uδ(ȳ) < −1.

Case 2: x̄ ≥ z. Using the supremum, we have N ≥ uδ(z)− uδ(x̄)− 2b0(x̄− z)− 2, which implies

uδ(z)− uδ(ȳ) ≤ −2b0(z − ȳ) ≤ −2b0d0 ≤ −2. (5.27)

Combining (5.27) and Lemma 5.8, we get vδ(z)− uδ(ȳ) < −1 which gives us the desired result.
If ȳ + d0 ≥ 0, in that case, we only evaluate the integral for z ∈ [0, r] since the other one is zero. We proceed

as above assuming that x̄ < z and x̄ ≥ z. We deduce that K
(
uδ(ȳ), [vδ]

)
(ȳ) = 0 and similarly (5.25). This ends

the proof of the lemma.

Step 5: Proof of Proposition 5.4. As in [17], we construct a Lipschitz continuous function mδ, such that
there exists a constant C, (independent of R and δ) such that for x, y ∈ [−lR, lR], |m

δ(x)−mδ(y)| ≤ C|x− y|,
|uδ(x)−mδ(x)| ≤ C,
|vδ(x)−mδ(x)| ≤ C

(5.28)

and then using the half relaxed limit method (for δ → 0) joint to Perron method, we can construct a solution
(uR, vR) of (5.12) and a lipschitz function mR satisfying (5.15). The first inequality in (5.15) is a consequence
of (5.19). The uniqueness of λR is classical so we skip it. This ends the proof of Proposition 5.4.

Proposition 5.10 (First definition of the flux limiter). The following limit exists (up to a subsequence)

A = lim
R→+∞

λR. (5.29)

Moreover, we have

H0 ≤ λR, A ≤ 0,
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with H0 defined in (2.15).

Proof. This results is a direct consequence of the following bound on λR which is independent of R (see the
barriers in (5.19)),

H0 ≤ λR ≤ 0.

Proposition 5.11 (Control of the slopes). Assume that R is big enough. Let (uR, vR) be the solution of (5.12)
given by Proposition 5.4. We also assume that up to a sub-sequence A = lim

R→+∞
λR > H0. Then there exists

γ0 > 0 such that for every γ ∈ (0, γ0), there exists a constant C̄ such that for x > 0 and h ≥ 0,{
uR(x+ h)− uR(x) ≥ (p3

+ − γ)h− C̄,
vR(x+ h)− vR(x) ≥ (p3

+ − γ)h− C̄. (5.30)

If x < −R1 and h ≥ 0, then

uR(x− h)− uR(x) ≥ (−p1
− − γ)h− C̄, (5.31)

and

vR(x− h)− vR(x) ≥ (−p2
− − γ)h− C̄. (5.32)

Proof. We only prove (5.31) since the proof for (5.30) and (5.32) is similar. For µ > 0 small enough, we denote
by p1

µ the real number such that

H1(p1
µ) = H

−
1 (p1

µ) = λR − µ.

Using that H0 < λR ≤ 0, we deduce that p1
µ exists, is unique and satisfies −2k0 ≤ p1

µ ≤ 0 for µ small enough.
We define for −lR ≤ x < −R1,

u− = p1
µx.

We have that

H
−
1 (u−x ) = λR − µ.

We also have for −lR < x < −R1,

M1(u−)(x) + Vmax =

∫
R
V ′1(z)E−2

(
p1
µz
)

dz

=

∫ +∞

−2

p1
µ

V ′1(z)dz

= Vmax − V1

(
−2

p1
µ

)
.
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We deduce that u− satisfies for −lR ≤ x < −R1,

ψ−R(x)M1(u−)(x)|u−x |+ (1− ψ−R(x)) ·H−1 (u−x ) = λR − µ.

Let x0 < −R1 and C̄ = (2b0 − p1
µ)hmax + 2. Using Proposition 5.4, we have for x ∈ [x0 − hmax, x0],

uR(x)− uR(x0) ≥ p1
µ(x− x0)− C̄.

Using the comparison principle (Prop. 5.3, point 2), we deduce that the above inequalities are true for all
x ≤ x0. Finally, if we choose γ0 < |p1 − p̄1

−| (with p1 defined in (2.15)), then

H1(p̄1
− + γ) = H

−
1 (p̄1
− + γ),

and we can choose µ > 0 such that

pµ1 = p̄1
− + γ

and this ends the proof.

Proof of Theorem 5.2. The proof of Theorem 5.2 can be deduced by all the above results. We first pass to the
limit as R→ +∞ then we study the uniform local convergence of the rescaled functions, see [17].

6. Proof of Convergence

In this section, we will show how to obtain our main result Theorem 2.4. Let ε > 0 and

uε(t, x) = εu

(
t

ε
,
x

ε

)
, vε(t, x) = εv

(
t

ε
,
x

ε

)
,

with (u, v) the unique viscosity solution of (4.1). Then (uε, vε) is the unique viscosity solution for (t, x) ∈ R+×R
of


uεt +Rε1

(
x
ε ,

uε(t,·)
ε ,

[
vε(t,·)
ε

])
(x)|uεx| = 0,

vεt +Rε2

(
x
ε ,

vε(t,·)
ε ,

[
uε(t,·)
ε

])
(x)|vεx| = 0,

uε(0, x) = u0(x),

vε(0, x) = v0(x).

(6.1)

First, we will prove the following convergence result.

Theorem 6.1 (Junction condition by homogenization). Assume (A) and (A0). For ε > 0, let (uε, vε) be the
solution of (6.1). Let χε defined by

χε(t, x) =


uε(t,−d(0, x)) if x ∈ J∗1 ,
vε(t,−d(0, x)) if x ∈ J∗2 ,
uε(t, d(0, x)) if x ∈ J3.

(6.2)
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Then there exists A ∈ [H0, 0] such that χε converges locally uniformly to the unique viscosity solution u0 of
(2.17) with the initial condition u0 defined by

u0(x) =


u0(−d(0, x)) if x ∈ J∗1 ,
v0(−d(0, x)) if x ∈ J∗2 ,
u0(d(0, x)) if x ∈ J3.

Remark 6.2. The same result remains true if we take vε on J3.

The proof of Theorem 2.4 can be obtained using the convergence result in Theorem 6.1. The detailed proof
is an easy adaptation of the proof of Theorem 2.6 in [17].

Theorem 6.1 gives also gradient estimates for the solution of (2.17).

Corollary 6.3. Assume (A0)-(A). Let u0 be the unique solution of (2.17) then u0 is Lipschitz continuous and
we have, 

−2k0 ≤ u0
x ≤ 0 if x ∈ J∗1 ,

−2k0 ≤ u0
x ≤ 0 if x ∈ J∗2 ,

−k0 ≤ u0
x ≤ 0 if x ∈ J∗3 .

Proof of Corollary 6.3. The lipschitz continuity of u0 was proved in [28].
Let x, y ∈ J∗1 s.t x = x1 · e1 and y = (x1 + h) · e1 with x1 + h < 0 and h > 0 small enough. For ε > 0 small

enough, we have x1 + h < −εR1. Using Theorem 4.6, we have

−2k0h− ε ≤ uε(t, x1 + h)− uε(t, x1) ≤ 0.

Using Theorem 6.1 and passing to the limit as ε→ 0, we obtain the desired result. We proceed similarly on J∗2
and J∗3 by using respectively (4.5) and (4.6).

We will do now the Proof of Theorem 6.1.

Proof of Theorem 6.1. We first define for a given point (t0, x0) ∈ (0, T )× J and for r,R > 0, the set

Qr,R(t0, x0) =

{{
(t, x) ∈ (0, T )× J∗i s.t |t− t0| ≤ r and d(x, x0) ≤ R

}
if x0 ∈ J∗i ,{

(t, x) ∈ (0, T )× J s.t |t− t0| ≤ r and d(x, x0) ≤ R
}

if x0 = 0.

We introduce

u(t, x) = lim sup
(s,y)→(t,x),ε→0

uε(s, y) and u(t, x) = lim inf
(s,y)→(t,x),ε→0

uε(s, y), (6.3)

v(t, x) = lim sup
(s,y)→(t,x),ε→0

vε(s, y) and v(t, x) = lim inf
(s,y)→(t,x),ε→0

vε(s, y). (6.4)

We then define the following functions

z(t, x) =


max(u(t, d(0, x)), v(t, d(0, x))) if x ∈ J3,

u(t,−d(0, x)) if x ∈ J∗1 ,
v(t,−d(0, x)) if x ∈ J∗2 ,

(6.5)
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and

z(t, x) =


min(u(t, d(0, x)), v(t, d(0, x))) if x ∈ J3,

u(t,−d(0, x))) if x ∈ J∗1 ,
v(t,−d(0, x)) if x ∈ J∗2 .

(6.6)

We will prove that z and z are respectively sub and super solutions of (2.17). In this case, the comparison
principle will imply that z ≤ z and by construction, we have that z ≤ z. Hence, we will get that

z(t, x) = z(t, x) = u0(t, x)

where u0 is the unique viscosity solution of (2.17). Let us prove that z is a sub-solution of (2.17) (the proof for z is
similar and we skip it). We argue by contradiction and assume that there exists a test function ϕ ∈ C1((0, T )×J)
(in the sense of Thm. 2.7 in [28]), and a point (t̄, x̄) ∈ (0,+∞)× J such that

z(t̄, x̄) = ϕ(t̄, x̄)
z ≤ ϕ on Qr̄,r̄(t̄, x̄) with r̄ > 0
z ≤ ϕ− 2η outside Qr̄,r̄(t̄, x̄) with η > 0
ϕt(t̄, x̄) +H(x̄, ϕx(t̄, x̄)) = θ with θ > 0,

(6.7)

where

H(x̄, ϕx(t̄, x̄)) :=

{
Hk (∂kϕ(t̄, x̄)) if x̄ ∈ J∗k ,
FA (∂1ϕ(t̄, 0), ∂2ϕ(t̄, 0), ∂3ϕ(t̄, 0)) if x̄ = 0.

We denote by ȳ = sign(x̄)d(0, x̄) with sign : J → R, defined by

sign(x) =


1 if x ∈ J∗3 ,
−1 if x ∈ J∗1 ∪ J∗2 ,
0 if x = 0.

Up to changing ϕ at infinity, we can assume that for ε small enough, we have{
uε(t, sign(x)d(0, x)) ≤ ϕ(t, x)− η for (t, x) ∈ (Qr̄,r̄(t̄, x̄))c ∩ (J1 ∪ J3),

vε(t, sign(x)d(0, x)) ≤ ϕ(t, x)− η for (t, x) ∈ (Qr̄,r̄(t̄, x̄))c ∩ (J2 ∪ J3).
(6.8)

First case: x̄ 6= 0. We only consider the case where x̄ ∈ J∗3 since the other cases can be treated in the same
way. Let p = ∂3ϕ(t̄, x̄) which according to Corollary 6.3 satisfies p ≤ 0 and

ϕt(t̄, x̄) +H3(p) = θ.

Let r̄ small enough so that ȳ − r̄ > 0. We define a new test function ϕ̃ : [0, T ]× R→ R given by

ϕ̃(t, y) = ϕ(t, ye3) for y > 0.

For (t, y) ∈ Pr̄,r̄(t̄, ȳ) (see (4.2)), ε small enough and by definition of φ and ω, we have that

φ
(y
ε
, a, b

)
= b and ω

(y
ε
, z,
∣∣∣y
ε

∣∣∣− |z|) = 1. (6.9)



30 N. EL KHATIB ET AL.

Using (6.9), and the definition of the non-local operator Kε(see (3.11)) implies that on the ball Pr̄,r̄(t̄, ȳ), the
function (uε, vε) is a solution in the viscosity sense ofu

ε
t +Nε

(
uε(t,·)
ε ,

[
vε(t,·)
ε

])
(y)|uεy| = 0,

vεt +Nε
(
vε(t,·)
ε ,

[
uε(t,·)]
ε

])
(y)|vεy| = 0.

We will prove that for (t, y) ∈ Pr̄,r̄(t̄, ȳ), we have

ϕ̃t + Ñε

(
ϕ̃(t, ·)
ε

,

[
ϕ̃(t, ·)
ε

])
(y)|ϕy| ≥ 0.

For all (t, y) ∈ Pr̄,r̄(t̄, ȳ), we have for r̄ small enough

ϕ̃t(t, y) + Ñε

(
ϕ̃

ε
(t, ·),

[
ϕ̃

ε
(t, ·)

])
(y) · |ϕ̃εy| = ϕ̃t(t̄, ȳ) + or̄(1)

+ Ñε

(
ϕ̃

ε
(t, ·),

[
ϕ̃

ε
(t, ·)

])
(y) · |ϕ̃y|

= θ + or̄(1) + Ñε

(
ϕ̃

ε
(t, ·),

[
ϕ̃

ε
(t, ·)

])
(y) · |p| −H3(p) =: ∆, (6.10)

where we used that ϕ̃y(t̄, ȳ) = ∂3ϕ(t̄, x̄) = p and (6.7).
If p = 0, then using that H3(0) = 0, we obtain that ∆ = θ+ or̄(1) > 0 for r̄ small small enough. Assume now

that p < 0. For all z ∈ [h0, hmax], and for ε and r̄ small enough we have that

ϕ̃(t, y + εz)− ϕ̃(t, y)

ε
=
ϕ̃(t, y + εz)− ϕ̃(t, y)

ε
≤ pz + or̄(1) + cε,

where we used the fact that ϕ̃ ∈ C1 and that z ∈ [h0, hmax]. Now using the fact that Ẽ−1 is decreasing we have

Ẽ−1 (pz + cε+ or̄(1)) ≤ Ẽ−1

(
ϕ̃(t, y + εz)− ϕ̃(t, y)

ε

)
.

We deduce that

Ñε

(
ϕ̃

ε
(t, ·),

[
ϕ̃

ε
(t, ·)

])
(y) + Vmax =

∫
z≥ yε

V ′3

(
|z| − y

ε

)
Ẽ−1

(
ϕ̃(t, εz)− ϕ̃(t, y)

ε

)
dz

=

∫ +∞

0

V ′3 (z) Ẽ−1

(
ϕ̃(t, y + εz)− ϕ̃(t, y)

ε

)
dz (6.11)

≥
∫ +∞

0

V ′3(z)Ẽ−1 (pz + or̄(1) + cε) dz (6.12)

=

∫ (−1−cε−or̄(1))/p

0

V ′3(z)Ẽ−1 (pz + or̄(1) + cε) dz

+

∫ +∞

(−1−cε−or̄(1))/p

V ′3(z)Ẽ−1 (pz + or̄(1) + cε) dz (6.13)
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= 0 +

∫ +∞

(−1−cε−or̄(1))/p

V ′3(z)dz = Vmax − V3

(
−1− cε− or̄(1)

p

)
(6.14)

where we used in the last line the fact that pz + or̄(1) + cε < −1 if z > −a−cε−or̄(1)
p . Injecting (6.14) in (6.10)

and choosing ε and r̄ small enough, we obtain

∆ ≥ θ + or̄(1) + |p| ·
[
−V3

(
−a− cε− or̄(1)

p

)
+ V3

(
−1

p

)]
≥ θ + or̄(1)− ||V ′3 ||∞ · (cε+ or̄(1))

≥ θ

2
,

where we used assumption (A1) for the second line.

Getting a contradiction. By definition, we have for ε small enough and using (6.8),

uε ≤ ϕ̃− η outside Pr̄,r̄(t̄, ȳ),

vε ≤ ϕ̃− η outside Pr̄,r̄(t̄, ȳ). (6.15)

Using the comparison principle on bounded subsets for (6.1) (Thm. 4.3), we get

uε ≤ ϕ̃− η on Pr̄,r̄(t̄, ȳ),

vε ≤ ϕ̃− η on Pr̄,r̄(t̄, ȳ). (6.16)

Passing to the limit as ε→ 0, we get u ≤ ϕ̃− η and v ≤ ϕ̃− η on Pr̄,r̄(t̄, ȳ) and this contradicts the fact that
z(t̄, x̄) = ϕ(t̄, x̄).

Second case: x̄ = 0: In that case, we have that

ϕt(t̄, x̄) + FA (∂1ϕ(t̄, 0), ∂2ϕ(t̄, 0), ∂3ϕ(t̄, 0)) = θ (6.17)

and using Theorem 2.7 in [28], we can assume that ϕ has a specific form given by

ϕ(t, x) = g(t) + p1
−x1{x∈J∗1 } + p2

−x1{x∈J∗2 } + p3
+x1{x∈J∗3 } (6.18)

with g ∈ C1(0, T ). In particular, (6.17) can be replaced by

gt(t̄) +A = θ. (6.19)

Let us consider the solution (u, v, w) of (5.6) provided by Theorem 5.2, and let us denote by

ϕε(t, y) =

{
g(t) + uε(t, y) on Pr̄,2r̄(t̄, 0),
ϕ(t, ye11{y≤0} + ye31{y≥0}) outside Pr̄,2r̄(t̄, 0),

(6.20)

and

Ψε(t, y) =

{
g(t) + vε(t, y) on Pr̄,2r̄(t̄, 0),
ϕ(t, ye21{y≤0} + ye31{y≥0}) outside Pr̄,2r̄(t̄, 0).

(6.21)
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We will prove that (ϕε,Ψε) is a viscosity super-solution on Pr̄,r̄(t̄, 0) of (6.1). Let h be a test function touching
ϕε from below at (t1, x1) ∈ Pr̄,r̄(t̄, 0), so we have

u
(x1

ε

)
=

1

ε
(h(t1, x1)− g(t1)) ,

and

u(y) ≥ 1

ε
(h(εs, εy)− g(εs)) ,

for (s, y) in a neighbourhood of

(
t1
ε
,
x1

ε

)
. Therefore, we have

ht(t1, x1)− g′(t1) + R̃1

(x1

ε
, u
(x1

ε

)
, [v]
)

(x1) · |hx(t1, x1)| ≥ A.

This implies that (using (6.19) and taking r̄ small enough)

ht(t1, x1) + R̃1

(x1

ε
, u
(x1

ε

)
, [v]
)

(x1) · |hx(t1, x1)| ≥ A+ g′(t1) ≥ θ

2
.

Now for ε small enough such that εhmax ≤ r̄, we deduce from the previous inequality and using the fact that
the non-local operators are of bounded support, that

ht(t1, x1) + R̃ε1

(
x1

ε
,
ϕε(t, x)

ε
,

[
ψε(t, ·)
ε

])
(x) · |hx(t1, x1)| ≥ θ

2
.

The two last super-solution inequalities are obtained in same way using the correctors and (6.19).

Getting the contradiction. Using (6.8) and (6.18), we have for ε small enough on Pr̄,2r̄(t̄, 0)\Pr̄,r̄(t̄, 0),

uε ≤ g(t) + p̄1
−y1{y<0} + p̄3

+y1{y>0} − η,
vε ≤ g(t) + p̄2

−y1{y<0} + p̄3
+y1{y>0} − η.

Using the fact that uε → U and vε → V with U, V defined in (5.11) we have for ε small enough on
Pr̄,2r̄(t̄, 0)\Pr̄,r̄(t̄, 0)

uε ≤ ϕε − η

2
and vε ≤ Ψε − η

2
.

Combining this with the particular form of the test function given in (6.18), we get that outside Pr̄,r̄(t̄, 0),

uε ≤ ϕε − η

2
and vε ≤ Ψε − η

2
.

By the comparison principle on bounded subsets (Thm. 4.3) the previous inequality holds in Pr̄,r̄(t̄, 0). Passing
to the limit as ε→ 0 and evaluating the inequality in (t̄, 0), we obtain

u(t̄, 0) ≤ ϕ(t̄, 0)− η

2
and v(t̄, 0) ≤ ϕ(t̄, 0)− η

2



HOMOGENIZATION OF A MICROSCOPIC PEDESTRIANS MODEL ON A CONVERGENT JUNCTION 33

which is a contradiction.

Appendix A. Appendix: extension

Our result (micro to macro) can be extended to the case of a convergent junction with N incoming roads
with an imposed rule near the junction point. The strategy is always the same: inject using the “cumulative
distribution functions” the ODE into a non-local PDE and then obtain the homogenization result in the frame-
work of viscosity solutions. The number of these functions depends on the number of branches and the different
type of leaders far from the junction point. To be more precise, we consider a junction J with N incoming roads
and one outgoing road as in Figure A.1.

Figure A.1. Junction with N + 1 branches.

We assume that the imposed rule is the following: n1 pedestrians enter from J1 then n2 pedestrians from J2,...,
then nN pedestrians from JN and this phenomena will be repeated. We write a microscopic model following the
same ideas of (2.10). Far before the junction point, the velocity of each pedestrian depends on the distance to its
leader at time t = 0. We also add the function ω which models pedestrian’s respect to the imposed rule. After
the junction point, each pedestrian Wi will follow Wi+1. We write the model using the variables Ui defined by

Wi(t) ∈ J ⇐⇒Wi(t) = Ui(t) · ek, k = 1, ...., N + 1.

In this case, the scheme to obtain our micro-macro result is the following:

1) Let i = 1, .., N . Using the pedestrians located at t = 0 on Ji ∪ JN+1, we define ni ∈ N∗ distribution
functions ρ1

i , ρ
2
i , ..., ρ

ni
i .

2) We inject these function into a system of non-local PDE. The number of equations of this system is
n1 + n2 + ...+ nN .

3) Following the ideas of our work, we can prove the following theorem.

Theorem A.1. We denote by lead(i) the leader of pedestrian i at time t = 0. We assume that

Ui(0) ≤ Ulead(i)(0)− h0.

We define h1, h2, ..., hN+1 ≥ h0. We also assume that there exists R > 0 such that{
Ulead(i)(0)− Ui(0) = hk if Wi(0) ∈ Jk, Ui(0) < −R with k = 1, .., N

Ui+1(0)− Ui(0) = hk+1 if Wi(0) ∈ JN+1, Ui(0) > R.
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We define N functions u1
0, u

2
0, ..., u

N
0 by

ui0(x) = −

∑N
j=1 nj

ni

hi
x1{x<0} −

1

hN+1
x1{x≥0}.

Let ε > 0 and χε : R+ × J → R be the function defined by

χε(t, x) =

{
(ρ1
i )
ε(t,−d(0, x)) if x ∈ J∗i , i = 1, ..., N,

(ρ1
1)ε(t, d(0, x)) if x ∈ JN+1

with

(ρ1
i )
ε(t, x) = ερ1

i

(
t

ε
,
x

ε

)
.

We define

u0(x) =

{
ui0(−d(0, x)) if x ∈ J∗i , i = 1, ..., N,

u1
0(d(0, x)) if x ∈ JN+1.

Then there exists a unique A ∈ [H0, 0] such that the function χε converges towards the unique solution u0

of u0
t +Hi(u

0
x) = 0 for (t, x) ∈ (0,+∞)× J∗i ,

u0
t + FA

(
u0
x

)
= 0 for (t, x) ∈ (0,+∞)× {0},

u0(0, x) = u0(x),

where for i = 1, ...N , the Hamiltonian Hi is given by

Hi(p) =


−p−−

∑N
j=1 nj

ni
k0 for p < −−

∑N
j=1 nj

ni
k0,

−Vi

−∑N
j=1 nj

ni

p

 |p| for −−
∑N
j=1 nj

ni
k0 ≤ p ≤ 0,

p for p > 0,

and

HN+1(p) =


−p− k0 for p < −k0,

−VN+1

(
−1

p

)
|p| for − k0 ≤ p ≤ 0.

p for p > 0.

For p ∈ RN+1, the function FA(p) is defined by

FA(p) = max

(
A, max

i=1,..,N
H

+

i (pi), H
−
N+1(pN+1)

)
.
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Figure A.2. In blue (resp. pink and red): pedestrians Ui whose leader’s label at the initial
time is i+ 1 (resp. i+ 2 and i+ 3). The definition of the function ρ1

1 (resp. ρ2
1 and ρ1

2) depends
on pedestrians colored in blue (resp. pink and red).

Example if N = 2 and n1 = 2, n2 = 1, see Figure A.2. We give the definition of the cumulative functions.
We need to introduce three cumulative functions ρ1

1, ρ
2
1 and ρ1

2. The need of three functions arises from the
different type of leaders: far before zero, on branch J1, the leader can be Ui+1 or Ui+2 and on branch J2, the
leader is Ui+3.

ρ1
1 (t, y) = −

∑
i≥0

H(y − Ui(t)) + (−1 +H(y − U−1(t))) + (−1 +H(y − U−2(t))


−

∑
i=−2−3k,k∈N∗

3 (−1 +H (y − Ui(t))) ,

ρ2
1 (t, y) = −

∑
i≥0

H (y − Ui(t)) + 4(−1 +H (y − U−4(t)))


−

∑
i=−4−3k,k∈N∗

3(−1 +H (y − Ui(t))),

and

ρ1
2 (t, y) = −

∑
i≥0

H (y − Ui(t)) +
∑

i=−3k,k∈N∗
3(−1 +H (y − Ui(t)))

 ,

with

H(x) =

{
1 if x > 0
0 if x ≤ 0.
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Analyse non linéaire 13 (1996) 293–317.

[3] A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader
models. SIAM J. Non Appl. Math. 63 (2002) 259–278.

[4] G. Barles, Interior gradient bounds for the mean curvature equation by viscosity solutions methods. Differ. Integr. Equ. 4
(1991) 263–275.

[5] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton–Jacobi equations and applications, in
Hamilton-Jacobi equations: approximations, numerical analysis and applications. Springer (2013) 49–109.

[6] G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems.
ESAIM: COCV 24 (2018) 1881–1906.

[7] N. Bellomo and C. Dogbe, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models
Methods Appl. Sci. 18 (2008) 1317–1345.

[8] C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling. Netw.
Heterogen. Media 8 (2013) 433.

[9] R.M. Colombo and M.D. Rosini, Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005)
1553–1567.

[10] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull.
Am. Math. Soc. 27 (1992) 1–67.

[11] M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277 (1983) 1–42.

[12] M. Di Francesco, S. Fagioli, M.D. Rosini and G. Russo, Follow-the-leader approximations of macroscopic models for vehicular
and pedestrian flows, in Vol. 1 of Active Particles. Springer (2017) 333–378.

[13] M. Di Francesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models
via many particle limit. Arch. Ratl. Mech. Anal. 217 (2015) 831–871.

[14] L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A
111 (1989) 359–375.

[15] N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the
dislocation dynamics. Discr. Continu. Dyn. Syst. Ser. A 23 (2009) 785.

[16] N. Forcadel, C. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with n types of particles.
Trans. Am. Math. Soc. 364 (2012) 6187–6227.

[17] N. Forcadel and W. Salazar, Homogenization of a discrete model for a bifurcation and application to traffic flow. J.
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