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Abstract

An atomistic effective Hamiltonian scheme is employed within Molecular Dynamics simulations

to investigate how the electrical polarization and magnetization of the multiferroic BiFeO3 respond

to time-dependent ac magnetic fields of various frequencies, as well as to reveal the frequency de-

pendency of the dynamical (quadratic) magnetoelectric coefficient. We found the occurrence of

vibrations having phonon frequencies in both the time-dependency of the electrical polarization

and magnetization (for any applied ac frequency), therefore making such vibrations of electro-

magnonic nature, when the homogeneous strain of the system is frozen (case 1). Moreover, the

quadratic magnetoelectric coupling constant is monotonous and almost dispersionless in the sub-

THz range in this case 1. In contrast, when the homogeneous strain can fully relax (case 2), two

additional low-frequency and strain-mediated oscillations emerge in the time-dependent behavior

of the polarization and magnetization, which result in resonances in the quadratic magnetoelec-

tric coefficient. Such additional oscillations consist of a mixing between acoustic phonons, optical

phonons and magnons, and reflect the existence of a new quasiparticle that can be coined “electro-

acoustic-magnon”. This latter finding can prompt experimentalists to shape their samples to take

advantage of, and tune, the magnetostrictive-induced mechanical resonance frequency, in order to

achieve large dynamical magnetoelectric couplings.
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Multiferroic materials can exhibit a magnetoelectric (ME) coupling between their elec-

trical and magnetic moments. Such coupling is promising for designing novel devices by

controlling magnetization with electric fields, or conversely, electrical polarization with mag-

netic fields [1–6]. Two paths can be taken to realize this magnetoelectric coupling: direct

coupling of polarization with magnetic field vs mediated by strain. The latter is particularly

investigated by mixing efficient magnetostrictive and piezoelectric materials, in composites

[7] or heterostructures [8, 9].

These two types of coupling have been mostly for static properties [1–4, 10, 11]. In

other words, how strain affects dynamical properties of multiferroics is mostly an uncharted

territory. In particular, it is yet unclear whether ME coefficients can be improved with

mechanical resonances in a single phase materials, as in laminar composites [8, 12]. It is

also legitimate to investigate the effect of strain on electromagnons (mixing of phonons and

magnons [13–16]), or even on the formation of novel type of (dynamical) objects.

To resolve such issues, we (1) conducted molecular dynamics (MD) simulations within an

effective Hamiltonian scheme on BiFeO3 (BFO), a prototypical multiferroic, subject to ac

magnetic fields; and (2) monitored the resulting time-dependency of its electrical polariza-

tion and magnetization. It is found, that (i) electromagnons (of phonon frequencies) exist

independently of allowing the homogeneous strain to relax; and (ii) relaxation of the homo-

geneous strain results in the emergence of a new type of quasiparticle consisting of acoustic

vibrations coupled to phonons and magnons, and generating resonances in the quadratic

ME coefficient.

Here, we use the effective Hamiltonian (Heff) scheme of BiFeO3 described in Ref. [17]. Its

total energy EBFO({ui}, {ηH}, {ηI}, {ωi}, {mi}) includes four types of degrees of freedom: 1)

the local modes {ui}, proportional to the local electric dipoles [18, 19]; 2) the homogeneous

{ηH} and inhomogeneous {ηI} strain tensors [18, 19]; 3) the pseudo-vectors {ωi} that char-

acterize the oxygen octahedral tiltings [20] (also called antiferrodistortive (AFD) motions);

and 4) the magnetic moments {mi} of the Fe ions (in all cases, the subscript i labels unit cells

in our simulated supercells). The total energy of Heff for BFO is a sum of three main energies

Etot = EFE({ui}, {ηl})+EAFD({ui}, {ηl}, {ωi})+EMAG({mi}, {ui}, {ηl}, {ωi}), where {ηl}

is the total strain tensor (i.e., that incorporates both the homogenous and inhomogeneous

components). EFE is the energy involving the local modes and elastic deformations, while

EAFD is the energy that gathers the AFD motions and their couplings with local modes and
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strains. Moreover, EMAG contains the magnetic degrees of freedom and their couplings with

local modes, AFD tiltings and strains, and reads [21]:

EMAG =
∑
ijαγ

Qijαγmiαmjγ +
∑
ijαγ

Sijαγmiαmjγ +
∑
ij,αγνδ

Eij,αγνδmiαmjγuiνuiδ (1)

+
∑
ij,αγνδ

Fij,αγνδmiαmjγωiνωiδ +
∑
ijl,αγ

Gijl,αγηl(i)miαmjγ +
∑
ij

Lij(ωi − ωj) · (mi ×mj) ,

where α, γ, ν, δ denote the Cartesian components, and the indices i and j run over sites.

The six terms of Eq. (1) are, respectively, the dipolar interactions between the magnetic

moments, the short-range magnetic exchange coupling, the coupling between the magnetic

moments with local modes, AFD motions and strain, and a particular Dzyaloshinskii-Moriya

(DM) interaction involving the oxygen octahedral tiltings. Under a magnetic field, an addi-

tional term−
∑

imi·H is also incorporated into the total energy. This effective Hamiltonian

is then adopted for MD simulations, by solving the equations of motion for local modes, oxy-

gen octahedral tilting, strains and magnetic moments, as detailed in Refs. [22–24]. We adopt

a 12×12×12 supercell in terms of the 5-atom perovskite unit cell, with periodic boundary

conditions. MD simulations are carried out at 1 K under the NPT ensemble when the ho-

mogeneous strain can relax during the simulations versus the NV T ensemble when the total

strain is frozen during the computations. More details about the MD computations and the

effective Hamiltonian schemes for BFO are given in the Supplemental Material [21, 25–36].

We apply to our considered state of BFO a magnetic field with two components, both

aligned along the [112̄] direction: a dc field of magnitude Hdc=245 T and an ac field given

by hac sin(ωt) where hac= 61.2 T and ν = ω/2π is the frequency of the applied ac magnetic

field. These fields are chosen to have high magnitude to numerically observe the response of

polarization since ME coefficients are known to be rather small in BiFeO3 [21, 32, 37, 38].

Let us first restrict ourselves to the case when the homogeneous strain is not allowed to

relax (therefore adopting the homogeneous strain of the R3c state under a sole dc magnetic

field of 245 T) during the MD simulations – while the inhomogeneous strain can still vary.

Figure 1a depicts the temporal behavior of the component of the polarization along the [111]

direction in the R3c phase for a frequency (ν) of 160 GHz. Moreover, Fig. 1b displays the

corresponding Fourier transform, and demonstrates that four main frequencies govern the

temporal evolution of the electrical polarization: the applied ac frequency and its double
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(i.e., 160 and 320 GHz), which reveals the occurrence of dynamical magnetoelectric effects,

and two higher frequencies that are of the order of 4300 and 7000 GHz, which are natural

phonon frequencies (see Refs. [22, 26, 39–46]).

Interestingly and as evidenced in Fig. 1d, these four frequencies also appear, in the

Fourier transform of the curve representing the component of the magnetization along the

[112̄] direction as a function of time (shown in Fig. 1c). The frequency of 160 GHz seen

in Fig. 1d emerges from the energy coupling the magnetic moment with the ac magnetic

field, while the frequency at 320 GHz is characteristic of non-linear magnetic couplings.

Remarkably, the high frequencies around 4300 GHz seen in Fig. 1d, and at lesser extent at

7000 GHz, reveal that natural phonons mix with magnons and affect the temporal evolution

of the magnetization under a time-dependent magnetic field. Natural phonons thus become

electromagnons [14–16], consistent with Ref. [47] for the R3c phase of BiFeO3 – these

electromagnons are presently numerically found to originate from the fact that polarization

and oxygen octahedral tiltings affect the magnetic exchange parameters (third and fourth

terms of Eq. (1)). Note that magnons having frequencies smaller than 160 GHz are not seen

in Fig. 1d because the applied magnetic fields are too large and thus force the magnetic

moments to mostly follow them, in addition to possessing smaller oscillations arising from

the coupling of the magnetic moments with the aforementioned phonons (see Fig. 1c).

Let us now allow the homogeneous and inhomogeneous strains to fully relax during the

MD simulations, and determine how it affects the temporal evolutions of the polarization

and magnetization (see Figs 2a and 2c, respectively), as well as their Fourier transforms (cf

Figs 2d and 2d, respectively). Figures 2e and 2f further report the variation of the diagonal

elements of the homogenous strain tensor (ηH,1, ηH,2 and ηH,3) as a function of time and of

their Fourier transforms, respectively, while Figs 2g and 2h provide similar information but

for the shear elements of the homogeneous strain tensor (ηH,4, ηH,5 and ηH,6).

Remarkably, allowing the homogeneous strain to relax generates two additional frequen-

cies in the Fourier transform of the polarization-versus-time curve with respect to the case of

fixed homogeneous strains. These two frequencies are about 90 and 267 GHz, respectively,

and can also be seen in the Fourier transform of the magnetization-versus-time functions.

Figures 2h reveals that the frequency of 90 GHz originates from the oscillations of the shear

elements of ηH,4, ηH,5 and ηH,6, while that of 267 GHz can be traced back to the vibra-

tions of the diagonal (ηH,1, ηH,2 and ηH,3) elements of the homogeneous strain according to
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Fig. 2f. Figures 2f and 2h further indicate that the diagonal and shear elements of the

homogeneous strain tensor adopt the frequency of the applied magnetic fields of 160 GHz

too, and that ηH,1, ηH,2 and ηH,3 also possess another frequency of the order of 67 GHz

that slightly appears in the Fourier transform of the magnetization as shown in Fig. 2d

(note that, on the other hand, we did not find any frequency higher than 320 GHz in the

Fourier transforms of all homogeneous strain components, including the phonon frequen-

cies). Comparing the results between the cases of the fixed versus relaxed homogeneous

strain therefore demonstrates that, in our simulations, the homogeneous strain tensor has

its own natural frequencies of the order of 90 and 267 GHz that then couple with oscilla-

tions of both the polarization and magnetization (note that these two frequencies are indeed

natural frequencies of the homogeneous strain because they are also numerically found (not

shown here) in the Fourier transform of the homogeneous strain when only a dc magnetic

field is applied or even when no magnetic field is imposed on BFO, with the homogeneous

strain having the possibility to relax during all these additional simulations). In other words,

one can create a new type of quasiparticle mixing acoustic phonons, optical phonons and

magnons, when applying ac magnetic fields with specific frequencies (i.e., 90 and 267 GHz

here). Such creation of this quasiparticle can be understood as follows: the magnetic field at

these frequencies naturally activates magnons, via the direct interaction between magnetic

field and magnetic moments, which in turn dynamically couple with the strain and its natu-

ral frequencies via the magnetostrictive effect. This dynamical strain then activates optical

phonons at these frequencies, because of couplings between strain and electrical dipoles (via

electrostrictive and piezoelectric effects), therefore resulting in the formation of this quasi-

particle. We propose to name such quasiparticle as “electro-acoustic-magnons” to emphasize

that, unlike “traditional” electromagnons, strain also plays a role in their creation. Note

that pump-probe experiments revealed acoustic excitations having similar frequencies than

our predicted “electro-acoustic-magnons”, namely around 30 GHz and 50 GHz for transverse

and longitudinal acoustic modes in BFO respectively [48, 49] (note also that the presently

calculated natural frequencies of the “electro-acoustic-magnons” naturally depend on the

choice of the homogeneous strain mass adopted in our MD simulations). Moreover, a peak

at about 300 GHz has been observed in the Raman spectrum of the spin-canted magnetic

structure of epitaxial BFO films [36]. Furthermore, a phenomenon analogous to our proposed

“electro-acoustic-magnons” has just been reported in Ref. [50], that is a dynamical coupling
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between nuclear spins and electromechanical phonons. Such phenomenon consists of apply-

ing an ac electric field at the natural frequency of a resonator, which leads to an electrically

tunable phonon that imparts diagonal and shear strains oscillating with time and which

then dynamically couple with spins of nuclei (via a quadruple interaction between strains

and spins there). This resulting dynamical coupling between spins and electromechanical

phonons was indicated to open up quantum state engineering, such as coherent coupling

between sound and nuclei and mechanical cooling of solid-state nuclei [50]. Such interest-

ing possibilities therefore hint that our presently discovered “electro-acoustic-magnons” may

lead to novel and important devices.

Let us now reveal how these “electro-acoustic-magnons” affect the dynamical magneto-

electric coefficients. For that, let us first recall the following equation of any component i of

the polarization under magnetic fields [51, 52]: Pi = P s
i + αijHj + 1

2
βijkHjHk, in which P s

i

is the i component of the spontaneous polarization, while Hj and Hk are components of the

magnetic field. Moreover, αij and βijk are linear and quadratic magnetoelectric coefficients,

respectively. Assuming that the linear ME coefficient is negligible compared to the quadratic

coefficient (as suggested in Refs. [21, 53] for large fields) leads to the following equation for

the polarization (along the [111] direction) when applying a magnetic field (along the [112̄]

direction) H = Hdc + hace
i(ωt−π

2
):

P (t) = P0 + β(0, ω)Hdchace
i(ωt−π

2
) + β(ω, ω)

1

2
h2
ace

i(2ωt−π) (2)

The second and third terms on the right-hand side of Eq.(2) characterize the magnetic-field

induction of a polarization component with the same frequency of applied ac magnetic field

and a second harmonic generation, respectively – which explains the occurrence of a strong

Fourier transform at 160 GHz and a weaker one at 320 GHz in Figs. 1b and 1d. Note that

Fig. 1a also shows the fit of P (t) by a function of the form A+B sinωt by means of a solid

line. Such fit nicely goes throughout the numerical MD data, therefore implying that (i) the

linear ME coefficient and β(ω, ω) can be neglected in front of β(0, ω) for the ac frequency of

160 GHz (the deviation of the MD data with respect to the fit consists of rapid oscillations

associated with the phonon frequencies of about 4300 and 7000 GHz); and (ii) the validity

of Eq. (2) is confirmed by our MD data.

Taking now into account that β(0, ω) is a complex number (especially close to resonant

frequencies) we rewrite β(0, ω) = β′(0, ω) + iβ′′(0, ω), whose separate contributions can be

7



computed thanks to Eq. (2) via:

β′(0, ω) =
2
L

∫ L
0

(P (t)− P0) sinωtdt

Hdchac
and β′′(0, ω) =

2
L

∫ L
0

(P (t)− P0) cosωtdt

Hdchac
(3)

where L is the overall simulation time.

We now apply, in addition to the dc magnetic field of 245 T, ac magnetic fields of the

same magnitude of 61.2 T than in Figs 1 and 2 but of different frequencies ranging between

20 GHz and 500 GHz (both fields applied along [112̄]). Using Eqs (3), β(0, ω) is deter-

mined in the frozen (Fig. 3a) and relaxed (Fig. 3b) homogeneous strain cases. When the

homogeneous strain is fixed in the simulations, the imaginary part of β(0, ω) is basically

null for any ac frequency while the real part β′(0, ω) is nearly independent of the frequency

taking a value of about 2.0× 10−8 C/m2T2 = 0.32× 10−19 s/A in magnitude – that agrees

very well with the β311 coefficient of 0.3 × 10−19 s/A measured in Ref. [38]. On the other

hand, when the homogeneous strain fully relaxes, β(0, ω) exhibits two resonances at pre-

cisely the two frequencies of the electro-acoustic-magnons, as evidenced by strong peaks of

the β′′(0, ω) imaginary part at 90 and 267 GHz that are accompanied by strong negative

values immediately followed by strong positive values of the β(0, ω)′ real part in the near

vicinity of these two frequencies. Relaxing the homogeneous strain has thus dramatic conse-

quences on the dynamical quadratic ME coefficients near some resonant frequencies because

such strain dynamically couples with both the polarization and magnetization. The diver-

gences of β(0, ω) at these two resonances that are induced by indirect (i.e strain-mediated)

ME coupling therefore differ in nature from the divergences of the linear dynamical ME

coefficient predicted to occur at magnons or phonon frequencies in Ref. [54] since these

latter originate from a direct coupling between polarization and magnetism. Note that elec-

tromechanically mediated resonance in magnetoelectric coefficients was already observed in

laminar piezoelectric-magnetoelectric composite structures [8, 12]. Here, it is of interest in

the design of magneto-electric based sensors, for which the resonance frequency can be tuned

by properly designing the shape and size of a single phase material (such as BiFeO3).

Note also that we are unable to extract β(0, ω) for high frequencies, because the time

dependency of the polarization becomes noisy due to interference between the phonon fre-

quencies and the applied magnetic field frequency. This explains why we limited ourselves

to frequencies up to 500 GHz in Fig. 3 and prevents us from checking if β(0, ω) has also

resonances at the phonon/electromagnons frequencies of about 4300 and 7000 GHz.
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In summary, molecular dynamics effective Hamiltonian simulations predicting the re-

sponse of the polarization and magnetization to time-dependent magnetic fields of different

ac frequency, allowed to extract the dispersion of the quadratic ME coefficient up to 500

GHz. In particular, electromagnons having phonon frequencies are found whether the ho-

mogeneous strain is frozen or relaxed during the simulations. Strain-mediated resonances in

the magnetoelectric coupling are also reported, and are of large interest to design devices

with proper shape of the sample for dynamical applications, since such shape can tune the

resonant mechanical frequencies [55]. Those resonances can be described by a new type of

quasiparticle that we coin “electric-acoustic-magnon”, which arises when the frequency of

the ac magnetic field resonantly excites homogeneous strain modes. This quasiparticle con-

sists of a mixing of acoustic phonon, optical phonon and magnon. The calculations reported

in this manuscript were done at very low temperature and high magnitude of the magnetic

fields in order to have less fluctuation of the order parameters (e.g., polarization and magne-

tization) – yielding less numerical noise and thus better accuracy for the magnetoelectric re-

sponse. However, as shown in the Supplementary Materials, our findings (e.g., resonances in

the quadratic magnetoelectric coefficients originating from our discovered “electro-acoustic-

magnons”) still qualitatively hold at 300K and also for smaller magnetic fields. We strongly

believe that these results are not only relevant to BiFeO3 but rather to many multiferroics

due to couplings between polarization, magnetization and strains in such systems. We thus

hope that the present results deepen the current knowledge of multiferroics, in general, and

of dynamical magneto-electric effects, in particular.
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(a)
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(d)

FIG. 1: (Color online) Temporal evolution of the polarization (panel a) and magnetization (panel

c) in BiFeO3 under a dc magnetic field of 245 T of magnitude coexisting with an ac magnetic field

of 61.2 T of magnitude and of 160 GHz of frequency, along with their resulting Fourier transforms

(panels b and d, respectively) as a function of frequency, in the case that the homogeneous strain is

frozen in the MD simulations. The dc and ac magnetic fields are applied along the [112̄] direction.

The displayed polarization is along the [111] direction while the magnetization is along the [112̄]

direction. The solid line in Panel a represents the fit of the MD data by a function of the form

A+B sinωt where ω/2π=160 GHz.
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FIG. 2: (Color online) Temporal evolution of the polarization (panel a), magnetization (panel c),

diagonal elements of the homogeneous strain tensor (panel e) and shear elements of the homoge-

neous strain tensor (panel g) in BiFeO3 under a dc magnetic field of 245 T of magnitude coexisting

with an ac magnetic field of 61.2 T of magnitude and of 160 GHz of frequency, along with their

resulting Fourier transforms (Panels b, d, f and h, respectively) as a function of frequency, when

the homogeneous strain is allowed to relax during the MD simulations. The dc and ac magnetic

fields are applied along the [112̄] direction. The displayed polarization is along the [111] direction

while the magnetization is along the [112̄] direction.
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(a) (b)

FIG. 3: (Color online) Dependency of the real and imaginary parts of the β(0,ω) dynamical quadratic

ME coefficient on the frequency of the ac applied magnetic field when the homogeneous strain is

frozen (panel a) versus when the homogeneous strain can relax in the MD simulations (panel b).
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