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Context : Study of nuclear spent fuel storage pool accidents

In case of a loss of water in a spent fuel pool, the Zr-based cladding tubes will oxidized at high temperature

— Temperature range of interest ~ 700-1000°C
— Atmospheres considered O, + N, + H,O mixtures Before breakaway After breakaway

(1) Zr+0 > Zr(0)

(2) Zr+0,-> ZrO, AG = - 787 kd/mol Zr

(3) Zr+2H,0 > ZrO,+2H, AG=-478kJ/molZr (at850°C)
Zr+% N, > ZrN AG = - 260 kdJ/mol Zr

M. Lasserre, PhD Thesis, Ecole des Mines de Saint-Etienne, 2013.
M. Gestin, PhD Thesis, Ecole des Mines de Saint-Etienne, 2019.

C. Duriez et al., J. Nucl. Mat., vol. 380, pp. 30-45, 2008.
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Obj ective : An overview of Raman microscopy imaging capabilities for the study of
thermally grown zirconia scales.

Content

»Principle of Raman imaging
»Phases mapping
»Stoichiometry

»Stress mapping

»Oxygen 18 isotopic distributions
O Two-stage diffusion experiments
Q HT oxidations tests in mixed 80, + H,'°0 + N, atmospheres
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Raman imaging system

laser + optical microscope + spectrometer

- Lateral resolution <1 uym
Probed depth ~ 1-2 ym for ZrO,
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Raman scanning and phase identification

1- Scanning of a cross section - Dataset of experimental spectra

2- Comparison/substraction of experimental spectra with reference spectra - 5 pure phase spectra identified : m-ZrO,, t-

ZrQ,, distorted t-ZrO,, ¢c-ZrO,, ZrN + 1 broad-band signal due to high disorder (low crystal size, sub-stoichiometry, ...).

6 model spectra
~8000 experimental spectra &

. .. .. several hours of acquisition
Zy-4 oxidized in air at 800°C .

t-ZrO2

istorted t-ZrOz
interface

Intensity (a.u.)
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Scanned area 85 x 45 um, step 0.7 ym
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Phase mapping

3- Phase maps construction Method 1 Method 2 (not quantitative)
Method 1: Integrated intensity of a given line
Method 2: Linear combinations of the model spectra R T
280 cm'? |in:‘ V.
Pre-breakaway Post-breakaway (distortedt-ZrO,)

I. Idarraga et al, Oxid. Met. 79 (2013) pp. 289-302.

475 cmtline
(m-Zr0,), log scale

)

Ga Distorted t-ZrO, found at the M/O interface, for both pre and post-BA regions.
m Significant amount of t-Zr02 in the post BA region } Stabilized by Nitrogen dissolved in Zr02
m Cubic ZrO, detected (low amount) and/or by substoichiometry ?
m  Good sensitivity for ZrN detection.
m-ZrO, intensity likely linked to stoichiometry. j
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Sub-stoichiometry

Zircaloy-4 oxidation at « low » temperature to simulate the corrosion in reactor - layered microstructure:

at 360°C in autoclave during1265 days at 425°C in O, + H,0 during 250 days

SEM/BSE

Integrated intensity
of the 475 cm™ line
(m-ZrO,), log scale

RS SRR T et S

S. Guilbert-Banti et al., J. Nucl Mat., vol. 548, 2021.

=) For both oxidation conditions :
o The scales are mostly stoichiometric,
o Only the last formed layer at the M/O interface is sub-stoichiometric.
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Stress mapping (1/2)

= Stress - Lattice strain - Slight shifts of Raman lines (few cm'/GPa).
= (Calibrations through isostatic compression tests (diamond anvil-cell) are not applicable:

= bi-axial stresses,
= Strong texture + high anisotropy of the m-ZrO, Young modulus and thermal expansion coefficients.

= Stresses can be qualitatively mapped by measuring the shifts of the low-frequency lines (not influenced by
stoichiometry) from a reference signal (relaxed sample).
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Stress mapping (2/2)

m-ZrO-2

t-Zr02

t-ZrO2
interface
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M5, .....ome OXidized in air at 800°C

179.5
179.0
178.5
178.0

== NN

Integrated intensity of the t-ZrO, line at 280 cm™

= o Compressive stresses close to the M/O interface.
o Compressive stresses stabilize t-ZrO, here.

I. Idarraga et al, Oxid. Met. 79 (2013) pp. 289-302.
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Oxidation tests with isotopically-labeled oxygen

= 160 — 18Q substitution induces strong downward shifts of O-dominated lines of the m-ZrQ, Raman spectrum.
= Zr('80,'%0), standard powders prepared by Zy-4 total oxidation in '®Q, + 180, atmospheres
—> Shifts are proportional to the 80 fraction.

O-motion dominated vibration modes Slope = -0.27 cm™'/180 at% ‘%:
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=) Raman imaging can be use to quantitatively map the 80 distribution
in a zirconia scale by measuring the position of the 475 cm' line.
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Two-stage oxidation experiments

Objective: Investigate oxygen ingress at high T through a low T pre-oxidation scale

e

—

1602, H2160

Stage 1: Pre-oxydation at 425°C in €O, + H,'%0

— P
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Stage 2: High T exposure in 80, or '%0,+ N, ij . E lO ID f = f
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Two-stage oxidation experiments : effect of cracks

After 120 min at 850°C in 80, + N,

SIMS mapping _ 3
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:> o Vertical cracks are preferential path for oxygen incorporation and circumferential
cracks favor its lateral spreading.

o Comparison with SIMS imaging validates the 80 Raman distribution.
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Apparent oxygen diffusion coefficients
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o Our diffusion coefficients compare well with literature data.
o The pre-oxide scales grown at 425°C behave at 700-950°C
as dense, protective scales.
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Two-stage experiments: M5™ versus Zy-4

Pre-oxidation at 425°C in '*0, + H,'®0O, then 60 min at 850°C in 80,
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= [ Pre-oxide formed at 425°C is less protective against HT oxidation for M5¢,,.a:0me than for Zicaloy-4. J
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HT oxidationsin , + H,'%0 + N, (1/3)

Objective:
Quantify, in mixed air + steam atmospheres, the respective contributions of the O, and H,0 to the oxidation process.
(1) Zr+ 0, > ZrO, AG =-787 kd/mol Zr  at 850°C
(2) Zr + 2H,0 = ZrO, + 2H, AG =-478 kJ/mol Zr  at 850°C
Principle:

1) Bare Zircaloy-4 plates oxidized at HT (700, 850 or 950°C) in flowing 80, + H,"50 + N, (P50, /Pu2160 = 0.23 or 0.93)
Short duration test to limit 0, consumption and isotopic exchanges after oxide formation.

2) Raman mapping at the edges = isotopic composition of pre-BA and post-BA oxides.

" 20 um
|
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HT oxidationsin  , + H,'%0 + N, (2/3)

P1s02/Phzieo = 0.23 = 180/0,,, = 0.31 P1s02/Przieo = 0.93 > 180/0,,, = 0.63
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é m The dense oxide grown during the diffusion-controlled pre-breakaway regime displays very low

= 180 content = it forms mainly from H,0O.

m The post-breakaway porous oxide has roughly the same isotopic composition than the gas
phase = H,O and O, contribute more or less proportionally to their partial pressure.

_ /
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Two-stage oxidation tests at 850°C

Objective: Compare the diffusion-controlled regime for O, atmosphere versus and H,O atmosphere

second step in H,'%0

- \
_______________
i B A k- -

—
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Principle: 2-stage oxidation of Zircaloy-4 at 850°C : 1st stage in 180, (30 min) then second stage in H,'®O or in 60, (60 min)

ﬁ Spatially heterogeneous €O distributions
—> Linked to the microstructure (veins of smaller grains)

» No significant difference between these two specimens
— Same diffusion process for O, and H,O atmospheres.

= Selectivity in mixed atmosphere may rather be explained by

M. Mermoux et al., Corrosion Science, vol. 184, 2021

competitive adsorption at the zirconia surface, which favors the H,0

wolecules.
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CONCLUSIONS

Raman imaging is a powerful tool for mapping thermally grow zirconia layers at um scale
— Phase distribution maps

g |
— Stress distribution maps (not quantitative) } After cool-down !

= Sub-stoichiometry Cr,0; Raman spectrum
— 180 isotopic distribution maps (quantitative) - Alg gg

S >3
May be applied to other systems ! '% o g o
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Prospect : Can Raman imaging be a quantitative 20 . ‘““Ramm:i’:t - 600 o 500
tool for local measurement of sub-stoichiometry ?
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