

Fraternité





# HIGH TEMPERATURE OXIDATION OF ZIRCONIUM ALLOYS CLADDING MATERIAL IN SFP-LOCA CONDITIONS EXAMINED WITH MICRO RAMAN IMAGING AND <sup>18</sup>O TRACER TECHNIQUES

A. Kasperski<sup>1,2</sup>, <u>C. Duriez<sup>1</sup></u>, M. Mermoux<sup>2</sup>,

1- IRSN/PSN-RES/SEREX/LE2M, Cadarache, 13115 Saint-Paul-lez-Durance, France 2- Université Grenoble Alpes, CNRS/LEPMI, 38402 Saint-Martin d'Hères cedex, France

HTCPM 2021, 28 March - 2 April 2021



## Context : Study of nuclear spent fuel storage pool accidents

In case of a loss of water in a spent fuel pool, the Zr-based cladding tubes will oxidized at high temperature

 $\Rightarrow$  Temperature range of interest ~ 700-1000°C

29 March - 2 April 2021

- $\Rightarrow$  Atmospheres considered O<sub>2</sub> + N<sub>2</sub> + H<sub>2</sub>O mixtures
  - $Zr + O \rightarrow Zr(O)$ (1)
  - $Zr + O_2 \rightarrow ZrO_2$ (2)
  - (3)
  - $Zr + \frac{1}{2}N_2 \rightarrow ZrN$ (4)

 $\Delta G = -787 \text{ kJ/mol Zr}$  $Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$   $\Delta G = -478 \text{ kJ/mol } Zr$ (at 850°C)











-45, 2008. 9 Saint-Étienne, 2013. <sup>— 41</sup>~nne. 2019. ge dd des Min 380. Mat Nuc/ C. Duriez et al., M. Lasserre, Ph. M. Gestin, PhD

**Objective :** An overview of **Raman microscopy** imaging capabilities for the study of thermally grown zirconia scales.

Content

- Principle of Raman imaging
- Phases mapping
- Stoichiometry
- Stress mapping
- > Oxygen 18 isotopic distributions
  - □ Two-stage diffusion experiments
  - $\Box$  HT oxidations tests in mixed <sup>18</sup>O<sub>2</sub> + H<sub>2</sub><sup>16</sup>O + N<sub>2</sub> atmospheres



## Raman imaging system

#### laser + optical microscope + spectrometer







IRS

1- Scanning of a cross section  $\rightarrow$  Dataset of experimental spectra

2- Comparison/substraction of experimental spectra with reference spectra  $\rightarrow$  5 pure phase spectra identified : m-ZrO<sub>2</sub>, t-

ZrO<sub>2</sub>, distorted t-ZrO<sub>2</sub>, c-ZrO<sub>2</sub>, ZrN + 1 broad-band signal due to high disorder (low crystal size, sub-stoichiometry, ...).



Wavenumber (cm<sup>-1</sup>)

## Phase mapping



- Significant amount of t-ZrO<sub>2</sub> in the post BA region
- Cubic ZrO<sub>2</sub> detected (low amount)
- Good sensitivity for ZrN detection.
- m-ZrO<sub>2</sub> intensity likely linked to stoichiometry.

Stabilized by Nitrogen dissolved in  $\rm ZrO_2$  and/or by substoichiometry ?



Oxid. Met. 79 (2013) pp. 289-302

I. Idarraga et al,

Zircaloy-4 oxidation at « low » temperature to simulate the corrosion in reactor  $\rightarrow$  layered microstructure:



#### at 425°C in $O_2$ + $H_2O$ during 250 days



#### SEM/BSE

Integrated intensity of the 475 cm<sup>-1</sup> line (m-ZrO<sub>2</sub>), log scale





For both oxidation conditions :

- The scales are mostly stoichiometric,
- Only the last formed layer at the M/O interface is sub-stoichiometric.

## Stress mapping (1/2)

- Stress  $\rightarrow$  Lattice strain  $\rightarrow$  Slight shifts of Raman lines (few cm<sup>-1</sup>/GPa).
- Calibrations through *isostatic* compression tests (diamond anvil-cell) are not applicable:
  - bi-axial stresses,
  - Strong texture + high anisotropy of the m-ZrO<sub>2</sub> Young modulus and thermal expansion coefficients.
- Stresses can be qualitatively mapped by measuring the shifts of the low-frequency lines (not influenced by stoichiometry) from a reference signal (relaxed sample).







M5<sub>Framatome</sub> oxidized in air at 800°C







Integrated intensity of the t-ZrO<sub>2</sub> line at 280 cm<sup>-1</sup>

- Compressive stresses close to the M/O interface.
- Compressive stresses stabilize  $t-ZrO_2$  here.



## Oxidation tests with isotopically-labeled oxygen

- ${}^{16}O \rightarrow {}^{18}O$  substitution induces strong downward shifts of O-dominated lines of the m-ZrO<sub>2</sub> Raman spectrum.
- $Zr({}^{18}O, {}^{16}O)_2$  standard powders prepared by Zy-4 total oxidation in  ${}^{16}O_2$  +  ${}^{18}O_2$  atmospheres
  - $\rightarrow$  Shifts are proportional to the <sup>18</sup>O fraction.



Raman imaging can be use to **quantitatively map** the <sup>18</sup>O distribution in a zirconia scale by measuring the position of the 475 cm<sup>-1</sup> line.



**Objective:** Investigate oxygen ingress at high T through a low T pre-oxidation scale

Stage 1: Pre-oxydation at 425°C in  ${}^{16}O_2 + H_2{}^{16}O$ 



Stage 2: High T exposure in  ${}^{18}O_2$  or  ${}^{18}O_2 + N_2$ (at 700, 850 and 950°C)



<sup>18</sup>O distribution by Raman imaging





#### Two-stage oxidation experiments : effect of cracks



After 120 min at 850°C in  ${}^{18}O_2 + N_2$ 

#### Vertical cracks are preferential path for oxygen incorporation and circumferential cracks favor its lateral spreading.

□ Comparison with SIMS imaging validates the <sup>18</sup>O Raman distribution.



## Apparent oxygen diffusion coefficients



## Two-stage experiments: M5<sup>TM</sup> versus Zy-4

Pre-oxidation at 425°C in  ${}^{16}O_2$  + H<sub>2</sub> ${}^{16}O$ , then 60 min at 850°C in  ${}^{18}O_2$ 



Pre-oxide formed at 425°C is less protective against HT oxidation for M5<sub>Framatome</sub> than for Zicaloy-4.



#### **Objective:**

Quantify, in mixed air + steam atmospheres, the **respective contributions** of the  $O_2$  and  $H_2O$  to the oxidation process.

(1)  $Zr + O_2 \rightarrow ZrO_2$   $\Delta G = -787 \text{ kJ/mol } Zr$  at 850°C (2)  $Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$   $\Delta G = -478 \text{ kJ/mol } Zr$  at 850°C

#### **Principle:**

- 1) Bare Zircaloy-4 plates oxidized at HT (700, 850 or 950°C) in <u>flowing</u>  ${}^{18}O_2 + H_2{}^{16}O + N_2 (P_{18O2} / P_{H216O} = 0.23 \text{ or } 0.93)$ Short duration test to limit  ${}^{18}O_2$  consumption and isotopic exchanges after oxide formation.
- 2) Raman mapping at the edges  $\Rightarrow$  isotopic composition of <u>pre-BA</u> and <u>post-BA</u> oxides.









(2/3)

- M. Mermoux et al.,
- The dense oxide grown during the diffusion-controlled pre-breakaway regime displays very low <sup>18</sup>O content  $\Rightarrow$  it forms mainly from H<sub>2</sub>O.
- The post-breakaway porous oxide has roughly the same isotopic composition than the gas phase  $\Rightarrow$  H<sub>2</sub>O and O<sub>2</sub> contribute more or less proportionally to their partial pressure.

HTCPM 2021 - 29 March - 2 April 2021 16/18

min

60

850°C,

HT oxidations in  ${}^{18}O_2 + H_2{}^{16}O + N_2$ 



2021

Corrosion Science, vol. 184,

## Two-stage oxidation tests at 850°C

**Objective:** Compare the diffusion-controlled regime for  $O_2$  atmosphere versus and  $H_2O$  atmosphere

**Principle:** 2-stage oxidation of Zircaloy-4 at 850°C :  $1^{st}$  stage in  ${}^{18}O_2$  (30 min) then second stage in  $H_2{}^{16}O$  or in  ${}^{16}O_2$  (60 min)



#### **BSE-SEM** image



- Spatially heterogeneous <sup>16</sup>O distributions
  - $\rightarrow$  Linked to the microstructure (veins of smaller grains)
- No significant difference between these two specimens
  - $\rightarrow$  Same diffusion process for O<sub>2</sub> and H<sub>2</sub>O atmospheres.

 $\Rightarrow$  Selectivity in mixed atmosphere may rather be explained by competitive adsorption at the zirconia surface, which favors the H<sub>2</sub>O molecules.



## CONCLUSIONS

Raman imaging is a powerful tool for mapping thermally grow zirconia layers at µm scale

- $\Rightarrow$  Phase distribution maps
- ⇒ Stress distribution maps (not quantitative)
- $\Rightarrow$  Sub-stoichiometry
- $\Rightarrow$  <sup>18</sup>O isotopic distribution maps (quantitative)

May be applied to other systems !

**Prospect** : Can Raman imaging be a quantitative tool for local measurement of sub-stoichiometry ?

**Aknowledgments:** Part of this work was performed in the frame of the DENOPI project, funded by the French government as part of the "Investment for the Future" Program reference ANR-11-RSNR-0006.

# Thank you for your attention !

After cool-down !





son