IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Modeling hydrogen explosion in level 1 PSA

<u>Julien Beaucourt</u> Gabriel Georgescu

Normal operation of the plant: hydrogen sources

Physical properties

- High calorific heat
 - \rightarrow alternator cooling

Chemical properties

- Radiolyse effect: production of O₂ in main primary circuit
 - \rightarrow saturation of primary water with H₂ (CVCS)

Constant production in th electrical batteries

2

Accumulation of hydrogen: simple modeling

Modeling assumption: homogeneous dispersion

Without venting
$$\frac{dC}{dt} = \frac{Q_{H_2}}{V} \Rightarrow C(t) = \frac{Q_{H_2}}{V}t$$

With venti

3

$$C(t) = \frac{Q_{H_2}}{Q_{ventil}} \cdot \left(1 - e^{-\frac{Q_{ventil}}{V}t}\right)$$

才 Evaluation of Q_{H2}?

7 Hydrogen flowrate

Auxiliary nuclear building	Electrical building (batteries)
Initiating event: leak (pipe, valve,etc)	Initiating event: loss of venting system
 Physical modeling: Energy conservation Perfect gas Isentropic expansion 	 Physical modeling: Faraday's law Penalization to take into account aging or temperature effects (Arrhenius law)
Hydrogen flowrate $Q_{H_2} = S. \rho_s. \left(\frac{P}{P_s}\right)^{\frac{1}{\gamma}} \sqrt{\frac{2\gamma}{\gamma - 1} \left(1 - \left(\frac{P}{P_s}\right)^{\frac{\gamma - 1}{\gamma}}\right)}$ $\gamma: Laplace \ coefficient$ $\dots_s: caracteristics \ of \ H_2 \ storage \ tank$	Hydrogen flowrate $Q_{H_2} = 0, 42. 10^{-3}. I.C.N$ I (A/Ah) : applied current C (Ah) : capacity of the battery N: number of elements in the battery

ETSON

7 Explosion

5

- Based on the hydrogen flowrate and local properties (volume, venting flowrate, etc...), the hydrogen concentration is calculated and compared to the Shapiro limits
- Typical results in auxiliary nuclear building:

тรог

Modeling hydrogen explosion in level 1 PSA, PSA 2019, Charleston

General overview of the PSA

7 Four successive steps

6

7 Step 1: H₂ release frequency and leak size

- Frequency evaluation: IRSN used only the national OEF
- Difficulty: the events reports rarely mention the break size
 - Singularities: an arbitrary size of eD/4 has been retained
 - Pipes: three categories have been defined (1%, 25%, 100%), and the affectation of an event to a category has been decided on the basis of experts judgements

Some more sophisticated methods Relative section o may be found in the littérature (Bayesian approach...)

7 Step 2: explosion frequency

For every room with H_2 pipes, an event tree is constructed

• Unacceptable consequence: accumulation of hydrogen over 4% in volume \rightarrow venting system is not necessarily efficient, as mentioned above

Modeling hydrogen explosion in level 1 PSA, PSA 2019, Charleston

7 Steps 3 and 4: functional analysis and CDF evaluation

This step is probably the most challenging of the study

• The consequences on the material are difficult to evaluate

IRSN approach is simplified: when an explosion takes place all the materials are considered to be lost

- In some cases, the explosion induces an « initiating event » (from the « internal event level 1 PSA » point of view)
- Some of the parades taken into account for this event may also be lost
- IRSN analysis has been limited to one room, where the consequences have been estimated to be the more severe

This step should be improved in the future IRSN studies

Some results

- Pipes contribution to the risk of explosion is not negligible (~40% in the IRSN study)
- A clear classification of the rooms regarding the risk of explosion may be obtained
- The evaluations of the induced CDF have to be consolidated

Conclusion and IRSN perspectives

- The analysis performed by IRSN has been used for the expertise of the similar EDF study that has been realized for the 4th decenial visit of the 900 MWe NPP
 - Despite some differences in the underlying hypotheses, the classification of the different rooms (regarding H₂ explosion risk) appears to be particulary robust
- This analysis is a great interest to evaluate the contribution of the different rooms to the risk of core melting induced by an H₂ explosion
- IRSN considers that this analysis may be used to prioritize the control that should be performed on the venting system, room by room

Conclusion and IRSN perspectives

- Future perspectives: this analysis will be performed again for the 1300 MWe NPP
 - Some improvements are expected in the quantification of the leak frequencies
- An important effort will be devoted to the evaluation of the explosion consequences
 - In particular, the possibility of hydrogen dispersion in the rooms adjacent to the « source » will be investigated
 - The assumption of « homogeneous dilution » in the room will be questionned

