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Abstract. Statistical analysis has become increasingly im-
portant in optically stimulated luminescence (OSL) dating
since it has become possible to measure signals at the single-
grain scale. The accuracy of large chronological datasets can
benefit from the inclusion, in chronological modelling, of
stratigraphic constraints and shared systematic errors. Re-
cently, a number of Bayesian models have been developed
for OSL age calculation; the R package “BayLum” pre-
sented herein allows different models of this type to be imple-
mented, particularly for samples in stratigraphic order which
share systematic errors. We first show how to introduce strati-
graphic constraints in BayLum; then, we focus on the con-
struction, based on measurement uncertainties, of dose co-
variance matrices to account for systematic errors specific
to OSL dating. The nature (systematic versus random) of
errors affecting OSL ages is discussed, based – as an ex-
ample – on the dose rate determination procedure at the
IRAMAT-CRP2A laboratory (Bordeaux). The effects of the
stratigraphic constraints and dose covariance matrices are il-
lustrated on example datasets. In particular, the benefit of
combining the modelling of systematic errors with indepen-

dent ages, unaffected by these errors, is demonstrated. Fi-
nally, we discuss other common ways of estimating dose
rates and how they may be taken into account in the covari-
ance matrix by other potential users and laboratories. Test
datasets are provided as a Supplement to the reader, together
with an R markdown tutorial allowing the reproduction of all
calculations and figures presented in this study.

1 Introduction

Optically stimulated luminescence (OSL, called optical dat-
ing in Huntley et al., 1985) allows the dating of the last expo-
sure of quartz grains to sunlight. The single-aliquot regener-
ative (SAR) dose protocol consists of comparing the natural
luminescence signal to laboratory-generated signals induced
by artificial irradiation (Murray and Wintle, 2000; Wintle and
Murray, 2006). The corresponding measurements, in partic-
ular at the single-grain scale, result in large datasets charac-
terised by significant scatter, owing to a number of dispersion
factors (see for example Thomsen et al., 2005). An OSL age
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230 G. Guérin et al.: Towards an improvement of OSL age uncertainties

is then obtained by dividing the equivalent dose (i.e. in the
case of coarse quartz grains, the dose absorbed by the min-
eral) by the dose rate to which quartz grains were exposed
since the last exposure to light.

Statistical analysis, in geochronology, generally aims to
improve the precision, accuracy, and/or range of dating meth-
ods. In the case of OSL dating, calibration errors on the
laboratory source dose rate for natural dose estimation, and
geochemical standards for dose rate assessment, have so far
resulted in age uncertainties (at 1σ or 68 % confidence) of,
at best, ∼ 5 % (see for example Duller, 2008; Guérin et al.,
2013).

Note that in what follows, the unit of analysis is a sediment
sample; we assume that each sample corresponds to a deposi-
tion event, and thus to a single age (no post-depositional mix-
ing is considered). The system of analysis is the laboratory in
which the measurements are performed and includes both the
apparatus and associated calibration standards. It should be
emphasised here that field equipment is part of what we call
the laboratory; this is important for the definition of what we
call systematic errors. By definition, an error is the differ-
ence between the measured or observed value of a physical
quantity and its true (but unknown) value. Thus, by system-
atic errors, we refer to random errors affecting equipment
calibration: whereas each of these errors may be assigned a
Gaussian probability density function with zero mean and a
known variance (the square root of the variance being gener-
ally referred to as uncertainty), at the scale of the laboratory
this error takes a fixed, unknown value that affects all mea-
surements in the same direction. Of course, other sources of
errors may exist (for example when using the infinite matrix
assumption to calculate grain size attenuation factors; see for
example Guérin et al., 2012b), but in this article, we consider
only known, quantified sources of errors.

Over the past few years, several models for routine
Bayesian analysis of SAR OSL and dose rate data were de-
veloped to better reflect, and take advantage of, the mea-
surement procedures implemented to calculate OSL ages.
Among those models, Combès et al. (2015) proposed one for
calculating the central-dose values for well-bleached sam-
ples, leading to higher overall accuracy (see Guérin et al.,
2015a) compared to the most commonly used model for OSL
data analysis (the central-dose model: CDM, Galbraith et
al., 1999; note that we changed the original terminology fol-
lowing Galbraith and Roberts, 2012). Combès and Philippe
(2017) developed models capable of dealing with individual
and systematic multiplicative errors for OSL age calculation
including stratigraphic constraints (for general introductions
on a statistical analysis of OSL data, but also the statistical
models discussed hereafter and associated prior distributions,
the reader is referred to Combès et al., 2015; Combès and
Philippe, 2017, and references therein).

To implement the Bayesian models of Combès et
al. (2015) and Combès and Philippe (2017) in practice, and
provide easy access to the community, an R package (R Core

Team, 2020) named “BayLum” (Christophe et al., 2020; ver-
sion 0.2.0) has been developed and released on the Compre-
hensive R Archive Network (CRAN; see also Mercier et al.,
2016, for a first implementation of the central-dose model
developed by Combès et al., 2015). The first features of this
BayLum package were presented by Philippe et al. (2019),
and its performance, when one is confronted either with
large dose values or with dose variability issues, was tested
in laboratory-controlled experiments (Heydari and Guérin,
2018) and later applied to various case studies (Lahaye et al.,
2018; Carter et al., 2019; Heydari et al., 2020, 2021; Chevrier
et al., 2020).

The purpose of this paper is to focus on the treatment of
stratigraphic constraints and systematic errors for chronolog-
ical modelling using BayLum; i.e. it goes beyond than what
was first demonstrated by Philippe et al. (2019). Together
with the association of independent, more precise ages (14C
in this work), such modelling is expected to reduce OSL age
uncertainties. In the past, other approaches to model system-
atic and random, individual errors in the field of palaeodosi-
metric dating methods were proposed; in particular, Millard
(2006a, b) developed a Bayesian approach quite close to that
presented here, but which – among different other things (see
Combès and Philippe, 2017, for a more detailed discussion)
– is limited in its applicability.

Herein we present a Bayesian modelling case study.
(1) We start with how data should be pre-treated prior to us-
ing the BayLum package; a simple example of chronologi-
cal modelling (samples considered independent, i.e. without
stratigraphic constraints and shared errors) is first presented,
yielding an output from the BayLum package to serve as a
reference for the following, more elaborate models. (2) In the
next step, we detail how the user can integrate stratigraphic
constraints and the effect on the chronological inference. It
should be noted that we take here the stratigraphic informa-
tion for granted, but we warn the user against treating such
information lightly, as it bears great consequences on the age
calculation (see discussions in Heydari et al., 2020, 2021).
(3) Then, most importantly, we explain how to build a dose
covariance matrix in practice to take into account system-
atic errors (for the definition of this matrix, the reader is re-
ferred to Combès and Philippe, 2017) and what effect it has
on a series of ages. (4) For this purpose, we base our ap-
proach on dose rate measurements as performed by Guérin
et al. (2015b) at the IRAMAT-CRP2A laboratory. The effect
of integrating independent data such as radiocarbon ages,
which usually do not share systematic errors affecting OSL
data, is then illustrated. (5) Finally, we discuss different ways
to measure dose rates and various assumptions that can be
made regarding the nature (systematic or random) of addi-
tional sources of errors in OSL dating (see also Rhodes et
al., 2003, for a similar discussion).

To help the reader, we provide in the Supplement an R
markdown document with commented lines of code and ex-
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ample datasets, so that everything presented here may be re-
produced.

2 Samples and methods

2.1 Case study

To illustrate how to model OSL ages, both in stratigraphic
constraints and sharing systematic errors, using the R Bay-
Lum package, we use the data from two sediment samples
(FER 1 and FER 3) already dated by quartz OSL (Guérin
et al., 2015b). These samples were taken from the archae-
ological site of La Ferrassie (France) and prepared fol-
lowing standard chemical preparation procedures applied to
luminescence-dating samples. While modelling with Bay-
Lum may be applied to both multi-grain and single-grain
OSL datasets, in the following we only focus on single-grain
data, as this is probably where the need for appropriate statis-
tical models is most acute (the reliability of multi-grain OSL
has been demonstrated when using a plain average (mean) for
palaeodose estimation; see for example Murray and Olley,
2002; for theoretical justification, see Guérin et al., 2017).
Single-grain OSL data were measured using an automated
Risø TL/OSL reader (DA 20) fitted with a single-grain at-
tachment (Duller et al., 1999; Bøtter-Jensen et al., 2000). A
standard SAR protocol (Murray and Wintle, 2000, 2003) was
used to measure single-grain equivalent doses, after checking
its suitability for the samples under investigation. A compari-
son between quartz OSL and feldspar infrared stimulated lu-
minescence (IRSL) signals for these two samples, as well
as comparison with radiocarbon, showed that these samples
were well-bleached at the time of deposition and unaffected
by post-depositional mixing. As a result, the use of central-
dose models is fully justified (it should be noted here that
at the time of writing, BayLum does not yet include the
Bayesian model of Christophe et al., 2018, allowing the anal-
ysis of poorly bleached samples).

2.2 Data pre-treatment

The Bayesian modelling implemented in BayLum requires
information of different natures: (i) raw OSL data in the form
of BIN/BINX file(s), (ii) list(s) of grains to be included in the
modelling (based on pre-defined selection criteria, e.g. on re-
cycling and/or recuperation ratios), (iii) file(s) indicating how
the data should be processed (signal integration channels, re-
producibility of the instrument(s), etc.), and (iv) both natural
(in Gy ka−1) and laboratory (in Gy s−1) dose rates. Based on
these data, the calculations are performed all at once using
Markov chain–Monte Carlo (MCMC) computations; as a re-
sult, unlike in standard frequentist data processing, there is
no succession of steps in data analysis (for example, individ-
ual equivalent dose estimates are not parameterised, unlike
when the CDM is used). While Combès et al. (2015) argue
that this results in a better statistical inference about the age

(or palaeodose), it also comes with a downside: the user can-
not visualise the data during the statistical analysis. In par-
ticular, the fact that the user must specify the list of grains
to be included in the analysis implies that one should always
pre-treat the samples in a standard way, by using for example
“Analyst” (Duller, 2015) or the R “Luminescence” package
(Kreutzer et al., 2012, 2020) to visually check the data but
also to investigate the effect of various selection criteria on
the datasets (see for example Thomsen et al., 2016, on the
effect of applying various selection criteria with frequentist
statistical models; see Heydari and Guérin, 2018, for a simi-
lar study in a Bayesian framework).

In other words, using BayLum for age calculation should
not, and does not, prevent the user from a careful and critical
examination of the measured OSL data. In particular, before
running age calculations using the BayLum package, it is im-
portant that the user already has identified potential problems
– e.g. saturation and/or dose rate variability (see Heydari and
Guérin, 2018, for adapted modelling solutions).

3 First simple model and output

We first ran the function Generate_DataFile() for the
OSL samples FER 1 and FER 3, with the same lists of grains
as those used for age calculation by Guérin et al. (2015b):
all grains with an uncertainty smaller than 20 % on the first
test dose signal were selected. A large number of grains ap-
peared to be in saturation for these samples (in Analyst, there
is no intersection of the naturalL/T signal, or the sum of this
sensitivity-corrected natural signal and its uncertainty, with
the dose–response curve). As a result, following Thomsen et
al. (2016), an additional selection criterion was added, based
on the curvature parameter of the dose–response curves. All
grains for which the D0 value, obtained with Analyst as de-
scribed by Guérin et al. (2015b), was smaller than 100 Gy
were rejected from the analysis (note however that such a se-
lection criterion may not be necessary when working with
BayLum: Heydari and Guérin, 2018).

In practice, the data are contained in two folders named af-
ter the samples and provided in the Supplement. Each folder
contains one BIN/BINX-file (i.e. OSL measurements; note
that only a small fraction of the measured grains is included
in the Supplement) and four CSV files:

– “DiscPos.csv” lists all selected grains.

– “Rule.csv” gives the rules for generating Lx/Tx data
(integration channels for both the natural or regenerated
and test dose signals, uncertainty arising from the re-
producibility of the OSL measurements, and number of
SAR cycles to remove for curve fitting, if any – it may,
for example, be desirable to remove recycled points
and/or IR depletion points).

– “DoseSource.csv” gives the laboratory source dose rate
and its variance.
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– “DoseEnv.csv” gives the dose rate to which the sample
was exposed during burial.

We ran the function AgeS_Computation() with a prior
age interval limited to between 10 and 100 ka for each sam-
ple (so that the bounds are far from the age values obtained
using the arithmetic mean of equivalent doses, namely 37±2
and 40± 2 ka, respectively). The dose–response curves were
fitted, as in Analyst in our previous study, with single saturat-
ing exponential functions passing through the origin. All un-
certainties, affecting both environmental and laboratory dose
rates, were included in the calculation, as is common practice
in luminescence dating; however, the covariance of ages was
not modelled here, so the results are equivalent to those one
would obtain by running subsequent individual age calcula-
tions for each of the two samples.

To run the AgeS_Computation() function, the user
must choose a model for the distribution of individual equiv-
alent doses around the central dose; the different options
are Cauchy, Gaussian or lognormal distribution (in the latter
case, the central dose may be estimated either by the mean or
the median of the distribution). A Cauchy distribution (some-
times also called Lorentz distribution) is a symmetric distri-
bution which was chosen by Combès et al. (2015) because it
has heavy tails; i.e. extreme values have a non-zero probabil-
ity. Hence, the Cauchy distribution seemed to be well-suited
for the analysis of widely dispersed datasets including outlier
values such as single-grain De distributions.

Coming back to the samples from La Ferrassie, on top
of saturation problems Guérin et al. (2015b) also identi-
fied dose rate variability as an important factor of disper-
sion in equivalent doses: the values of the CDM overdisper-
sion parameter for the De distributions of the samples were
equal to 29± 3 % and 35± 3 %, respectively. If we assume
that this overdispersion arises from dose rate variability to
single grains of quartz, Heydari and Guérin (2018) using
laboratory-controlled experiments showed that the Cauchy
distribution and the CDM should both lead to ∼ 5 %–10 %
age underestimation, because both models are biased. Con-
sequently, we did not use the Cauchy distribution model. In-
stead, we modelled the equivalent dose distribution by a log-
normal distribution (one could also have chosen a Gaussian
function) from which the mean (rather than the median) was
used to estimate the central dose. Indeed, Guérin et al. (2017)
formally demonstrated that the median of the lognormal dis-
tribution (as used in the CDM) is a biased estimator and leads
to age underestimates when dose rates are dispersed.

After 5000 iterations of three independent Markov chains,
we observed good convergence, as seen in the markdown
document provided in the Supplement (for a discussion of
the convergence of the Markov chains, the reader is referred
to Philippe et al., 2019). The upper limit of the 95 % con-
fidence intervals for the Gelman and Rubin indexes of con-
vergence (Gelman and Rubin, 1992) were all smaller than
1.05, also indicating satisfying convergence of the three in-

Table 1. Summary of credible intervals for the ages (in ka) of sam-
ples FER 1 and FER 3 estimated in the different modelled scenarios.

Sample 68 % credible 95 % credible
interval interval

Lower Upper Lower Upper

Independent

FER 1 36.0 40.5 34.1 43.3
FER 3 38.9 44.6 36.6 47.8

In stratigraphy

FER 1 36.2 40.4 34.3 42.9
FER 3 40.0 45.0 38.1 48.5

No stratigraphic constraint, with “simplistic”
covariance (Sect. 5.3.1)

FER 1 36.0 40.8 33.9 43.8
FER 3 39.2 45.4 36.7 48.1

In stratigraphy, with realistic covariance (Sect. 5.3.2)

FER 1 36.1 40.5 34.2 42.6
FER 3 39.8 45.3 37.8 48.6

In stratigraphy, with covariance and a “young”
radiocarbon age

FER 1 35.2 39.4 33.3 41.2
FER 3 39.2 42.2 36.9 42.3

In stratigraphy, with covariance and an “old”
radiocarbon age

FER 1 38.7 43.5 36.2 46.2
FER 3 46.1 48.7 46.1 51.5

dependent Markov chains (here again, the reader is referred
to Philippe et al., 2019, who suggested 1.05 as the maxi-
mum acceptable value). The obtained 95 % credible inter-
vals (CIs) for the ages of samples FER 1 and FER 3 are
[34.1; 43.3] ka and [36.6; 47.8] ka, respectively (Fig. 1; Ta-
ble 1) and are consistent with the ages obtained by Guérin
et al. (2015b) with a much simpler approach (unweighted
arithmetic mean of equivalent doses). It should be empha-
sised here that the two 95 % CIs for ages overlap. Figure 2
shows a bivariate scatter plot of a sample of observations
from the joint posterior distribution of the two ages, as gen-
erated by the Markov chains; in such a plot, each point cor-
responds to one realisation of the ages of the two samples
investigated in the MCMC. Figure 3 shows the correspond-
ing probability densities for the ages estimated jointly, based
on kernel density estimates (KDEs), and the marginal proba-
bility densities. No correlation is observed on the joint prob-
ability density, which is symmetrical and bell-shaped. One
can already compare the results obtained with this Bayesian
model (lognormal-average) for sample FER 3 with the ra-
diocarbon ages obtained independently for the same layer by
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Figure 1. Age estimates for OSL samples FER 1 and FER 3. The
red circles indicate the Bayes estimates of the age (i.e. the most
likely values) for each sample; the cyan and blue bars represent the
68 % and 95 % credible intervals, respectively. For the two radio-
carbon ages (C14-1 and C14-2), the reader is referred to Sect. 6.

Figure 2. Bivariate scatter plot as hexagon plot presentation of
a sample of observations from the joint posterior distribution of
the two OSL ages considered independently (no stratigraphic con-
straints, no off-diagonal members in the covariance matrix). In such
a plot, each point corresponds to one realisation of the ages of the
two samples generated by the MCMC. Note that the reason for hav-
ing this figure in the cell of an array is not visible here; it becomes
useful when calculating ages for more than two samples, in which
case for each pair of samples, a similar plot appears in the appropri-
ate cell.

Figure 3. Probability densities for the OSL ages estimated jointly
with the same model as that used to generate Fig. 2, based on kernel
density estimates (KDEs), and marginal probability densities. The
bell-shape and symmetry of the scatter plot indicate the absence of
correlation between the two ages.

Guérin et al. (2015b). The 95 % CI for the three 14C ages
are bound by the interval [44.4; 47.3] ka, which means that
the OSL and radiocarbon ages are in good agreement, which
was not the case when calculating the ages with the CDM
(38± 2 ka; this OSL age corresponds to ∼ 15 % underesti-
mation and is broadly consistent, within uncertainties, with
theoretical predictions stated above). Thus, even without fur-
ther modelling, the BayLum lognormal-average model seems
to provide OSL ages in better agreement with radiocarbon.

4 Stratigraphic constraints

Samples FER 1 and 3 belong to two different stratigraphic
layers: sample FER 1 (Layer 7) lies stratigraphically above
sample FER 3 (Layer 5B), so we know that the age of the
sample FER 1 must be less than that of the sample FER 3 (i.e.
sample FER 1 is younger than sample FER 3; for detailed
stratigraphic information on the site of La Ferrassie, which
is of paramount importance in this section, the reader is re-
ferred to Guérin et al., 2015b). To encode this information,
the function AgeS_Computation() takes as argument
the object StratiConstraints, which is a matrix whose
size depends on the number of analysed samples. First, the
data in the DATA object (which is the output of the func-
tion Generate_DataFile()) must be ordered in strati-
graphic order from top to bottom: thus, in our case the list
of names used by the function Generate_DataFile()is
FER 1, FER 3 (rather than FER 3, FER 1). Then, the strati-
graphic matrix contains numbers equal to 0 or 1, indicating
the applied bounds to the age of each sample. The matrix
contains a number of rows equal to the number of samples
plus one and a number of columns equal to the number of

https://doi.org/10.5194/gchron-3-229-2021 Geochronology, 3, 229–245, 2021
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samples. The first row contains the value 1 in each column,
which indicates that the younger age bound specified as prior
information (10 ka in our example, cf. Sect. 3 above) when
running the function AgeS_Computation() applies to
all samples. Then, for all j in {2, . . .,Nb_Sample+1} and all i
in {j, . . .,Nb_Sample}, StratiConstraints[j,i]= 1
if the age of sample whose number ID is equal to j − 1 is
less than the age of sample whose number ID is equal to
i. Otherwise, StratiConstraints[j,i]= 0. In prac-
tice, in our case StratiConstraints [1,]= (1,1),
StratiConstraints [2,]= (0,1) (which means that
sample FER 1 is not younger than itself but is younger than
sample FER 3) and StratiConstraints [3,]= (0,0)
(which means that sample FER 3 is neither younger than
sample FER 1 nor than itself). Note that in the markdown
document provided in the Supplement, the corresponding
code lines have comments to make this description easier to
follow.

Running the function AgeS_Computation() with this
matrix of stratigraphic constraints only marginally affects the
ages; in this case, the 95 % CIs become [34.3; 42.9] ka and
[38.1; 48.5] for samples FER 1 and FER 3, respectively (Ta-
ble 1). One can also look at the bivariate scatter plot of obser-
vations from the joint posterior distribution (Fig. 4): one can
see that this scatter plot is truncated in the upper left-hand
corner – illustrating the fact that the age of sample FER 1
can never be greater than that of sample FER 3 (see Fig. 2
for comparison). By contrast, the KDE estimate (Fig. 5) also
shows a positive correlation but does not reveal the truncation
(whereas the stratigraphic constraint imposes a null probabil-
ity for all pairs of ages above the 1 : 1 line).

5 Dealing with multiple sources of errors through a
covariance matrix

5.1 General considerations

In the previous calculations, all the variance is treated as ran-
dom, whereas common, systematic errors affect all ages in
the same direction, although to varying degrees (so system-
atic errors are unlikely to result in stratigraphic inversions).
One of the main advantages of applying the models imple-
mented in the BayLum package – contrary to other chrono-
logical modelling tools such as “OxCal” (Bronk Ramsey and
Lee, 2013) or “Chronomodel” (Lanos and Philippe, 2018) –
lies in the possibility to include the structure of uncertain-
ties specific to OSL dating. For instance, a radiocarbon age
is derived only from the ratio of 14C to 12C (on top of which
comes the more complex problem of calibration), whereas
an OSL age involves a large number of measurements, each
with its uncertainty (Aitken, 1985, 1998). The OSL mea-
surements required for the determination of the palaeodose
are relatively standardised through the widespread use of the
SAR protocol (Murray and Wintle, 2000; Wintle and Murray,
2006). Conversely, there are several approaches – each with

Figure 4. Bivariate scatter plot from the joint posterior distribution
of the ages of samples FER 1 and FER 3 when a stratigraphic con-
straint is applied (sample FER 1 is younger than sample FER 3) but
with no off-diagonal members in the covariance matrix. The trun-
cation in the upper left-hand corner scatter plot indicates the effect
of the stratigraphic constraint.

Figure 5. Probability densities for the OSL ages estimated jointly,
using the same model as that implemented to generate Fig. 4 (strati-
graphic constraint, no covariance matrix).

its equipment and standards – to determine the various dose
rate components. Given that these dose rates derive from dif-
ferent types of radiation (alpha, beta, gamma and cosmic ra-
diation) and are of various origins (mainly from potassium
and the uranium and thorium decay chains), there are many
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more contributions to the age uncertainty from the dose rate
term than from the palaeodose term, even though the size of
the uncertainty on dose rate is of the same order of magnitude
as that on palaeodose – see for example Murray et al. (2015).
As a result, there are almost as many ways of estimating sys-
tematic and random uncertainties as there are (combinations
of) ways to determine dose rates; in any case, the notion of
systematic error is only valid in a given context, which must
always be made explicit. Combès and Philippe (2017) de-
tailed the mathematical formulation of the dose covariance
matrix, which links the ages of several samples measured
using the same equipment and standards through common
(systematic) errors (see also Philippe et al., 2019). Neverthe-
less, the equations provided in this article are somewhat dif-
ficult to translate in practice; here, we propose to outline how
we implement a covariance matrix adapted to (one example
of) the measurements leading to OSL age calculation at the
IRAMAT-CRP2A laboratory (Bordeaux). We emphasise that
what follows is not prescriptive; it should be viewed as an
example of a model of uncertainties. For alternative ways of
estimating systematic and random errors, for example, due
to different dose rates measurements, the reader is referred
to the discussion (Sect. 7.1).

Here, we consider the case of a series of n sediment sam-
ples taken from one unique site and all measured using the
same equipment and standards. Let us consider the following
relationship between palaeodoses, dose rates and ages (Com-
bès and Philippe, 2017):

(D1, . . .,Dn)∼N
((
A1ḋ1, . . .,Anḋn

)
,6
)
, (1)

where Di is a random variable modelling the unknown
palaeodose of sample i, N is the symbol for a Gaussian dis-
tribution, Ai is the unknown age estimate of sample i (that
we are trying to determine), ḋi is the total dose rate to which
this sample was exposed since burial (ḋi is the observed dose
rate, i.e. the result of the measurements) and6 is the dose co-
variance matrix (for the full definition of the model, we refer
the reader to Combès and Philippe, 2017). This covariance
matrix verifies, for all (i,j ),

6i,j = AiAj θi,j , (2)

where θ is the matrix that the user needs to specify to run
the calculations with BayLum. It should be noted here that
by default when running age calculations with BayLum, the
off-diagonal elements are set to zero, i.e. the covariance in
ages is not modelled.

Before entering the details specific to luminescence dat-
ing, let us consider a simple example of two measurements
y1 = µ1+e1+f and y2 = µ2+e2+f where µ1 and µ2 are
fixed measurands and e1, e2 and f are all independent ran-
dom errors from distributions with mean zero. The covari-
ance of y1 and y2 is the variance of f (so the off-diagonal
elements of the matrix are equal to this variance). For each
sample, the diagonal element of the corresponding covari-
ance matrix is the sum of all the components of variance

for that sample. The variety of physical quantities to mea-
sure and determine dose rate, and their relationship with the
dose rate contributions, will now be discussed with this sim-
ple definition in mind.

5.2 Implementation in practice

First, we detail the series of measurements carried out, and
we introduce the corresponding notations for the estimates
and associated uncertainties. Table 2 summarises all physical
units and associated error standard deviations; as a general
rule, we assume that all error terms are Gaussian variables
with the expected value (mean) equal to zero and a fixed,
known standard deviation (see for example Eq. 2 in Com-
bès and Philippe, 2017). For clarity, in the following relative
standard deviations are described by the letter σ , while ab-
solute standard deviations are denoted by s; moreover, each
standard deviation corresponding to random errors (i.e. when
the error varies from sample to sample) is identified by the
letter i in the subscript. The absence of this letter in the sub-
script indicates that the measurement error affects all sam-
ples.

5.2.1 Equivalent doses and OSL measurements

Equivalent doses are determined from OSL measurements
performed on a luminescence reader equipped with a ra-
dioactive beta source, whose dose rate and associated rela-
tive standard deviation of the error, noted ḋlab and σlab, are
known. There are several ways the latter term can be deter-
mined; in its simplest form, it includes the standard deviation
of the error on the absolute dose absorbed by the standard
reference material (in our case calibration quartz provided
by DTU Nutech; see Hansen et al., 2015) and an error term
due to replicate measurements of several aliquots of this cal-
ibration material. Using a large number of measurements re-
peated in time, as suggested by Hansen et al. (2015), may
somewhat complicate the matter, but this goes beyond the
scope of the present study.

In practice, regeneration doses are delivered by irradiating
the aliquots for a given duration (in s). This duration is con-
verted to absorbed energy dose (Gy) by multiplication with
the source dose rate (Gy s−1). Strictly speaking, the error on
the source dose rate affects all regeneration doses, and so this
error term should appear in the dose–luminescence relation-
ship (right side of the directed acyclic graph shown in Fig. 7
of Combès and Philippe, 2017). However, it is common prac-
tice in luminescence dating to first calculate an equivalent
dose in seconds of irradiation for each aliquot, then convert
this to Gy and calculate an average (or determine another
central parameter such as with the CDM), and only then con-
sider σlab. This is what led (e.g., Jacobs et al., 2008) to the
associated standard deviation being excluded from the total
OSL age uncertainties, to test the assumption of a time gap
between two series of ages. Here, for simplicity, we take the
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Table 2. List of physical units and associated uncertainties used in this work. The letter i in subscript indicates a sample specific value, its
absence a common value shared between samples. The letter s indicates absolute uncertainties, while σ is used for relative uncertainties.

Physical unit Notation Systematic uncertainty Random uncertainty

Laboratory source dose rate ḋlab σlab
Cosmic dose rate ḋcosmic,i scosmic,i
K concentration [K]i σK σK,i
U concentration [U]i σU σU,i
Th concentration [Th]i σTh σTh,i
Internal dose rate ḋint sint
Gamma dose rate ḋγ,i σγ σγ,i
Water content WFi sWF,i

same route, and hence the relative error on the laboratory
source dose rate becomes a relative, systematic error on the
equivalent doses.

One may thus write that the error on the dose Di arising
from the calibration of the source follows a Gaussian distri-
bution with mean 0 and variance (σlabAi ḋi)2.

5.2.2 Dose rates

When it comes to the dose rate term, here we restrict our-
selves to the case of coarse quartz grains measured after HF
etching to remove the alpha dose rate component: the total
natural dose rate is the sum of an internal dose rate, external
beta and gamma dose rates, and cosmic dose rates.

Cosmic dose rates

We consider that cosmic dose rates are determined following
Prescott and Hutton (1994) based on the burial depth of the
dated samples, which may be different from the present-day
thickness of the overburden. As a result, the error on cos-
mic dose rate estimates depends on the error estimation of
this effective burial depth since the dated sediment was de-
posited. Because the relationship between cosmic dose rates
and burial depths is not linear, and because the error on this
burial depth may not be systematic (e.g. in cases where suc-
cessive erosion and deposition events, of unknown duration,
happened between the deposition of superimposed sedimen-
tary layers – see Aitken, 1998, p. 65, for a discussion) even at
the scale of a site, the error associated with cosmic dose rates
cannot easily be treated as systematic. For i = {1, . . .,n},
ḋcosmic,i and scosmic,i denote the estimate of the average cos-
mic dose rate to which sample i has been exposed and its
associated standard deviation.

Beta dose rates

We consider the beta dose rates as determined from con-
centrations (or activities) of 40K and in radioelements from
the U and Th decay chains, converted to dose rates us-
ing specific conversion factors (e.g. Guérin et al., 2011).

At the IRAMAT-CRP2A laboratory, these concentrations are
usually determined with low-background, high-resolution
gamma-ray spectrometry following Guibert and Schvoerer
(1991). The simplest case is that of 40K, since only one peak
is used (at 1.461 MeV); the concentration in sample i, de-
noted [K]i , is equal to the concentration in the standard mul-
tiplied by the ratio in count rates (the count rate observed
for the investigated sample is divided by the count rate ob-
served for a reference material). Thus, we consider in this
paper that the standard deviation of the error on the 40K con-
centration includes three components: the standard deviation
of the error on the concentration in the standard sample, and
the counting uncertainties both on the standard and on the
measured sample. The counting uncertainties are calculated,
assuming Poisson statistics. Of these three sources of errors,
only one is treated as random – namely the counting uncer-
tainty of the sample; the other two standard deviations (cor-
responding to the counting of the standard and to the error of
the radioelement concentration in the standard) are quadrati-
cally summed and considered as a systematic source of error.
One considers for sample i the beta dose rate from potas-
sium ḋβ,K,i – after correction for grain-size-dependent at-
tenuation using the factors from Guérin et al. (2012b) and
for moisture content following Nathan and Mauz (2008) (see
the discussion section below regarding uncertainties on these
correction factors). Neglecting uncertainties in the dose rate
conversion factors, we call σK,i the relative random standard
deviation of the error on the 40K concentration; its system-
atic counterpart σK is common to all samples. It should be
emphasised here that systematic errors on radioelement con-
centrations, although shared by all samples, will affect all
ages in the same direction but not necessarily by the same
amount (even in relative terms, contrary to the error on lab-
oratory beta source calibration) because the relative contri-
bution of beta dose rate from potassium to the total dose
rate may vary from one sample to another. The beta dose
rates from the U and Th series come from a number of ra-
dioelements in the corresponding chains; here, for simplicity
we consider each series to be in secular equilibrium (this is
generally the case for 232Th but may not be true for the U-
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series; see for example Guibert et al., 1994, 2009; Lahaye et
al., 2012). Thus, for each sample, the concentrations in 238U
and 232Th are converted to dose rate contributions denoted
ḋβ,U,i and ḋβ,Th,i . In contrast to the case of 40K, the analysis
of the high-resolution spectra for these radioactive chains is
based on a number of primary gamma rays (whereas there is
only one ray for K); more specifically, a weighted mean of
the concentrations determined from each ray included in the
analysis (after taking interference into account) is calculated
to estimate the concentration of U and that of Th. As a result,
the standard deviation of the error on the concentration in U
(and that of Th) in the sample comes from two sources: the
relative standard deviation on the concentration of the stan-
dard corresponds to a systematic error and is denoted σU for
U (σTh for Th); conversely, the other relative standard devi-
ations (arising from the counting of the standards and of the
sample) are treated as random and quadratically summed to
obtain σU,i (and σTh,i).

Internal dose rates

Unless the internal radioelement concentration is experimen-
tally determined (in which case one needs to consider both
systematic and random sources of error for each sample, as
is done for beta dose rates), some have suggested using a
fixed internal dose rate of 0.06± 0.03 Gy ka−1 (Vagn Mej-
dahl, personal communication to Andrew Murray, based on
Mejdahl, 1987). In this case, we may assume that the dated
quartz grains are all of the same origin and have the same in-
ternal radioelement concentration; as a result, we associate a
systematic standard deviation sint with the internal dose rate
ḋint.

Gamma dose rates

Gamma dose rates ḋγ,i may be determined, as beta dose
rates, from K, U and Th concentrations in the sediment. In
this case, the reader is referred to the corresponding section
above. However, it is relatively frequent, in the case of het-
erogeneous configurations at the 10 cm scale, that gamma
dose rates received by the samples do not correspond to the
infinite matrix gamma dose rates of the samples (see for ex-
ample large gamma dose rate variations at the interface be-
tween sediment and bedrock in a cave reported by Guérin et
al., 2012a: Fig. 7). In such contexts, gamma dose rates may
be determined by in situ measurements with Al2O3 : C arti-
ficial dosimeters: these dosimeters are measured with green-
light stimulation and their calibration is based on a block of
homogeneous bricks located in the basement of IRAMAT-
CRP2A (Richter et al., 2010; Kreutzer et al., 2018; note
that we also discuss below – Sect. 7.1 – the use of portable
spectrometers). Two sources of relative errors are taken into
account: a random standard deviation (σγ,i) accounting for
measurement uncertainties, and a shared calibration error in-
cluding both standard deviations on (i) the true gamma dose

rate in the block of bricks and on (ii) the measurement of the
dosimeters irradiated inside the block for calibration of the
source (σγ ).

Water content

To account for the effect of water on dose rates, one com-
monly considers the following equation (Zimmerman, 1971;
Aitken, 1985):

ḋβ,i =
ḋβ,i,drγ

1+ xβWFi
, (3)

where ḋβ,i,drγ is the beta dose rate in the dry sediment, WFi
represents the effective mass fraction of water in the sedi-
ment during burial, and xβ is a water correction coefficient
accounting for the fact that water absorbs more beta dose
than typical sedimentary elements, due to lower atomic num-
bers (Nathan and Mauz, 2008). A similar equation applies
to gamma dose rates, with a corresponding factor xγ (see
Guérin and Mercier, 2012). The determination of the water
content in the sediment over time is a challenging task as it
involves many different parameters, including past rainfall –
see for example Nelson and Rittenour (2015) for a discus-
sion on how to determine water contents depending on sed-
iment grain size, hydrometric regimes, etc. One commonly
employed solution is to measure the water content at the time
of sampling and assume it to be representative of that in the
past; measuring the water content at saturation may then be
a solution to evaluate an upper limit to this value; and de-
pending on the context one may also propose a lower limit to
the water content. One then obtains a way of quantifying the
standard deviation of the error on the water content, although
necessarily imperfect. Neglecting uncertainties on the water
correction factors (xβ and xγ ) and calling sWF,i the absolute
standard deviation of the mass fraction WFi for sample i, one
may write

sβ,H2O,i = ḋβ,i
sWF,i

1+ xβWFi
, (4)

where sβ,H2O,i is the standard deviation of the beta dose rate
for sample i due to the uncertainty on its water mass fraction.

Similarly, one may write

sγ,H2O,i = ḋγ,i
sWF,i

1+ xγWFi
, (5)

where sγ,H2O,i is the standard deviation of the gamma dose
rate for sample i due to the uncertainty on its water mass
fraction. As a result,

sγ,H2O,i =
ḋγ,i

ḋβ,i

1+ xβWFi
1+ xγWFi

sβ,H2O,i . (6)

To simplify the following equations, which are meant to be
those used in practice, we introduce the relative standard
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deviation of the beta dose rate due to water content errors
(σβ,H2O,i) and a parameter called λi defined by

λi =
1+ xβWFi
1+ xγWFi

. (7)

Finally, it should be emphasised that uncertainty on water
content may well correspond to errors which are neither re-
ally random nor really systematic; in our view different mod-
elling choices may be put forward and implemented, depend-
ing on the particular sedimentological and pedological con-
text.

The θ matrix

With these considerations in mind on errors and their nature,
the corresponding θ matrix (Eq. 2) to model these uncertain-
ties is a square matrix containing one line (and column) per
sample. The diagonal elements correspond to the sum of a
term arising from the error on the laboratory source dose rate
(ḋ2
i σ

2
lab) and the total dose rate variance for each sample, for

each i:

θi,i = ḋ
2
i σ

2
lab+ s

2
cosmic,i + ḋ

2
β,U,i

(
σ 2

U,i + σ
2
U

)
+ ḋ2

β,K,i

(
σ 2

K,i + σ
2
K

)
+ ḋ2

β,Th,i

(
σ 2

Th,i + σ
2
Th

)
+ s2

int+ ḋ
2
γ,i

(
σ 2
γ,i + σ

2
γ

)
+
(
ḋβ,U,i + ḋβ,K,i

+ḋβ,Th,i + λi ḋγ,i
)2
σ 2
β,H2O,i . (8)

This long list of variance terms may seem rather complicated.
However, it corresponds to the total variance arising from
the laboratory beta source calibration, the errors on cosmic
dose rates, environmental beta dose rates, internal dose rates,
gamma dose rates and finally the error arising from uncer-
tainties in water content. In other words, we can also write

θi,i = ḋ
2
i σ

2
lab+ s

2
ḋi
, (9)

where s2
ḋi

is the variance of the dose rate to which sample i
was exposed to during burial (it is the square of the uncer-
tainty appearing next to the dose rate value in every lumines-
cence dating article; in our example, this term is the second
one in the files DoseEnv.csv provided in Supplement).

Then, for i 6= j ,

θi,j = ḋγ,i ḋγ,jσ
2
γ + ḋβ,U,i ḋβ,U,jσ

2
U+ ḋβ,K,i ḋβ,K,jσ

2
K

+ ḋβ,Th,i ḋβ,Th,jσ
2
Th+ s

2
int+ ḋi ḋjσ

2
lab, (10)

which characterises the amount of correlation between the
doses of samples i and j , multiplied by their ages. The
θ matrix, like the dose covariance matrix 6, is a sym-
metric matrix. The diagonal members correspond to in-
dividual variances, while the non-diagonal terms express
the fact that systematic, shared errors link the measure-
ments of the series of samples. As a result, running the

functions AgeS_Computation() and Age_OSLC14()
with a θ matrix in which all non-diagonal members are
set to zero would be equivalent to running the same func-
tions without the correlation matrix, or running the function
Age_Computation() independently for each sample – in
which case all sources of error are treated as random.

5.3 Examples

5.3.1 An illustrative, simplistic example without
stratigraphic constraints

For illustration purposes, first, we did not apply stratigraphic
constraints. We started with a simplistic θ matrix containing
in the diagonal the real error variances (Eq. 9) as determined
by Guérin et al. (2015b); the σlab value was equal to 0.02 (2 %
relative standard deviation of the calibration of the laboratory
beta source). The simplification comes from the off-diagonal
members, for which in Eq. (10) we set all s and σ values to be
equal to 0, except for the σlab value, set to 0.05. Obviously,
this is not self-consistent, but it corresponds to (i) random
and systematic errors of approximately the same magnitude
(in practice, these two sources of errors are of the same order
of magnitude – a few percentage points) and (ii) the simplest
form of systematic errors. Indeed, in such a case, all ages are
affected by the same relative amount in the same direction.

Here again, after 5000 iterations of three independent
Markov chains, we observed good convergence. The ob-
tained 95 % CIs are [33.9; 43.8] and [36.7; 48.1] ka for sam-
ples FER 1 and FER 3, respectively. Figure 6 shows bivariate
scatter plots corresponding to the sampling of the Markov
chains for the ages of samples FER 1 and FER 3 (which are
calculated simultaneously), and Fig. 7 displays the KDE to-
gether with the marginal probability densities. This set of fig-
ures illustrates the reason for the generation of the two types
of figures: the bivariate scatter plot is most appropriate for vi-
sualising the effect of stratigraphic constraints (Fig. 4 above),
whereas probability density figures best illustrate the effect
of modelling systematic errors. Indeed, as can be seen, there
is a positive correlation between the ages of samples FER 1
and FER 3: the greater the age of sample FER 1, the greater
the mean age of sample FER 3. In other words, if the age
of sample FER 1 were underestimated, then in all likelihood,
the age of sample FER 3 would also be underestimated. Fur-
thermore, the length of the CI for the age of each sample is
slightly larger than without modelling the covariance (cf. Ta-
ble 1); i.e. modelling the covariances slightly increases the
age uncertainties. However, the positive correlation of ages
has other, direct consequences.

First, let us suppose that we have no knowledge of a strati-
graphic link between the two investigated samples, and we
wish to test the hypothesis that sample FER 1 is younger than
sample FER 3. The credibility of such an assumption can be
tested using the function MarginalProbability() of
the “ArchaeoPhases” R package (Philippe and Vibet, 2020)
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Figure 6. Bivariate scatter plot from the joint posterior distribution
of the ages of samples FER 1 and FER 3 when a stratigraphic con-
straint is applied (sample FER 1 is younger than sample FER 3) and
off-diagonal members of covariance matrix are used to model sys-
tematic errors (note that in this case, for illustrative purposes, we
used a simplistic covariance matrix – see Sect. 5.3.1 for details).
The truncation in the upper left-hand corner scatter plot indicates
the effect of the stratigraphic constraint.

Figure 7. Probability densities for the OSL ages estimated jointly,
using the same model as that implemented to generate Fig. 6 (strati-
graphic constraint and off-diagonal members in the covariance ma-
trix). The positive correlation in the joint posterior density reflects
the effect of modelling the systematic errors with a covariance ma-
trix (and, to some degree, of the stratigraphic constraint).

devoted to the analysis of MCMC chains for chronological

inference. Without using the covariance matrix, the credibil-
ity of this hypothesis is 0.83; with the simplistic θ matrix,
the credibility becomes 0.94; in other words, modelling the
age covariance reflects more faithfully the measurements and
their uncertainties for such tests.

The second consequence concerns the duration of a hypo-
thetical phase that would encompass the deposition of sample
FER 1 and that of sample FER 3. Indeed, since the ages vary
together in the MCMC, the duration of such a phase should
be smaller when modelling the covariance than when all the
variance in ages is treated as random. Indeed, we could verify
this assertion using the function PhaseStatistics() of
“ArchaeoPhases” (Philippe and Vibet, 2020): with the sim-
plistic covariance matrix, the 95 % CI for the duration of this
phase is [−1.4; 9.7] ka, whereas it is [−0.6; 7.6] ka when the
ages are calculated using the simplistic θ matrix.

5.3.2 A real example, including stratigraphic constraints

In a real case, since the relative contributions of the differ-
ent dose rate components vary from one sample to another,
the correlation will be less pronounced. For more realis-
tic calculations of the ages of samples FER 1 and FER 3,
we took the same values as above for the diagonal terms
of the θ matrix (Eq. 9); on the other hand, for the non-
diagonal, covariance terms, we used the following values:
σlab = 0.02 (which corresponds to the experimentally deter-
mined calibration standard deviation, including the uncer-
tainty of the dose delivered to calibration quartz; Hansen et
al., 2015), σK = 0.012, σU = 0.007 , σTh = 0.007 (for these
values, which also include counting of the standards used, the
reader is referred to Guibert et al., 2009; Guibert, 2002) and
sint = 0.003 Gy ka−1. In the Supplement we provide a calcu-
lation spreadsheet allowing the covariance matrix to be built,
intended for adaptation to the user-specific needs.

At the site of La Ferrassie, the uncertainties associated
with the gamma dose rate observations are more complex.
Al2O3 : C dosimeters were placed at the end of 25 cm long
aluminium tubes and inserted horizontally in the strati-
graphic section at the location of sediment sampling. In an
ideal case, sediment should be uniform in a horizontal plane;
however, for samples FER 1 and FER 3 only a rather thin
layer of sediment remained against the cliff wall (the layers
of the sample were not present at the site in any other loca-
tion), which resulted in the dosimeters being inserted either
in the karstic cliff (the limestone contains few radioelements
compared to the sediments, as shown in Fig. 5 of Guérin et
al., 2015b) or at the interface between the cliff and the sed-
iment. As a result, we took for ḋγ,i the average between the
gamma dose rates measured in situ (which underestimate the
real gamma dose rate because the effect of the cliff is over-
represented) and the gamma dose rates derived from the K,
U and Th concentrations in the samples. The associated stan-
dard deviation, σγ,i , was calculated as the difference between
these two extreme values divided by 4, so that the 95 % CI
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covers all possible values. As this standard deviation is much
larger than the analytical uncertainties, we neglected the lat-
ter and considered σγ,i to characterise random sources of er-
rors since each sample has a different environment and may
be more or less far from the cliff.

The samples FER 1 and FER 3 are directly above and
below, respectively, the Châtelperronian layer at the site
(layer 6). Sample FER 2 from this layer being poorly
bleached, it is at present impossible to model with BayLum.
However, an alternative to estimate the age of FER 2 consists
of supposing that it has a uniform prior probability density
between the ages of samples FER 1 and FER 3:

P (A2|data)∼
∫ ∫

I[A1;A3]

A3−A1
π (A1,A3|data)dA1dA3, (11)

whereAi is the age of sample i, I[A1;A3] is the indicator func-
tion between A1 and A3, and π (A1,A3|data) is the posterior
joint density of A1 and A3 knowing the data (i.e. the den-
sity estimated with BayLum). Doing so (see the markdown
file for the corresponding code lines), working from the out-
put of BayLum one obtains a 95 % CI of [36; 46] ka, which
can be compared with the confidence interval of [36; 48] ka
obtained by Guérin et al. (2015b) with minimum age mod-
elling.

6 Integration of independent chronological data
(radiocarbon)

The BayLum package also offers the possibility to
include radiocarbon ages in the chronological models
(Philippe et al., 2019); more specifically, radiocarbon
ages are calibrated within BayLum, using the function
AgeC14_Computation() or Age_OSLC14() (in the
latter case the function necessitates at least one OSL age
calculation). Introducing covariance matrices to account for
systematic errors on OSL data does not reduce the OSL age
uncertainties; however, it becomes particularly useful to cor-
rect for estimation biases when more precise ages, unaffected
by these systematic errors, are integrated into the models.
To illustrate this, we decided to construct two models con-
straining the age of FER 3; for illustration purposes, in this
section, we used the simplistic θ matrix described above in
Sect. 5.3.1. In the first case, we constrained the age of this
sample by imposing that a “young” radiocarbon age (young
compared to the age of sample FER 3 considered alone) has
an age greater than sample FER 3. In practice, we arbitrar-
ily took a radiocarbon age of 38000± 400 BP, which corre-
sponds to [37.6; 39.9] ka cal. BP (95 % CI using the IntCal20
curve, Reimer et al., 2020; the calibration was performed us-
ing BayLum; see Philippe et al., 2019). Naturally, the cred-
ible intervals (both 68 % and 95 %) for sample FER 3 are
shifted towards younger age values (see the truncation of the
scatter plot illustrated in Fig. 3). So are the credible intervals
for sample FER 1, since the ages of the two OSL samples

are close to each other even when considered independently
of radiocarbon data (in other words, the radiocarbon age
“pushes” the age of sample FER 3, which in turn “pushes”
the age of sample FER 1). In practice, the 95 % CIs become
[33.3; 41.2] ka and [36.9; 42.3] ka for samples FER 1 and
FER 3, respectively. It can be noted here that in such a case
the precision of the age of sample FER 3 is increased (i.e.
the length of the CI is much smaller than without the con-
straining radiocarbon age). More interestingly, in the second
case, we constrained the age of sample FER 3 by imposing
that an “old” radiocarbon age (old compared to the age of
sample FER 3 considered alone) has an age younger than
sample FER 3. In practice we – again, arbitrarily – took a ra-
diocarbon age equal to 44000± 400 BP, which corresponds
to [45.4; 47.4] ka cal. BP (95 % CI). Here again, the effect on
the age of sample FER 3 is straightforward: the credible in-
tervals are shifted towards older ages (the 95 % CI for the age
of sample FER 3 becomes [45.7; 51.2] ka). Perhaps less in-
tuitive is the effect on the age of sample FER 1, which is not
directly constrained by radiocarbon: because the ages of the
three samples are estimated jointly, and because of the sys-
tematic errors on the OSL ages, the age of sample FER 1 is
also shifted towards older ages: the corresponding 95 % CI
becomes [36.7; 45.8] ka.

7 Discussion

7.1 Differing ways of estimating dose rates

Every laboratory uses its specific equipment and calibration
standards; if similar equipment to that described above is
used, then only the values of the different terms need be
changed. This case is particularly relevant for equivalent dose
measurements, and hence the term σlab associated with ḋlab.
Conversely, for dose rate determination, several other exper-
imental devices and techniques are commonly used. If beta
and/or gamma dose rates are determined based on the de-
termination of concentration in K, U and Th, (by mass spec-
trometry, neutron activation, etc.), then the situation is similar
to that described for beta dose rates above.

Counting techniques (alpha, beta and gamma in the case of
the threshold technique: Løvborg and Kirkegaard, 1974) may
also be used for beta and gamma dose rate estimation. In the
case of beta counting, the conversion factor from count rate
to dose rate depends on the emitting radioelement (Ankjær-
gaard and Murray, 2007; see also Cunningham et al., 2018).
This dependency is a source of error that may not easily be
characterised by a systematic error (so there is no contribu-
tion to the dose covariance matrix); indeed, this error on the
conversion factor will vary from one site to another depend-
ing on the concentrations in K, U and Th (which are gen-
erally unknown if a counting technique is used), and even
within one site from one sample to another (again by un-
known amounts since the variability in K, U and Th is un-
known).

Geochronology, 3, 229–245, 2021 https://doi.org/10.5194/gchron-3-229-2021



G. Guérin et al.: Towards an improvement of OSL age uncertainties 241

The data acquired with field gamma spectrometers may
be analysed in two ways: the “window” technique (see for
example Aitken, 1985) corresponds to classical spectrom-
etry analysis; in this case, the structure of uncertainties is
the same as that for beta dose rates determined from high-
resolution gamma spectrometry (Eq. 11). On the other hand,
threshold techniques consist of taking advantage of propor-
tionality between gamma dose rates and (i) the number of
counts recorded per unit time above a threshold (Løvborg and
Kirkegaard, 1974) or (ii) the energy deposited per unit time
above a threshold (energy threshold: Guérin and Mercier,
2011; Miallier et al., 2009). In the former case, the conver-
sion from count rate to dose rate depends on the emitting
radioelement, so no systematic error term may be isolated.
Conversely, in the latter case (energy threshold), this depen-
dency is negligible (Guérin and Mercier, 2011). As a result,
the error on the dose rate of the calibration standard may be
considered as systematic and thus contribute one term in the
non-diagonal elements of the covariance matrix. Difficulties
in implementing the threshold technique may occur in low-
dose-rate environments, because energy calibration may not
be straightforward if the probe is not self-stabilised. In such
cases, routines such as those implemented in the R package
“gamma” (Lebrun et al., 2020) may be put to profit. Finally,
ageing of the crystal may also result in time-dependent er-
rors – the latter must be taken care of by regular calibration
experiments.

7.2 Error terms neglected in this study

As mentioned earlier in the section devoted to dose rate un-
certainties, there are many possibilities to quantify but also to
consider errors in dose rate measurements; one could men-
tion here the uncertainties on attenuation factors and water
correction factors. However, both of these factors are depen-
dent on the infinite matrix assumption: attenuation in grains
implies that something other than the grains does not attenu-
ate radiation (i.e. conservation of energy implies that if there
is lower dose rate inside a quartz grain, there must be a higher
dose rate somewhere else – see Guérin et al., 2012b); water
correction factors are often calculated assuming a homoge-
neous mixture of water and other sedimentary components
(Zimmerman, 1971; Aitken and Xie, 1990; note that the com-
position of the sediment also necessarily affects the ratios of
electron stopping powers and photon interaction cross sec-
tions – see Nathan and Mauz, 2008, for a discussion). Lim-
itations of this infinite matrix assumption, which is not met
in sand samples at the scale of beta dose rates, have already
been pointed out (Guérin and Mercier, 2012; Guérin et al.,
2012a, b; Martin et al., 2015). Consequently, it seems that
routine determination of a realistic standard deviation of the
attenuation and water content correction parameters is not
straightforward.

Dose rate conversion factors were assumed above to be
known without error; however, estimation errors affect half-

lives, emission probabilities, average emitted energies, etc.
Liritzis et al. (2013) took these uncertainties into account to
estimate standard deviations of the dose rate conversion fac-
tors (in practice, these standard deviations amount to ∼ 1 %
for K dose rates, ∼ 2 % for U and ∼ 2 % for Th). These
standard deviations could be included as sources of system-
atic errors when the contributions of K, U and Th are deter-
mined separately (note that when this is not the case, as when
dosimeters are used for gamma dose rate estimation, or when
beta counting is implemented for beta dose rate assessment,
these sources of errors should be treated as random).

In this study, we worked with coarse-grain quartz extracts
that had been etched with HF to remove the alpha-irradiated
part of the grains. This being said, if alpha dose rates are
taken into account, then the situation becomes similar to that
of beta dose rates treated above; however, the sensitivity to
alpha irradiation must then be taken into account. It is rather
frequent in such a case to use published values from the liter-
ature (e.g. Tribolo et al., 2001; Mauz et al., 2006). Depending
on the geological origin of the quartz (one or more sources),
one may then assume either systematic or random errors in
the alpha sensitivity.

7.3 Publication habits and re-analysis of previously
published ages

Compared to other statistical models for OSL dating, the
Bayesian models implemented in BayLum appear rather
complicated, at least partly because modelling starts from
the measured OSL data. By comparison, the input data to
the CDM or the Average Dose Model (ADM: Guérin et al.,
2017) are lists of equivalent doses and associated uncertain-
ties, which means that OSL measurements have already been
analysed to derive equivalent doses. Combès et al. (2015) ar-
gued that their complete model (implemented in BayLum),
relating all the variables to one another, produces a more
homogeneous and consistent inference compared to consec-
utive inferences (and indeed, when approaching saturation,
i.e. when equivalent doses and associated uncertainties can
hardly be parameterised, Heydari and Guérin (2018) demon-
strated the advantage of BayLum models compared to para-
metric models such as the CDM and ADM). However, work-
ing with lists of equivalent doses and uncertainties – or even
with estimates of central doses and associated uncertain-
ties – taken as observations would make the Bayesian mod-
elling proposed in BayLum and described in this paper more
straightforward and transparent. Such an approach, called the
“two-steps” model by Combès and Philippe (2017; see also
Millard, 2006a, b, for earlier, similar models), would also
offer the advantage of allowing re-analysis of already pub-
lished data to derive more precise chronologies. However, for
this purpose, the breakdown of all uncertainties and related
standard deviations of errors is needed; nowadays, providing
such key information for the modelling is not in the lumi-
nescence dating community’s publication habits. That being
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said, with the growing number of meta-analyses of previ-
ously published data, and the availability of models such as
BayLum to combine measurements with systematic errors,
these habits might evolve in the future.

7.4 Notes of caution

As always when working with statistical models, one should
first and foremost evaluate the measured data in light of the
sampling context. We already mentioned the importance of
grain selection (Sect. 2.2); but, perhaps more importantly,
and especially since users of BayLum have to make mod-
elling choices (e.g. regarding the dose–response curves fitted
to OSL measurements or the distribution of individual equiv-
alent doses around the central dose), it is crucial to carefully
examine data and assess their quality before building poten-
tially sophisticated models.

We would like to emphasise a few warnings regarding
modelling samples in stratigraphic constraints, and the as-
sociation of ages obtained by different methods. We would
advise users, before combining for example radiocarbon and
OSL ages, to first thoroughly examine the corresponding
datasets independently: how were the data produced (with
which experimental procedure)? Are the provided uncertain-
ties reliable (or is there an unrecognised source of error
that should be included in the evaluation of uncertainty)?
Users are also encouraged to examine the consistency of re-
sults produced by each method, in light of the stratigraphy.
In a second stage, before modelling of independent ages,
we would recommend assessing the consistency of these
datasets – do they (at least broadly) agree? If not, can a par-
simonious explanation be found? For example, it is rather
common, when performing Bayesian modelling with tools
such as OxCal, to observe a large fraction of ages considered
as outliers; such observations should urge users to examine
their data again and come up with likely explanations (note
that to date, no outlier model has been developed for the OSL
ages in BayLum).

When it comes to imposing ordering constraints between
ages as a result of stratigraphic observations, it is, of course,
essential to leave no doubt about the validity of these strati-
graphic constraints (the results of a model depend on the
assumptions that are made, and the order in ages is a very
strong constraint). Perhaps more importantly, even when
stratigraphic constraints are valid, it is possible that apply-
ing them will not improve the statistical inference.

A simple example to illustrate this point is that of two su-
perimposed, distinct layers (so that a stratigraphic order is
clear) whose true ages are equal (or in practice, for which the
age difference is negligible compared to the typical uncer-
tainties of the implemented dating method). In such a case,
modelling the ages with stratigraphic constraints is likely to
result in a loss of accuracy (the age of the older layer will
be overestimated, and that of the younger layer underesti-
mated) compared to a model where no stratigraphic con-

straints are imposed. Future developments of the BayLum
package might include the possibility to test different mod-
elling scenarios by comparing the agreement between the ob-
servations and the posterior probability densities, for exam-
ple using the Bayes information criterion (BIC).

8 Conclusion

New models for building chronologies based on OSL, with
the possibility to incorporate radiocarbon, have been pro-
posed in the literature (Combès et al., 2015; Combès and
Philippe, 2017). These models have been demonstrated to
improve the chronological inference based on OSL data and
in particular, the accuracy of OSL ages (Guérin et al., 2015a;
Heydari and Guérin, 2018). The R package BayLum was de-
veloped to implement these models; Lahaye et al. (2018),
Carter et al. (2019) and Heydari et al. (2020, 2021) have used
some of them to establish the chronologies of sedimentary
sequences dated by OSL, resulting in generally more precise
chronologies.

In this article, we have presented a case study on how to
build simple models and observe output data, particularly
through bivariate plots of age probability densities. Then, we
have shown how to include stratigraphic constraints in the
models; we have described how to fill the covariance matri-
ces to account for systematic errors in OSL age estimation;
and we have shown the effect of including independent age
information in the models, namely radiocarbon ages. Differ-
ent tools to visualise and further analyse the output of Bay-
Lum were demonstrated.

As a result, it is now possible to use various sources of
information often available in practice when dating strati-
graphic sequences. Age inferences based on OSL and inde-
pendent data (e.g. radiocarbon) in stratigraphic constraints
are expected to benefit in terms of accuracy, precision and
robustness, through the application of such Bayesian mod-
els.
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