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Abstract – In vehicle tire/road contact modeling, dynamic models are typically used which incorporate the
vehicle’s suspension in their estimation: thus relying on a known stiffness to determine the movement of the
wheel in response to roughness excitation. For the case of a wheeled device rolling on a floor (such as a delivery
trolley moving merchandise around inside a commercial building), there is often no suspension, yet the wheel is
still too soft to able to be considered mechanically rigid (as is the case in train/rail contact). A model which is
aimed at incorporating the dynamic effects of the trolley in predicting the sound generated by rolling needs to
provide a robust way of estimating the wheel’s effective stiffness. This work presents an original technique for
estimating the stiffness of a solid cylindrical wheel. A parametric study was conducted in order to identify the
dependence of the wheel stiffness on each of the relevant variables: including the wheel’s radius, axle size, width,
applied load, and material properties. The methodology may be used to estimate the stiffness of new wheel
types (i.e. different geometries and materials) without needing to solve a finite element model each time. Such
a methodology has application beyond the field of acoustics, as the characterization of shapes with non-
constant cross sections may be useful in the wider field of materials science.

1 Introduction

In the field of acoustics, prediction models which esti-
mate the sound produced in a rolling event are widespread.
Mostly existing for automotive tire/road and train wheel/
rail contact, these models calculate the interaction forces
between the two bodies (the wheel and the surface upon
which the wheel rolls), which are produced by the small-
scale relative roughness in the contact area [1, 2]. These
forces induce motion in the two bodies, and their resulting
structural vibrations are what radiates sound to the
surrounding area.

These models may typically be described as consisting of
three main subsystems: a contact model, a dynamic model,
and a propagation model. The contact model calculates the
contact force between the two bodies as a function of
(primarily) the small-scale relative roughness between
them. The dynamic model calculates the motion of the
two bodies as a function of the previously calculated con-
tact force. Finally, the propagation model calculates the
radiated sound as a function of the previously calculated
motion of the two bodies.

Recently, work has been done to develop a prediction
model applicable to indoor rolling scenarios, such as that

of a delivery trolley rolling on a floor inside a commercial
space [3]. Such a situation presents unique challenges which
are not present in automotive tire/road or train wheel/rail
rolling contact. One of these differences is that of the rela-
tive stiffnesses of the two contacting bodies. In the dynamic
models of train wheel/rail rolling contact, the wheel and rail
themselves are generally considered mechanically rigid, due
to their metallic construction and thus extremely high stiff-
nesses [4]. Instead, the train bogie suspension and railroad
sleepers are modeled as dynamic systems which respond
to the contact force as their input [5–8]. In the dynamic
models used in automotive tire/road rolling contact, the
road is generally considered mechanically rigid, its vibration
contributing minimally to the propagation of sound [9–12].
Calculation of the complex motion of the tire is instead
given priority. In a dynamic model used for indoor trolley
wheel/floor rolling contact, the wheel and floor cannot
always be considered mechanically rigid. They may both
move and deform on a macro level in response to the forces
in the area of contact between them, due to their often
relatively low elasticities.

An indoor rolling trolley may be represented in the
dynamic model as some form of a spring-mass-damper
system. For a vehicle with a built-in suspension system,
the stiffness is straightforward to calculate: it is simply
the stiffness of the suspension spring. However, most trol-
leys do not have suspension systems: they are simply made*Corresponding author: matthew.edwards@matelys.com
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up of a wheel turning about a rigid axle. In such a scenario,
the stiffness used in the dynamic model is instead the stiff-
ness of the wheel itself. (This is not to be confused with the
local contact stiffness between the wheel and the floor,
which represents the small scale deformation due to the
interpenetration of the two bodies.) Considering the vast
range of sizes and materials that trolley wheels come in, this
presents a challenge for incorporation into a sound predic-
tion model that wishes to be widely applicable for a range
of indoor rolling scenarios.

One option may be to build a finite element (FE) model
for a given wheel, but this is costly, as it requires a new FE
model to be run for every single unique geometry/material
composition. Additionally, a further problem exists in the
fact that the geometry of the wheel in a rolling event is
dependent on the motion of the wheel itself. According to
Hertzian contact theory, the size of the contact area formed
between a cylindrical wheel and a flat floor is a function of
the wheel radius, wheel width, the compressional load on
the wheel, and the elastic properties (Young’s modu-
lus and Poisson’s ratio) of the wheel and floor [13]. In a sta-
tic scenario, the load is constant, and the size of the contact
area may be easily calculated. In a dynamic scenario, the
load changes continuously as the motion of the wheel
and floor respond to their relative interaction. Conse-
quently, the “flat spot” formed on the bottom of the wheel
by the contact area (and thus the effective geometry of
the wheel itself) also changes continuously. If FE model-
ing were to be used in the calculation of each unique
wheel’s stiffness, either the dynamic phenomenon of the
wheel geometry would need to be neglected, or a FE model
would need to be run at each individual time step in the
dynamic model. Both options are neither desirable nor
practical.

An alternative option would be to run a series of FE
models in the form of a parametric study, extract trends
in the data, and develop a system for estimating the stiff-
ness of any geometry or material composition, without
the need to solve a new FE model each time. In this paper,
a straightforward method is proposed to characterize the
compressional stiffness of a cylindrical wheel in contact with
a flat surface, including how it changes with time through-
out the course of the rolling event. This is inspired by the
methodology used by Sim and Kim to estimate the elastic
properties of viscoelastic materials [14]. Polynomial rela-
tions are derived from high order FE models of a cylindrical
wheel under static vertical compression, linking the wheel/
axle radii ratio and contact area half-length. A series of one
dimensional polynomials or a single two dimensional poly-
nomial may be found which completely describe how a
cylindrical wheel’s stiffness changes as a function of its
changing geometry. Such polynomial functions, or alterna-
tively a classical lookup table may be incorporated into an
indoor rolling noise model, allowing the wheel stiffness to be
calculated throughout the rolling event. This allows for a
more precise estimation of the movement of the wheel, lead-
ing to increased accuracy in sound predictions.

2 Parametric study

A parametric study was conducted in order to identify
the degree of influence that each parameter has on the
wheel stiffness. A series of FE models were run for cylindri-
cal wheels of various geometries and material compositions,
from which trends were identified. For the parametric
study, four geometric variables, shown in Figure 1, were
chosen to be investigated: wheel radius rW, axle radius rA,
wheel width w, and contact area half-length a. The conven-
tion of half-length is adopted from Hertzian contact theory,
and simply refers to half the length of the contact area in
the direction of rolling (the full contact area having length
2a). Additionally, Young’s modulus E and Poisson’s ratio
v of the wheel material, as well as the input displacement
zin, were also included.

2.1 Meshing

The wheel geometries were constructed using pytho-
nOCC [15]. Meshing was done using Tetgen [16]. The mesh
densities of the FE models were first defined based on the
width of the wheel, having a maximum edge length of
w/7. They were then re-meshed to add extra nodes in the
area of contact for particularly small contact area half-
lengths. This ensured the contact area had at least four
nodes along its length. Depending on the geometry, mesh
sizes ranged between 1.0 � 104 and 5:3� 104 nodes, having
degrees of freedom between 2:1� 106 and 1:1� 107.

To solve the FE model, the flat contact surface on the
bottom of the wheel was fixed in place. A uniform displace-
ment in the downward vertical direction was imposed on
the axle surface, simulating the mass of the trolley borne
by the wheel under load. A glued condition between the
axle and wheel was assumed for the purpose of FE
calculations.

The stiffness of each FE model was calculated by divid-
ing the force on the axle surface by the displacement of the
axle surface:

K ¼ F z

Uz

� �
axle surface

; ð1Þ

where the vertical normal stress rzz and vertical displace-
ment uz are integrated across the whole axle surface to
find it’s overall force and displacement

F z ¼
Z

rzzdA; ð2Þ

Uz ¼ 1
A

Z
uzdA: ð3Þ

A Windows 10 PC with an AMD Ryden Threadripper
1950X 16-Core 3.40 GHz processor and 64 GB of RAM
was used for all calculations. The FE models were solved
in FreeFem++ [17] with the UMFPACK direct solver.
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2.1.1 Investigated variables

For each of the variables chosen to be investigated, a
range was selected which encompasses the full scope of
any trolley wheel which may be reasonably expected to be
found in the real world. Table 1 summarizes the range of
values that were chosen for each variable. The axle radius,
wheel width, and contact area half-length are expressed as
ratios: relative to the wheel radius. This nomenclature
allows for ease of comparison due to the use of dimension-
less quantities. Due to limitations with the meshing soft-
ware, relative contact area half-length values below 0.003
were not able to be reliably meshed.

In lieu of running a calculation for every possible permu-
tation of the values of all six parameters (which would have
resulted in over four billion individual runs), each parame-
ter was given its own investigation. Thus for a given param-
eter, all the others were fixed at a constant value, and the
stiffness calculated for each value of the parameter in ques-
tion. For example, for the runs investigating the effect of
the wheel width, all other parameters remained constant,
and only the wheel width was varied from one run to
another. The only exception to this was Poisson’s ratio,
which was investigated for all eleven of its values across
all parameter investigations. Table 2 shows the constant
values chosen for the parametric study. For a given param-
eter with N possible values, 11N runs were conducted. This
resulted in 1342 runs overall.

3 Parametric study results

After all the desired conditions were solved, the results
were analyzed, and the calculated stiffness of the wheel
plotted against each parameter in question. The results of
the FE simulations reveal patterns in how the wheel stiff-
ness is influenced by each of the various parameters: some
expected, some not. For each plot, fixed parameters (those
which are identical for all data points) are shown in the bot-
tom right hand corner. Points having the same horizontal

position are for varying values of Poisson’s ratio
(0–0.495). Schematics of the extreme wheel geometries on
each plot are shown for reference: drawn to scale with
respect to one another.

The parameters having a linear influence on the wheel
stiffness, shown in Figure 2, are Young’s modulus and the
wheel width. For a given FE model, a change in either of
these values results in a proportional change to the wheel
stiffness. Since Young’s modulus of a material is essentially
a measure of that material’s intrinsic stiffness independent
of shape, logic follows that it would be linearly proportional
to the actual wheel stiffness. Similarly, increasing the width
of the wheel essentially acts like adding springs in parallel,
thus increasing the stiffness in a linear fashion.

The two parameters exhibiting unique relationships
with the wheel stiffness, shown in Figure 3, are the axle
radius and the contact area half-length. Neither may be
described by a simple expression, and will thus become
the topic of further investigation in Section 4. For the axle
radius: as the ratio between the axle radius and the wheel
radius approaches unity, the stiffness approaches infinity.
Since the axle is considered rigid in the FE models, as the
volume of wheel material approaches zero, the compressed
wheel gets closer and closer to exhibiting that of a rigid con-
nection, thus having infinite stiffness. For the contact area
half-length: as the size of the contact area approaches zero,
the stiffness begins to drop off exponentially. While not able
to be directly calculated, it is believed that with even smal-
ler contact areas, the stiffness would continue to fall
towards zero at an ever increasing rate.

Looking on the right side of Figure 3a, it may not
appear at first glance to be a reasonable geometry for a trol-
ley wheel. After all, an axle that is makes up 96% of the vol-
ume of the wheel/axle assembly may hardly be considered
realistic. Indeed, this is not the type of scenario being
exemplified by these high axle/wheel radii ratios. They
are instead exemplifying the scenario of a two-piece

Table 1. Range of values used for each parameter.

Parameter Symbol Unit Value

Input displacement zin mm 0.1–10
Young’s modulus E GPa 0.01–200
Poisson’s ratio m – 0–0.495
Wheel radius rW mm 10–100
Relative axle radius rA=rW – 0.05–0.95
Relative wheel width w=rW – 0.1–1
Relative contact half length a=rW – 0.003–0.1

Table 2. Values used for the fixed variables.

Variable Unit Value

zin mm 0.4
E GPa 0.2
rW mm 50
rA=rW – 0.2
w=rW – 0.4
a=rW – 0.02

Figure 1. Description of the wheel geometry.
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construction wheel, where a hard wheel core is wrapped in a
softer outer layer. Such a situation is relatively common for
indoor trolley wheels. Here the core is sufficiently stiffer
than the softer outer layer that it may be considered
mechanically rigid. Thus, for the purpose of the FE models,
the inner wheel core and axle may be considered one-in-the-
same. Schematics of these kinds of wheels are shown in
Figure 4. Here, wheels (a) and (c) are being exhibited by
the FE models, not wheel (b).

Figure 5 shows the three parameters which have no
influence on the wheel stiffness: the wheel radius and input
displacement. The first comes with a caveat, as the ratio
between the axle radius and the wheel radius does indeed
have a strong effect on the wheel stiffness. However, when
this ratio is held constant, increasing the wheel radius does
not result in any change in wheel stiffness. So perhaps it is
better to say that the wheel radius does have an effect on
the stiffness, but that this effect can be fully described by
the changing axle/wheel radii ratio. In regards to input dis-
placement, the lack of dependence is in accordance with the

use of a linear material in the FE models, where increasing
compression does not result in increased stiffness.

Finally, there is one more parameter which deserves
discussion: Poisson’s ratio. An elastic solid of uniform

Figure 2. Results of the parametric study: (a) Young’s modulus E and (b) relative wheel width w=rW. Points having the same x
coordinate (but a different y coordinate) are for varying values of Poisson’s ratio v. Schematics of the extreme wheel geometries are
shown for reference (drawn to scale with respect to one another).

Figure 3. Results of the parametric study: (a) relative axle radius rA=rW and (b) relative contact area half-length a=rW. Points
having the same x coordinate (but a different y coordinate) are for varying values of Poisson’s ratio m. Schematics of the extreme wheel
geometries are shown for reference (drawn to scale with respect to one another).

Figure 4. Three example wheels: (a) A realistic one-piece wheel
with a small solid axle, (b) an unrealistic one-piece wheel with an
impractically large solid axle, and (c) a realistic two-piece wheel
with a soft outer wheel layer, a hard inner wheel core, and a solid
axle. In the scenario of a high wheel/axle ratio, wheel (c) is being
exhibited, not wheel (b).
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cylindrical or rectangular prism shape, compressed in the
axial direction, is known to have a high dependency on
Poisson’s ratio [14]. However, looking across all six plots
in Figures 2–5, a change in Poisson’s ratio results in essen-
tially no change in stiffness (all else held constant). The
points which exhibit the largest deviation are all for the
highest values of Poisson’s ratio (above 0.49), and they do
not occur in a consistent fashion (i.e. not always an increase
and not always a decrease). In essence, the stiffness is
remaining nearly unchanged for all values of Poisson’s ratio
all the way up until around 0.49, where only then the mod-
eling instability that exists when approaching v = 0.5 starts
to have a minor effect. This near lack of dependence on
Poisson’s ratio was certainly unexpected. In fact, when
loaded in the vertical direction it is the effect of the wheel
shape which dominates. The cylindrical form allows the
wheel material to “move out of the way” under compression
into the horn-shaped free spaces between the wheel and the
floor. A visualization of this is show in Figure 6. The shape
of the geometry itself is linking the movement of the two
transverse directions to that of the longitudinal direction
in a way that negates any influence that the Poisson effect
may have.

4 Generation of the abacus

To generate the abacus, a second series of FE models
were run for the two chosen non-linearly dependent vari-
ables: the axle radius and the contact area half-length (both
normalized by the wheel radius). Nineteen values between
0.05 and 0.98 were chosen for the axle/wheel radii ratio
rA=rW. Eighteen values between 0.003 and 0.1 were chosen
for the relative contact area half-length a=rW. Constant val-
ues of w=rW ¼ 0:4, E ¼ 1 Pa, v = 0.3, and zin ¼ 0:1 mm
were chosen for the wheel width, Young’s modulus, and
Poisson’s ratio, respectively. Though it should be noted
that, due to their relationship with the wheel stiffness
(linear for w and E, and independent for v and zin), their
choice is arbitrary.

4.1 Normalized wheel stiffness

Figure 7 shows the results of the second series of FE cal-
culations. Equation (4) was first used to find the normalized
wheel stiffness by dividing by Young’s modulus and the
wheel width:

Knorm ¼ K
wE

: ð4Þ

The normalized stiffness was then plotted as a function of
the axle/wheel radii ratio and relative contact area half-
length. The data is plotted with a logarithmic z-scale (base
10) in order to visualize how the stiffness changes for both
low and high values of rA=rW. As the axle/wheel radii ratio
grows, so does the influence of the size of the contact area
on the stiffness. For ratios 0–0.8, there is a 1.5x factor in
the change in normalized stiffness. Above 0.8 the stiffness
increases exponentially, up to a factor of nearly 16x.

Three methods have been developed for implementing
the data from the abacus into a rolling noise model: a
lookup table, a series of one-dimensional polynomials, and
a single two-dimensional polynomial. They are described
in detail in the following sections.

Figure 5. Results of the parametric study: (a) wheel radius rW and (b) input displacement z in. Points having the same x coordinate
(but a different y coordinate) are for varying values of Poisson’s ratio m. Schematics of the extreme wheel geometries are shown for
reference (drawn to scale with respect to one another).

Figure 6. Diagram of the wheel compression under an arbitrary
load Q. The movement of the wheel into the areas formed
between the wheel and the floor overrides any effect a change in
Poisson’s ratio may have on the stiffness.
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4.2 Lookup table

A straightforward method of implementing the wheel
stiffness abacus is to use the data points in Figure 7 as a
lookup table. The normalized wheel stiffness for a
wheel of any reasonable size (i.e. for 0:05 � rA=rW � 1
and 0:003 � a=rW � 0:1) may be calculated via two-
dimensional linear interpolation of the data points. This
encompasses nearly every type of cylindrical solid wheel
which would be expected to be found on an indoor trolley.

4.3 Series of one-dimensional polynomials

In lieu of using a lookup table, polynomial relations may
instead be generated to characterize the relationship
between the influencing parameters and the wheel stiffness.
This has the benefit of simplifying the implementation pro-
cedure into a rolling noise model. To do so, univariate 9th
order exponential polynomials following the form of equa-
tion (5) were first fitted to the data in Figure 7 with
rA=rW as the dependent variable: giving one polynomial
for each relative contact area half length:

Pa=rWðrA=rWÞ ¼ K
wE

¼ exp
X9
i¼1

C a=rW
i ðrA=rWÞi

 !
: ð5Þ

This was chosen as it is the highest order polynomial for
which a close fit is observed. Equation (5) produces polyno-
mials having coefficient of determination R2 > 0:998 for all
a=rW. Higher order polynomials began to exhibit unstable
behavior (large peaks and troughs started to emerge
between the known data points) and no longer accurately
mapped to the data sets. These polynomials characterize
how the normalized stiffness changes with varying axle/
wheel radii ratio for a given contact area half length.

A second series of univariate 6th order polynomials were
then fitted to data with a=rW as the dependent variable:
giving one polynomial for each axle/wheel radii ratio. These
polynomials, following the form of equation (6), character-
ize how the normalized stiffness changes with varying con-
tact area half length for a given axle/wheel radii ratio:

P rA=rWða=rWÞ ¼ K
wE

¼
X6
i¼1

CrA=rW
i ða=rWÞi: ð6Þ

Figure 8 shows the generated one-dimensional polynomials
for both varying axle/wheel radii ratio and contact area
half-length. Together, they may be used to calculate the
stiffness of a wheel of nearly any geometry. The procedure
for how this is done in practice is shown in Section 5.

4.4 Two-dimensional polynomial

The third characterization method developed involves
fitting a single two-dimensional polynomial to the entire
data set. This greatly simplifies the implementation process
by reducing the entire calculation procedure to a single step.
A homogeneous bivariate exponential polynomial of the
form shown in equation (7) was fit to the data points:

P f ; gð Þ ¼ K
wE

¼ exp
X5
N¼0

XN
i¼1

Ci;N�if igN�i

 !" #
: ð7Þ

For ease of display, the expressions for axle/wheel radii
ratio and contact area half-length have been replaced by
functions f and g, such that

f ¼ lnðrA=rWÞ; ð8Þ

g ¼ a=rW: ð9Þ
The resulting 2D polynomial is given by equation (10).
Note that the coefficients have been rounded here for ease
of display:

See equation (10) bottom of the page

The 2D polynomial is plotted with the FE model results in
Figure 9. It has an extremely good fit, with a coefficient of
determination of R2 ¼ 0:996. This polynomial fully charac-
terizes how the normalized stiffness changes with nearly any
geometry.

Figure 7. Normalized wheel stiffness as a function of axle/
wheel radii ratio and relative contact area half-length. Plotted
on a logarithmic z-scale (base 10).

P ðf ; gÞ ¼ K
wE ¼ exp 95f 5 þ 280f 4g � 1 319f 3g2 þ 4 004f 2g3 � 9 965fg4 þ 1 052 708g5ð

�249f 4 � 352f 3g þ 1 109f 2g2 þ 76fg3 � 305 716g4 þ 247f 3 þ 123f 2g

�454fg2 þ 33 013g3 � 117f 2 þ 7fg � 1 625g2 þ 29f þ 43g � 5Þ
: ð10Þ
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5 Comparison of the three methods

In order to compare the three methods, as well as
demonstrate how each may be used to calculate the stiffness
of a given wheel, an example characterization of performed.
Let us take two wheels with properties given in Table 3.

For a cylindrical wheel, Hertzian contact theory states
the size of the contact area will be

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4QrW
pwE 0

r
; ð11Þ

where Q is the applied load and E 0 is the apparent
Young’s modulus between the wheel and floor.

E 0 ¼ 1� m2wheel
Ewheel

þ 1� m2floor
Efloor

� ��1

: ð12Þ

For the example, we will use a concrete floor (Efloor ¼ 3:3
GPa, mfloor ¼ 0:2). If the wheel is put under a static load
of Q ¼ 200 N, Equations (11) and (12) estimate a contact
area half-length of a1 ¼ 0:80 mm and a2 ¼ 1:83 mm for
each wheel. Thus the dimensionless geometric quantities
necessary to calculate the stiffnesses are rA=rW1 ¼ 0:30
and a=rW1 ¼ 0:02 for wheel 1 and rA=rW2 ¼ 0:897 and
a=rW2 ¼ 0:03 for wheel 2.

Using the lookup table, the procedure is straightfor-
ward. Plugging the dimensionless geometric quantities into
the lookup table and interpolating yields normalized wheel
stiffnesses of Knorm;1 ¼ 0.31 and Knorm;2 ¼ 1.05. Using
equation (4), we obtain the true estimated wheel stiffnesses:
K1 ¼ 5811 kN and K2 ¼ 4960 kN.

Figure 10 demonstrates the process of building the 1D
polynomials which are specific to our two example wheels.
Each of the first series of 9th order 1D polynomials are eval-
uated for the given axle/wheel radii ratio. This is repre-
sented by the vertical line drawn at the given rA=rW
values. This provides a new set of data points, to which
the second 6th order polynomials can now be fit.

Equations (13) and (14) show the final 1D polynomials
for each example wheel. Note that the coefficients have been
rounded here for ease of display:

P 1ða=rW1Þ ¼ K
wE

� �
1 ¼ �5 506 860ða=rWÞ6

þ1 766 278ða=rWÞ5 � 222 310ða=rWÞ4
þ14 130ða=rWÞ3 � 498ða=rWÞ2
þ12ða=rWÞ þ 0:2; ð13Þ

Figure 8. (a) Nineth order 1D polynomials for normalized wheel stiffness as a function of axle/wheel radii ratio. (b) Sixth order 1D
polynomials for normalized wheel stiffness as a function of contact area half-length. Plotted on a logarithmic y-scale (base 10).

Figure 9. Fifth order homogeneous bivariate polynomial for
normalized wheel stiffness as a function of both axle/wheel radii
ratio and relative contact area half-length. Plotted on a
logarithmic z-scale (base 10).

Table 3. Example wheel parameters.

Variable Unit Wheel 1 Wheel 2

E MPa 760 105
m – 0.3 0.25
rW mm 42 64
rA mm 12.5 57.4
w mm 25 45
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P 2ða=rW2Þ ¼ K
wE

� �
2 ¼ �13 397 078ða=rWÞ6

þ4 314 984ða=rWÞ5 � 545 898ða=rWÞ4
þ34 857ða=rWÞ3 � 1 177ða=rWÞ2
þ39ða=rWÞ þ 0:3: ð14Þ

Plugging the relative contact area half-lengths into the
above equations yields normalized wheel stiffnesses of
Knorm;1 ¼ 0.31 and Knorm;2 ¼ 1.03. Using equation (4), we
obtain the true estimated wheel stiffnesses: K1 ¼ 5 954
kN and K2 ¼ 4 867 kN.

The process for using the 2D polynomial is also very
straightforward. All that is needed is to solve equation (7)
for the given dimensionless geometric quantities. Doing so
yields normalized wheel stiffnesses of Knorm;1 ¼ 0.30 and
Knorm;2 ¼ 1.09. Using equation (4), we obtain the true esti-
mated wheel stiffnesses: K1 ¼ 5 793 kN and K2 ¼ 5 146
kN.

Table 4 summarizes the results of the three methods.
For wheel 1, there is a 2:4% difference between the results
of the lookup table and 1D polynomials, a 0.3% difference
between the lookup table and 2D polynomial, and a 2.7%
difference between the 1D polynomials and 2D polynomial.
For wheel 2, there is a 1.9% difference between the results of
the lookup table and 1D polynomials, a 3.7% difference
between the lookup table and 2D polynomial, and a 5.6%
difference between the 1D polynomials and 2D polynomial.
All three methods provide reasonably close results to one
another.

The major difference in methods becomes apparent
when comparing their calculation times. As an example, a
simple MATLAB script was written to perform a loop of
10000 iterations using each calculation method. Using the
same computer that was used for the parametric study
(described in Sect. 2.1), the 1D polynomials and the 2D
polynomial methods each finished in less than 0.1 s. The
lookup table method, however, took more than 9 s to com-
plete. When running a Python version of the same script,
the difference is even more pronounced (0.1, 0.1, and
40.4 s for the 1D polynomials, 2D polynomial, and lookup

methods, respectively). In a time domain model implemen-
tation where the wheel stiffness is recalculated at each
moment in time throughout the course of the simulation,
implementation of one of the two polynomial methods
would provide significant improvement over the lookup
method in terms of computational efficiency. This is dis-
cussed further in Section 7.1.

6 Comparison with analytical methods

The results of the previous FE-based estimations were
compared with two analytical methods to identify whether
these simpler analytical solutions could be used in their
place as an accurate representation of the wheel stiffness.
Two analytical methods were investigated: an equivalent
beam and an equivalent trapezoidal prism.

6.1 Equivalent beam

In the rolling noise model presented in [3], the stiffness
used in the dynamic model is taken as that of an equivalent
beam, who’s cross-section is defined by the contact area,
and who’s height is defined by the distance between the
floor and the axle (the presence of an axle is ignored in
[3], but is included here for comparison). This may be given
by

Kbeam ¼ 2awEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rW2 � a2

p � rA
: ð15Þ

Table 4. Summary of example results.

Method Wheel 1 Wheel 2

Knorm K Knorm K
(–) (kN) (–) (kN)

Lookup table 0.31 5811 1.05 4960
1D polynomials 0.31 5954 1.03 4867
2D polynomial 0.30 5793 1.09 5146

Figure 10. Example of the 1D polynomial characterization procedure for rA=rW1 ¼ 0:30 and rA=rW2 ¼ 0:897. Plotted on a
logarithmic y-scale (base 10).
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This may be rearranged to have the same form as equation
(4) in order to achieve the normalized equivalent beam
stiffness:

Kbeam;norm ¼ Kbeam

wE
¼ 2ða=rWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ða=rWÞ2
q

� ðrA=rWÞ
: ð16Þ

Figure 11 shows the estimated wheel stiffness found using
equations (10) and (16), as well as the percent error
between the two as a function of axle/wheel radii ratio
and contact area half-length. When compared to the wheel
abacus, the approximation given by the equivalent beam is
not very accurate. Calculating the equivalent beam stiff-
nesses for the wheel geometries used in this work yields a
dataset with relatively poor fit to the wheel abacus: having
an average percent error of 62% (median 67%), with some
values as high as 247% for extremely small axle/wheel radii
ratios. The standard deviation of the percent error is 10%.

6.2 Equivalent trapezoidal prism

The issue with the simple beam is that it has a constant
cross-section throughout its height. The cylindrical wheel,
with its two load points being the contact patch from below
and the axle surface from above, is perhaps more akin to a
trapezoidal prism. To that effect, an equivalent prism
whose cross-sectional area changes along its height, from
2aw on one end to 2rAw on the other, may yield a closer
approximation of the equivalent stiffness. Such a prism
would have a stiffness given by

Ktrap;norm ¼ Ktrap

wE
¼

Z h

0

z
2xðzÞ dz

� ��1

; ð17Þ

where h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rW2 � a2

p � rA is the height of the prism in
the z direction: the distance between the flat spot and
the bottom of the axle. The length of the prism is given
by x, which is now a function of z. The function has been
inverted inside the integral (and then again outside after

integration) to reflect the fact that when integrating along
the height of the prism, one is essentially adding a number
of springs in series, and thus requires an inverse
summation.

Figure 12 shows the estimated wheel stiffness found
using equations (10) and (17), as well as the percent error
between the two as a function of axle/wheel radii ratio
and contact area half-length. This formulation, on top of
being quite a bit more complicated, unfortunately yields
results which are still not satisfactorily close to the those
given by the wheel abacus. The equivalent trapezoidal
prism results have an average percent error of 67% (median
55%) with respect to the wheel abacus, with some values as
high as 197% for extremely small contact area half-lengths.
The standard deviation of the percent error is 9%.

While the trapezoidal prism does account for the chang-
ing cross sectional area of the equivalent shape, it still does
not account for the decoupling of the lateral and vertical
deformations (i.e. the absence of Poisson’s effect). It is
believed that the curvature of the wheel is the source of this
phenomenon, and thus cannot be captured by a trapezoidal
prism.

Neither an equivalent beam nor an equivalent trape-
zoidal prism is sufficiently accurate to be used reliably as
a replacement for the wheel abacus. On the other hand, this
shows that the implementation of the wheel abacus into an
indoor rolling noise model would indeed be a beneficial
improvement.

7 Discussion

On a larger scale, the results shown in this work (partic-
ularly in regards to the discovery of the lack of influence of
the Poisson effect) demonstrate that a similar modeling
technique may be used to characterize the properties of
other shapes as well. Characterizations have been per-
formed for constant circular cross sections [14, 18] (for
which the Poisson effect plays a large role), and character-
izations of materials with constant square cross sections

Figure 11. (a) Normalized wheel stiffness: FE model results (blue) vs an equivalent beam (red). Plotted on a logarithmic z-scale
(base 10). (b) Percent error between the FE model results and equivalent beam.
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yield results which are nearly identical to those of a con-
stant circular cross section below Poisson’s ratios of about
0.47. However, analysis of other non-constant cross sec-
tions, or even more complex shapes, could potentially pro-
vide beneficial insights in applications and industries
beyond rolling contact modeling.

7.1 Implementation into a rolling noise model

There are two ways in which the stiffness estimation
procedures presented in this work may be implemented into
a rolling noise model: pre or continuous calculation.

One option is to pre-calculate the stiffness of the wheel
at the start of the model computation process. This may be
used in models which operate in either the time or frequency
domain. Here, Hertzian equations are used to compute the
size of the contact area under static load in the absence of
roughness, and the stiffness is then estimated based on this
wheel geometry. Thus the wheel stiffness remains constant
throughout the entire rolling model computation process.

In reality, however, the wheel stiffness is not constant. It
depends on the size of the contact area, and any change in
contact area half-length will result in a small change the
wheel stiffness. Because the contact area half-length
changes throughout the rolling event as a new roughness
profile continuously “moves into” the area between the
wheel and the floor, the wheel stiffness itself changes contin-
uously as well. To account for this phenomenon, the second
option is to calculate the wheel stiffness at each instant
throughout the rolling event, providing a unique stiffness
value for every discrete moment in time. Consequently, this
may only be used in time-domain rolling noise models. It is
more computationally expensive, but provides greater accu-
racy in the stiffness estimation.

In the continuous-calculation method, the presence of
roughness in the contact area is accounted for in calculating
the size of the contact area for the purpose of estimating the
wheel stiffness (This is not to be confused with the local
contact stiffness between the wheel and the floor, which rep-
resents the small scale deformation due to the interpenetra-
tion of the two bodies). In the pre-calculation method, a

simplifying assumption is implicitly made that the presence
of roughness will change the value of a=rW from its original
static Hertzian estimation by a small enough amount that it
may be ignored for the purpose of calculating the wheel
stiffness. In both cases, the value of a=rW is always calcu-
lated prior to estimating the wheel stiffness.

Which method should be used depends on the method-
ology of the model (time or frequency domain), the magni-
tude of the roughness profile, and the priorities of the user.
A roughness profile which is relatively smooth may not
result in a contact area which changes greatly throughout
the course of the rolling event, and thus pre-calculation
may be more practical. Rougher profiles however, particu-
larly those containing large discontinuities such as floor
joints or wheel flats, may benefit from continuous calcula-
tion. Finally, as continuous calculation will take longer to
complete than pre-calculation, users which prioritize short
computation times may still choose to implement pre-
calculation instead.

7.2 Scope of the method’s applicability

In both phases of the parametric study, care was taken
to run FE models for a wide range of parameter values.
Thus, for the most part, any kind of trolley wheel which
may be reasonably expected to be found in the real world
can have this method applied. Due to their linear depen-
dence, for the wheel width, radius, and Young’s modulus,
any value may be used. Axle radii of 5%–98% of the wheel
radius are valid, which for all intents and purposes is com-
prehensive, as a wheel outside this range would be of no
practical use. For the contact area half-length, the method
is assumed to be valid for any value below 10% of the wheel
radius. Again, the wheel softness and applied load would
need to be so high to achieve a contact area half-length
above this limit, that in reality it is of no concern. For con-
tact area half-length values below 0.3% of the wheel radius,
the wheel stiffness is assumed to continue to follow the poly-
nomial profile. This likely results in an overestimation of the
stiffness for these extremely small contact area half-lengths.
However, this is considered acceptable in order to allow the

Figure 12. (a) Normalized wheel stiffness: FE model results (blue) vs. an equivalent trapezoidal prism (red). Plotted on a
logarithmic z-scale (base 10). (b) Percent error between the FE model results and equivalent trapezoidal prism.
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model to allow for loss of contact between the wheel and the
floor: a possibility in the presence of wheel flats and/or floor
joints. In this type of situation, the size of the contact area
tends to zero before disappearing at the moment of loss of
contact.

8 Conclusion

This work presents an original technique for estimating
the stiffness of a cylindrical indoor trolley wheel. A para-
metric study was conducted in order to identify the depen-
dence of the wheel stiffness on each of the relevant
variables. The stiffness is linearly dependent on the wheel
width and Young’s modulus, and largely independent from
Poisson’s ratio. A unique dependency exists for the axle/
wheel radii ratio and contact area half-length. Using the
information from these relationships, an abacus was created
for estimating the stiffness of virtually any cylindrical
wheel. Three methods were presented for estimating the
wheel stiffness: a lookup table, a series of one-dimensional
polynomials, or a single two-dimensional polynomial. The
polynomials have extremely good fit to the data, and all
three methods provide estimates that are reasonably close
to one another. These methods may be implemented into
a rolling noise model to provide either a pre-calculated or
continuously updating estimation of the wheel stiffness.
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