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This paper investigates the Electric Autonomous Dial-A-Ride Problem (E-ADARP), which consists in

designing a set of minimum-cost routes that accommodates all customer requests for a fleet of Electric

Autonomous Vehicles (EAVs). Problem-specific features of the E-ADARP include: (i) the employment of

EAVs and a partial recharging policy; (ii) the weighted-sum objective function that minimizes the total travel

time and the total excess user ride time. We propose a Deterministic Annealing (DA) algorithm, which is

the first metaheuristic approach to solve the E-ADARP. Partial recharging (i) is handled by an exact route

evaluation scheme of linear time complexity. To tackle (ii), we propose a new method that allows effective

computations of minimum excess user ride time by introducing a fragment-based representation of paths.

These two methods compose an exact and efficient optimization of excess user ride time for a generated

E-ADARP route. To validate the performance of the DA algorithm, we compare our algorithm results to the

best-reported Branch-and-Cut (B&C) algorithm results on existing instances. Our algorithm provides 25

new best solutions and 45 equal solutions on 84 existing instances. To test the algorithm performance on

larger-sized instances, we establish new instances with up to 8 vehicles and 96 requests, and we provide 19

new solutions for these instances. Our final investigation extends the state-of-the-art model and explores the

effect of allowing multiple visits to recharging stations. This relaxation can efficiently improve the solution’s

feasibility and quality.

Key words : dial-a-ride problem; electric autonomous vehicles; deterministic annealing, metaheuristic

1. Introduction

With the astounding growth of automobile ownership, a series of transport-related problems has

appeared worldwide. These problems, such as greenhouse gas emissions and urban traffic congestion,

have severely impacted the economy and the environment (Schrank, Lomax, and Eisele 2012). One

possible approach to address these concerns is to provide ride-sharing services (Jin et al. 2018), which

require customers to specify their origins and destinations. The underlying optimization problem

is usually modeled as a Dial-A-Ride Problem (DARP), which consists in designing minimum-cost
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routes for a fleet of vehicles to serve a set of customer requests (Cordeau and Laporte 2007). Each

customer request contains an origin, a destination, and a time window on either the origin or the

destination. The DARP was first introduced in Wilson et al. (1971) and has received considerable

attention from the literature (Parragh, Doerner, and Hartl 2008, Molenbruch, Braekers, and Caris

2017, Ho et al. 2018). The standard version of the DARP aims to minimize the total routing cost

while respecting operational constraints such as time windows, capacity, and duration constraints.

However, as customers can share rides with others, user inconvenience must be considered while

minimizing the total routing cost. In the typical DARP model, a maximum user ride time constraint

is introduced for each customer request. Due to the integration of maximum user ride time and

time window constraints, scheduling vehicles to begin their services as early as possible does not

necessarily result in a feasible schedule for a given sequence of pickup and drop-off locations. It is

possible to reduce the user ride time by allowing delays in the service start time. Heuristic solution

methods for the DARP usually apply the “eight-step” method of Cordeau and Laporte (2003),

which constructs the feasible schedule by sequentially minimizing the possible violations of time

windows, maximum route duration, and maximum user ride time.

As well as providing ride-sharing services, other recently trending approaches that help to reduce

emissions and congestion include using Electric Vehicles (EVs) and developing autonomous driving

technology. The employment of EVs offers the benefits of potentially fewer greenhouse gas emissions,

lower energy cost per mile, and lower noise (Feng and Figliozzi 2013). The introduction of autonomous

driving leads to more flexibility in managing vehicle fleets, considerably lower operational costs,

and better service quality (Fagnant, Kockelman, and Bansal 2015, Chen, Kockelman, and Hanna

2016, Burns, Jordan, and Scarborough 2013). This article studies the Electric Autonomous DARP

(E-ADARP), which was first introduced by Bongiovanni, Kaspi, and Geroliminis (2019). Although

the E-ADARP shares some of the constraints of the typical DARP (e.g., maximum user ride time,

time window constraints), the E-ADARP is different from the typical DARP in two aspects: (i)

the employment of EAVs and a partial recharging policy, and (ii) a weighted-sum objective that

minimizes both total travel time and total excess user ride time; The first aspect (i) requires

checking battery feasibility for a given route, while the second aspect (ii) requires determining

minimal-excess-time schedules for a feasible solution. The first aspect also implies other important

features of the E-ADARP: (a) partial recharging is allowed en route, and (b) the maximum route

duration constraints no longer exist due to the autonomy of vehicles. Allowing partial recharging

introduces a trade-off between the time window and battery constraints: although longer recharging

extends the driving range, it may also lead to time-window infeasibility for later nodes. Employing

autonomous vehicles eliminates the need to predefine destination depots, as autonomous vehicles

need to continuously relocate during their non-stop service. Other problem-specific constraints also
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increase the complexity of solving the E-ADARP. These constraints include a minimum battery

level that must be maintained at the end of the route as well as limited visits to each recharging

station. With these features and constraints, the possibility that the metaheuristic is trapped in

local minima of poor quality increases, and feasible solutions are difficult to consistently find.

This paper offers a fourfold contribution. Firstly, we propose a new approach that efficiently

computes minimum excess user ride time by introducing a fragment-based representation of paths.

Then, we apply an exact route evaluation scheme that executes feasibility checking in linear time.

Combining these two methods, we propose an exact and efficient optimization of excess user ride

time for an E-ADARP route. Secondly, we adapt a Deterministic Annealing (DA) algorithm to

tackle the E-ADARP by integrating the proposed excess user ride time optimization method. To

the best of our knowledge, this is the first time that a metaheuristic has been proposed to provide

excess-ride-time optimal solutions for the E-ADARP. Thirdly, we demonstrate the performance of

the proposed DA algorithm through extensive numerical experiments. On the previously solved

instances, the DA algorithm improves the solution quality by 0.16% on average. We provide the

best solutions for 70 out of 84 instances, among which 25 are new best solutions. To further test

our algorithm in solving large-scale instances, we construct new benchmark instances with up to 8

vehicles and 96 requests, and we provide 19 new solutions on newly-introduced instances. Finally,

we extend the E-ADARP model to investigate the effects of allowing unlimited visits to recharging

stations. The major difficulties for local search introduced by highly-constrained instances are

lessened considering this more realistic situation, which opens perspectives in modeling constraints

for recharging stations.

The remainder of this paper is organized as follows. Section 2 presents a comprehensive literature

review on the DARP with Electric Vehicles (EVs) and Electric Vehicle Routing Problems (E-VRPs).

Section 3 provides the problem definition and the notations of sets, parameters, and variables. It

also discusses the objective function and constraints of the E-ADARP. Section 4 introduces the

fragment-based representation of paths and the method to minimize total excess user ride time.

A novel route evaluation scheme of linear time complexity is then described. Based on Section 4,

Section 5 presents the framework of the proposed DA algorithm and its main ingredients. In Section

6, we conduct extensive computational experiments to demonstrate the performance of the proposed

DA algorithm. This paper ends in Section 7 with a summary of the results and contributions of the

paper, closing with discussions of future extensions.

2. Literature Review

The E-ADARP is a combination of the typical DARP and the E-VRP. However, it is distinct from

these two contexts as it applies a weighted sum objective function that minimizes total travel time
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and total excess user ride time. This section briefly reviews the literature related to DARPs with

EVs and E-VRPs. We emphasize works that apply heuristic and metaheuristic methods. We then

review DARP-related articles that specifically focus on user ride time minimization.

2.1. Related literature of DARPs with EVs

Masmoudi et al. (2018) is the first work that introduces DARP with EVs. In their work, EVs are

recharged through battery swapping and assumed to have a constant recharging time. The authors

use a realistic energy consumption model to formulate the problem and introduce three enhanced

Evolutionary VNS (EVO-VNS) algorithm variants, which can solve instances with up to three

vehicles and 18 requests. Bongiovanni, Kaspi, and Geroliminis (2019) considers EAVs in the DARP

and introduces the E-ADARP. Partial recharging is allowed when vehicles visit recharging stations,

and the authors impose a minimum battery level constraint for the vehicle’s State of Charge (SoC)

at the destination depot. The minimum battery level is formulated as γQ, where γ is the ratio of

the minimum battery level to total battery capacity, and Q is the total battery capacity. Three

different γ values are analyzed, i.e., γ ∈ {0.1,0.4,0.7}, meaning that 10%, 40%, and 70% of the total

battery capacity must be maintained at the destination depot. Solving the problem becomes more

difficult when γ increases. The authors formulate the problem into a three-index and a two-index

model and introduce new valid inequalities in a Branch-and-Cut (B&C) algorithm. In the case

of γ = 0.1,0.4, the proposed B&C algorithm obtains optimal solutions for 42 out of 56 instances.

However, in the case of γ = 0.7, the B&C algorithm solves optimally 10 out of 28 instances, and 9

instances cannot be solved feasibly, even within two hours. The largest instance that can be solved

optimally by the B&C algorithm contains 5 vehicles and 40 requests. No heuristic or metaheuristic

algorithm currently exists for the E-ADARP.

2.2. Related literature of E-VRPs

Extensive works have been conducted in the field of E-VRPs, e.g., Erdoğan and Miller-Hooks (2012),

Schneider, Stenger, and Goeke (2014), Goeke and Schneider (2015), Hiermann et al. (2016, 2019).

Among them, Erdoğan and Miller-Hooks (2012) is the first to propose a Green VRP (G-VRP)

using alternative fuel vehicles. These vehicles are allowed to visit a set of recharging stations during

vehicle trips. The authors adapt two constructive heuristics to obtain feasible solutions and they

further enhance these heuristics by applying local search. However, the proposed model does not

consider capacity restrictions and time window constraints. Schneider, Stenger, and Goeke (2014)

propose a more comprehensive model named the Electric Vehicle Routing Problem with Time

Windows (E-VRPTW). They extend the work of Erdoğan and Miller-Hooks (2012) by using electric

vehicles and considering limited vehicle capacity and specified customer time windows. They apply

a Variable Neighborhood Search (VNS) algorithm hybridized by Tabu Search in local search to
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address E-VRPTW. The recharging stations are inserted or removed by a specific operator and the

recharged energy is assumed to be linear with the recharging time. They apply a full recharging

policy on each visit to recharging station. All the vehicles are assumed to be identical in terms

of vehicle and battery capacity. Goeke and Schneider (2015) extend the homogeneous E-VRPTW

by considering a mixed fleet of electric and conventional vehicles. A realistic energy consumption

model that integrates speed, load, and road gradient is employed. To address the problem, they

propose an Adaptive Large Neighborhood Search algorithm (ALNS) using a surrogate function

to evaluate violations efficiently. Hiermann et al. (2016) extend the work of Goeke and Schneider

(2015) by taking into account the heterogeneous aspect (i.e., fleet composition). They solve the

problem by ALNS and determine the positions of recharging stations via a labeling algorithm.

The recharging policy considered is also full recharging with a constant recharging rate. Hiermann

et al. (2019) extend their previous study by considering partial recharging for a mixed fleet of

conventional, plug-in hybrid, and electric vehicles. The engine mode selection for plug-in hybrid

vehicles is considered as a decision variable in their study. A layered optimization algorithm is

presented. This algorithm combines labeling techniques and a greedy route evaluation policy to

calculate the amount of energy required to be charged and determine the engine mode and energy

types. This algorithm is finally hybridized with a set partitioning problem to generate better

solutions from obtained routes. More recently, Lam, Desaulniers, and Stuckey (2022) investigate a

more practical case of E-VRPTW in which the availability of chargers at the recharging stations

are considered. They propose a B&C&P algorithm which is capable of solving instances with up to

100 customers.

2.3. Minimizing total or excess user ride time in DARPs

There are several examples where a service-quality oriented objective is considered in the context

of DARP (e.g., Parragh et al. (2009), Parragh (2011), Paquette et al. (2013), Molenbruch et al.

(2017), Bongiovanni, Geroliminis, and Kaspi (2022)). Among them, only three articles consider

total user ride time/total excess user ride time as the second objective. In the work of Parragh et al.

(2009), a two-phase heuristic method is developed. A set of non-dominated solutions is constructed,

minimizing a weighted sum of total distance traveled and mean user ride time under different

weight combinations. In the route evaluation, the authors point out that the “eight-step” method of

Cordeau and Laporte (2003) does not aim to minimize the total user ride time. An increase in user

ride time may happen when delaying the service start time at destination nodes. Therefore, they

improve the original scheme of the “eight-step” method by adapting the computation of forward

time slack to avoid any increase in excess user ride time for requests served on a route. The resulting

scheme is more restrictive in terms of feasibility and may lead to incorrect infeasibility declaration.
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This drawback is tackled in the scheduling heuristic proposed by Molenbruch et al. (2017). The

heuristic starts by constructing a schedule (which may be infeasible) by setting the excess ride

time of each request to its lower bound. Then, it gradually removes the infeasibility by shifting the

service start time at some nodes while minimizing excess user ride time. However, the developed

scheduling procedures in Parragh et al. (2009) and Molenbruch et al. (2017) are not proven optimal

to minimize user ride time for a given route. Bongiovanni, Geroliminis, and Kaspi (2022) first

proposes an exact scheduling procedure that minimizes the excess user ride time for a path without

charging stations. The time complexity of this procedure is O(M 2) for a sequence of length M .

Then, the authors extend the proposed scheduling procedure in the E-ADARP by integrating a

battery management heuristic. However, the obtained schedules for an E-ADARP route are no

longer exact as the excess-time optimal schedules may not be battery-feasible. To the best of our

knowledge, no work in the literature can handle excess user ride time minimization exactly in the

E-ADARP.

2.4. Conclusion and proposed solution methodology

From our review, we conclude that the effect of electric vehicles on the DARP has rarely been

investigated in the previous literature. Bongiovanni, Kaspi, and Geroliminis (2019) is the only work

that conducts a comprehensive study to optimize the DARP with EVs. However, the proposed

B&C algorithm requires important run-times and has difficulties providing high-quality solutions

when solving medium- to large-sized instances, which limits its application in practice. The above

limitation of Bongiovanni, Kaspi, and Geroliminis (2019) motivates us to propose an efficient

metaheuristic algorithm that can provide high-quality solutions for E-ADARP instances within

reasonable computational time. The efficiency of a metaheuristic largely depends on its neighborhood

search mechanisms, which perform a large number of evaluations. In the case of the DARP, these are

route evaluations and cost computations. These two tasks are more complicated in the E-ADARP

than in the DARP, as we allow partial recharging and minimize total excess user ride time for a

given route. Existing scheduling procedures only obtain the approximation of minimum excess user

ride time, which may deteriorate the solution quality and mislead search direction. Moreover, these

procedures are time-consuming when applied in a metaheuristic as they are usually of quadratic time

complexity and may introduce numerous repeated computations. Lastly, the battery constraints

and a partial recharging policy increase the complexity of route evaluation in the E-ADARP.

To overcome these issues, we propose an exact method of linear time complexity to compute the

cost and evaluate the feasibility of an E-ADARP route based on battery-restricted fragments in

Section 4. Repeated computations are avoided via fragment enumeration in the preprocessing phase

(Section 5.4). These methods pave the way for an efficient DA algorithm (see Section 5) and yield

high-quality solutions for all instances (see Section 6).
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3. The E-ADARP Description

In this section, we present the mathematical notations of the E-ADARP that are used throughout

the paper. Then, the objective function and the constraints of the E-ADARP are introduced. Finally,

we discuss the practical interests of extending the original problem to allow unlimited visits to

recharging stations.

3.1. Notation and problem statement

The problem is defined on a complete directed graph G= (V,A), where V represents the set of

vertices and A is the set of arcs, i.e., A= {(i, j) : i, j ∈ V, i 6= j}. V can be further partitioned into

several subsets, i.e., V =N ∪S ∪O∪F , where N represents the set of all customers, S is the set of

recharging stations, O and F denote the set of origin depots and destination depots, respectively.

The set of all pickup vertices is denoted as P = {1, · · · , i, · · · , n} and the set of all drop-off vertices

is denoted as D = {n+ 1, · · · , n+ i, · · · ,2n}. The union of P and D is N , i.e., N = P ∪D. Each

customer request is a pair (i, n+ i) for i ∈ P and the maximum ride time for users associated

with request i is assumed to be mi. A time window is defined on each node i ∈ V , denoted as

[ei, li], in which ei and li represent the earliest and latest time at which vehicle starts its service,

respectively. A load qi and a service duration si is also associated for each node i∈ V . For pickup

node i∈ P , qi is positive. For the corresponding drop-off node n+ i, we have qn+i =−qi. For other

nodes j ∈O∪F ∪S, qj and sj are equal to zero. In this article, all the customer requests are known

at the beginning of the planning horizon Tp and we tackle the static E-ADARP.

For each vehicle k ∈K, it must start with an origin depot o∈O and end with a destination depot

f ∈ F . In this study, the number of origin depots is equal to the number of vehicles, i.e., |O|= |K|.

However, the set of destination depots can be larger than the set of origin depots, namely, |F |> |O|,

which means a vehicle can select a depot from F at the end of the route. An E-ADARP route is

defined as a path in graph G passing through the origin and the destination depot that satisfies

pairing and precedence, load, battery, time window, and maximum user ride time constraints. The

E-ADARP consists in designing K routes, one for each vehicle, so that all customer nodes are

visited exactly once, each recharging station and destination depot is visited at most once, and the

weighted-sum objective function (presented in Section 3.2) is minimized. Vehicles are assumed to

be heterogeneous in terms of their maximum vehicle capacities (denoted as Ck) and homogeneous

in terms of battery capacities (denoted as Q).

The travel time on each arc (i, j)∈A is denoted as ti,j and the battery consumption is denoted

as bi,j. We assume that bi,j is proportional to ti,j and we have bi,j = βti,j, with β being the

energy discharging rate. When a vehicle recharges at a recharging station, the energy recharged is

proportional to the time spent at the facilities. The recharging rate is denoted as α. To avoid the
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numerical problem when calculating time and energy, we define hi,j = bi,j/α to convert the battery

consumption bi,j on arc (i, j) to the time needed for recharging this amount of energy. Similarly, we

can also convert the current energy level to the time needed to recharge to this energy level. Let

H denote the time required to recharge from zero to full battery capacity Q. Partial recharging

is allowed while a vehicle visits recharging stations, and a minimum battery level γQ must be

respected at destination depots, where γ ∈ {0.1,0.4,0.7}. The triangle inequality is assumed to hold

for travel times and battery consumption.

3.2. Objective function of the E-ADARP

A weighted sum objective is considered in this paper, which includes the total travel time for all the

vehicles k ∈K and the total excess user ride time for all the customer requests i∈ P . Equation (1)

presents the formulation for the objective function. The merit of considering total excess user ride

time in the objective function is that it may help to improve the service quality by minimizing the

total excess user ride time with no increase in the first objective if we consider the minimization in

a strict lexicographical way. The objective function is:

minw1

∑
k∈K

∑
i,j∈V

ti,jx
k
i,j +w2

∑
i∈P

Ri (1)

where xk
i,j is a binary decision variable which denotes whether vehicle k travels from node i to j.

Ri denotes the excess user ride time of request i∈ P and is formulated as the difference between

the actual ride time and direct travel time from i to n+ i. w1 and w2 are the weight factors for

these two objectives and we follow the settings in Bongiovanni, Kaspi, and Geroliminis (2019):

w1 = 0.75,w2 = 0.25.

We report in Table 1 the notations and definitions for sets and parameters.

3.3. Constraints of the E-ADARP

The E-ADARP consists of the following features that are different from the typical DARPs:

1) Battery limitation and minimum battery level restriction, which introduce the detour to

recharging stations;

2) We allow partial recharging at recharging stations, and the recharging time must be determined;

3) Vehicle locates at different origin depots and selects the destination depot from a set of

destination depots;

4) Maximum route duration constraints are removed due to the autonomy of vehicles.

A solution of the E-ADARP is a set of |K| routes and it is called “feasible” when all the following

constraints are satisfied:

1. Every route starts from an origin depot and ends at a destination depot;
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Table 1 The E-ADARP problem sets, parameters notations and descriptions

Sets Definitions
N = {1, · · · , n,n+ 1, · · · ,2n} Set of pickup and drop-off nodes

P = {1, · · · , i, · · · , n} Set of pickup nodes
D= {n+ 1, · · · , n+ i, · · · ,2n} Set of drop-off nodes

K = {1, · · · , k} Set of available vehicles
O= {o1, o2, · · · , ok} Set of origin depots
F = {f1, f2, · · · , fh} Set of all available destination depots (supposing the total number is h)
S = {s1, s2, · · · , sg} Set of recharging stations (supposing the total number is g)
V =N ∪S ∪O∪F Set of all nodes

Parameters Definitions
ti,j Travel time from location i∈ V to location j ∈ V
bi,j Battery consumption from location i∈ V to location j ∈ V
hi,j The time needed for recharging bi,j, i, j ∈ V
ei Earliest time at which service can begin at i∈ V
li Latest time at which service can begin at i∈ V
si Service duration at i∈ V
qi Change in load at i∈N
mi Maximum user ride time for request i∈ P
Ck The vehicle capacity of vehicle k
Q The battery capacity
α The recharged energy per time unit
β The discharged energy per time unit
Tp Planning horizon

γ ∈ {0.1,0.4,0.7} The ratio of minimum battery level at destination depot to Q
w= {0.75,0.25} The weight factor for total travel time and total excess user ride time

2. For each request, its corresponding pickup, and drop-off node belong to the same route, and

the pickup node is visited before its drop-off node;

3. User nodes and origin depots are visited exactly once, while each destination depot is visited

at most once;

4. The maximum vehicle capacity must be respected at each node;

5. Each node is visited within its time window [ei, li] where i∈ V . Vehicle can arrive earlier than

ei but cannot arrive later than li. In the first case, waiting time occurs at i.

6. The maximum user ride time is not exceeded for any of the users;

7. The battery level at the destination depot must be at least equal to the minimal battery level;

8. The battery levels at any nodes of a route can not exceed the battery capacity and cannot be

negative;

9. The recharging station can only be visited when there is no passenger on board;

10. Each recharging station can only be visited at most once by all vehicles.

Figure 1 presents a solution of an E-ADARP instance that includes 4 vehicles and 16 requests.

Each request contains the pickup node (denoted as i+) and the corresponding drop-off node i−.

If minimum battery level constraints are not satisfied, vehicles must make detours to recharging

stations before returning to destination depots. Each vehicle starts from a different origin depot
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Figure 1 A solution of an E-ADARP instance

and returns to a different destination depot. Each recharging station is visited at most once, and

no passenger is onboard when recharging.

3.4. Multiple visits at recharging stations?

Each E-ADARP instance of Bongiovanni, Kaspi, and Geroliminis (2019) only contains a few

recharging stations. In Bongiovanni, Kaspi, and Geroliminis (2019), they first restrict the visit to

recharging station to at-most-one visit. Then, they investigate the effect of allowing multiple visits

to recharging stations by replicating set S. Therefore, the number of visits to a recharging station

must be predefined in their case, which seems unrealistic in practice. In our work, we remove this

constraint and allow unlimited visits to the recharging stations in Section 6.4. While having maximal

time windows and a minimal energy restriction at destination depots, visiting recharging stations

more frequently increases solution cost and the risk of violating time window constraints. We also

conduct a sensitivity analysis on the maximum number of charging visits per station (denoted as

nas), and we perform our DA algorithm under different settings of nas (nas = {1,2,3,∞}).

4. Excess User Ride Time Optimization

The idea of our excess user ride time optimization method is as follows. We first introduce a

fragment-based representation of paths, which extends the one proposed in Rist and Forbes (2021)

by additionally considering battery constraints for ensuring overall route feasibility in terms of

energy consumption. Based on this representation of paths, each E-ADARP route can be represented
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by a series of battery-restricted fragments (see Definition 1). Then, we prove in Theorem 1 that the

minimum total excess user ride time for a feasible route can be determined by summing the minimum

excess user ride time of each battery-restricted fragment. Following this idea, we enumerate all

the feasible battery-restricted fragments and calculate their minimum excess user ride times in the

preprocessing phase (shown in Section 5.4). With all the feasible fragments obtained as well as their

minimum excess user ride time, we only need to check the feasibility of the route, which is realized

via an exact route evaluation scheme of linear time complexity.

4.1. Representation of paths

The most important characteristic of the E-ADARP is the incorporation of total excess user ride

time in the objective function as well as the maximum user ride time in the constraints. Usually, the

maximum user ride time constraints can be tackled by calculating forward time slack and delaying

the service start time at some nodes (e.g., Kirchler and Calvo (2013), Parragh et al. (2009)). To

minimize the total excess user ride time, we declare one important point: total excess user ride time

can only be minimized when vehicle finishes its delivery (i.e., no open request on the path). We

then introduce battery-restricted fragment:

Definition 1 (Battery-restricted fragment). Assuming that F = (i1, i2, · · · , ik) is a

sequence of pickup and drop-off nodes, where the vehicle arrives empty at i1 and leaves empty at ik

and has passenger(s) on board at other nodes. Then, we call F a battery-restricted fragment if

there exists a feasible route of the form:

(o, si1 , · · · , siv ,
F︷ ︸︸ ︷

i1, i2, · · · , ik, siv+1
, · · · , sim , f) (2)

where si1 , · · · , siv , siv+1
, · · · , sim(v,m> 0) are recharging stations, o∈O, and f ∈ F .

It should be noted that, if no recharging station is required in the route of Definition 1, i.e.,

v = m = 0 in Equation (2), the battery-restricted fragment is equivalent to the one defined in

Rist and Forbes (2021). Figure 2 presents an example of a feasible route which consists of two

battery-restricted fragments, i.e., F1 = {1+,2+,1−,2−} and F2 = {3+,3−}. Note that F1 ∪F2 is

not a battery-restricted fragment, as the vehicle becomes empty at intermediate node 2- and 3+.

Based on this definition, each E-ADARP route can be regarded as the concatenation of several

battery-restricted fragments, recharging stations (if required), origin depot, and destination depot.

Clearly, on each battery-restricted fragment (hereinafter referred to “fragment”), the minimum

excess user ride time can be exactly calculated. We prove in the next section (Theorem 1) that the

minimum excess user ride time of route R can be calculated by summing the minimum excess user

ride time on each fragment Fi ⊆R. Then, we only focus on optimizing excess user ride time for

each fragment.
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Figure 2 Example of battery-restricted fragments

4.2. Excess user ride time optimization for a fragment

Let EUmin(R) and EUmin(F) be the minimum excess user ride over route R and fragment F ,

respectively. We have the following Theorem.

Theorem 1. If R is a feasible route and F1,F2, · · · ,Fn are all the fragments on R, then we

have EUmin(R) =EUmin(F1) +EUmin(F2) + · · ·+EUmin(Fn)

I n this proof, a schedule is called “optimal” if it has minimal excess user ride time.

Assuming that T = [· · · , Tv, · · · ]v∈R is an optimal schedule of route R, Tv is the service start time

at node v, and the arrival time of node v is: arrv = Tv−1 + tv−1,v + sv−1. To prove the theorem, it is

enough to show that for each fragment Fi ⊆R, the restricted schedule T |Fi = [· · · , Tv, · · · ]v∈Fi over

Fi is also an optimal schedule for Fi. To simplify the notation, we denote T |Fi as Ti. Our proof

consists of two different cases :

1. arrv = Tv for all v ∈Fi. In this case, vehicle starts service at its arrival on each node in Fi.

Clearly, Ti is also an optimal schedule over Fi as the waiting time on Fi is zero, proof is finished;

2. arrv <Tv for some v ∈Fi. In this case, waiting time generated at some nodes. Let v1 ∈Fi be

the first node such that arrv1 <Tv1 and v2 ∈Fi be the last node such that arrv2 <Tv2 . Then we

derive the following properties of Ti:

(i) Tv0 = lv0 for some v0 <
1v1, v0 ∈Fi.

If not, we have ∆1 = min
{
Tv1 − arrv1 ,{lv − Tv}v<v1,v∈Fi

}
> 0. We can obtain a new feasible

schedule T1 by delaying the service start time of node v < v1, v ∈Fi to T ′v = Tv + ∆1. The the excess

user ride time of T1 is at least ∆1 smaller than T . It contradicts to our assumption that T is an

optimal schedule;

(ii) Tv3 = ev3 for some v3 > v2, v3 ∈Fi.

If not, we have ∆2 = min
{
Tv2 − arrv2 ,{Tv − ev}v>v2,v∈Fi

}
> 0. We can obtain a new feasible

schedule T2 by moving forward the service start time of node v> v2, k ∈Fi to T ′′v = Tv −∆2. The

the excess user ride time of T2 is at least ∆2 smaller than T . It contradicts to our assumption that

T is an optimal schedule;

1 we say v0 < v1 if v0 is a node before v1 in the route and v0 6= v1.
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Based on (i) and (ii), assuming that vs, ve are the first and the last node of Fi, we derive that all

the feasible schedules for Fi must satisfy the following two points:

(iii) Since we have arrv = Tv for all v < v0 < v1 and Tv0 = lv0 , any feasible schedules over Fi could

not begin service at vs later than Tvs (Tvs is the latest possible service start time at vs). Otherwise,

it will surpass the latest time window lv0 at node v0;

(iv) Since we have arrv = Tv for all v2 6 v3 < v and Tv3 = ev3 , any feasible schedules over Fi could

not arrive at ve earlier than arrve .

Assuming that T ∗i = [· · · , T ∗v , · · · ]v∈Fi is an optimal schedule of Fi, and the arrival time at v is

arr∗v = T ∗v−1 + tv−1,v + sv−1. Now, we prove that the excess user ride time of Ti is the same as T ∗i
using the above properties. Note that we are still under the condition that arrv < Tv for some

v ∈Fi.

According to (iii) and (iv), we have T ∗vs 6 Tvs , arr
∗
ve
> arrve for an optimal schedule T ∗i over Fi.

Clearly, T ∗i satisfies EUmin(T ∗i ) ≤ EUmin(Ti). Next, we will prove that EUmin(T ∗i ) = EUmin(Ti).
Then, we prove Ti is an optimal schedule over Fi. Our prove contains two cases:

(a) If arr∗v = T ∗v for all v ∈Fi: As we have T ∗vs 6 Tvs , then arr∗ve 6 arrve . Therefore, we derive

that arr∗ve = arrve , T
∗
vs

= Tvs . As we assume in the condition that arr∗v = T ∗v for all v ∈ Fi, we

must have Tv = T ∗v for all k ∈Fi. It contradicts to our assumptions that arrv <Tv for some v ∈Fi.

Therefore, this case will not happen;

(b) If arr∗v <T
∗
v for some v ∈Fi: Then we can prove the same result as in (i) (ii) and (iii) for

T ∗v in the same manner. Then Tvs 6 T ∗vs , arrve > arr∗ve and thus we derive Tvs = T ∗vs , arrve = arr∗ve .

Then we have EUmin(T ∗i ) =EUmin(Ti). Otherwise, if EUmin(T ∗i )<EUmin(Ti), we can obtain a new

feasible schedule T ′ over R from T by replacing Ti to T ∗i , and T ′ has smaller excess user ride time

than T , which is a contradiction!

Based on Theorem 1, we convert the optimization of total excess user ride time for route R to

the optimization of excess user ride time on its fragments F ⊆R. Clearly, we can calculate the

minimum excess user ride time directly if no waiting time is generated on a fragment. In the case of

waiting time generated, one can compute the minimum excess user ride time if fragment F only

contains a direct trip from one pickup node to the corresponding drop-off node. In the case that

F contains two or more requests and waiting time generates for some i∈F , the minimization of

excess user ride time for F is equivalent to assign the right amount of waiting time at all nodes

of F . To obtain the minimum excess user ride time, we resort to solving a Linear Program (LP)

presented as follows:

Let PF denote the set of requests served on a fragment F :

min
∑
i∈PF

Ri (3)
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s.t.

Ti + si + ti,j 6 Tj, ∀i∈F , idxj = idxi + 1, idxi 6= |F| (4)

Tn+i− (Ti + si)6mi, ∀i∈ PF (5)

Tn+i−Ti− si− ti,n+i 6Ri, ∀i∈ PF (6)

ei 6 Ti 6 li, ∀i∈F (7)

Ri > 0, ∀i∈ PF (8)

where Ti denotes the service start time at node i, idxi is the index of node i on the fragment.

The objective function is to minimize the total excess user ride time of F . Constraints (4) are time

window constraints. Constraint (5) and constraints (6) are user ride time constraints.

Note that we ensure the maximum user ride time and vehicle capacity constraints when we

generate fragments (will be explained in Section 5.4). If a route R contains an infeasible fragment,

it is discarded directly without further evaluation.

4.3. Exact route evaluation scheme of linear time complexity

One challenge of the E-ADARP is tackling the trade-off between recharging time and time window

constraints. A longer recharging time will extend the driving range and is beneficial to meet the

energy restriction at the destination depot. However, the vehicle risks violating the time window

constraints for the succeeding nodes. These two aspects interact, and it is hard to check the feasibility

of a generated route (denoted as R). We construct an exact route evaluation scheme of linear time

complexity based on the forward labeling algorithm of Desaulniers et al. (2016). To the best of our

knowledge, it is the first time an exact route evaluation scheme is developed to handle the DARP

with EVs.

Given a routeR, we associate each node i∈R with a label Li := {(T rchs
i )s∈S, T

tMin
i , T tMax

i , T rtMax
i }

including four resource attributes. We denote Pi as the partial path from the first node of R until

node i. The definition of each resource attribute is shown as follows:

1. T rchs
i : The number of times recharging station s∈ S is visited along Pi;

2. T tMin
i : The earliest service start time at vertex i assuming that, if a recharging station is visited

prior to i along Pi, a minimum recharge (ensuring the battery feasibility up to i) is performed;
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3. T tMax
i : The earliest service start time at vertex i assuming that, if a recharging station is

visited prior to i along Pi, a maximum recharge (ensuring the time-window feasibility up to i) is

performed;

4. T rtMax
i : In order to propagate the information along the path, we make the artificial assumption

that vehicles can be recharged at all vertices. But in reality, the vehicle will never go to the

recharging station when passengers are on board. With this assumption, T rtMax
i denotes the

maximum recharging time required to fully recharge at vertex i if a recharging station is visited

prior to i along Pi, a minimum recharge (ensuring the battery feasibility up to i) is performed;

The initial label is defined as {(
|S| times︷ ︸︸ ︷
0, · · · ,0),0,0,0}. We compute the succeeding label Lj from the

previous label Li by Resource Extension Functions (REFs):

T rchs
j = T rchs

i +

{
1, if j = s

0, otherwise
(9)

T tMin
j =

{
max{ej, T tMin

i + ti,j + si}, if T rch
i = ∅

max{ej, T tMin
i + ti,j + si}+Zi,j, otherwise

(10)

T tMax
j =

{
min{lj,max{ej, T tMin

i +T rtMax
i + ti,j + si}}, if i∈ S

min{lj,max{ej, T tMax
i + ti,j + si}}, otherwise

(11)

T rtMax
j =

{
T rtMax
i +hi,j, if T rch

i = ∅
min{H,max{0, T rtMax

i −Si,j}+hi,j}, otherwise
(12)

where:

Si,j(T
tMin
i , T tMax

i , T rtMax
i ) =

{
max{0,min{ej −T tMin

i − ti,j − si, T rtMax
i }}, if i∈ S

max{0,min{ej −T tMin
i − ti,j − si, T tMax

i −T tMin
i }}, otherwise

(13)

Zi,j(T
tMin
i , T tMax

i , T rtMax
i ) = max{0,max{0, T rtMax

i −Si,j(T
tMin
i , T tMax

i , T rtMax
i )}+hi,j −H} (14)

The Si,j is the slack time between the earliest time window ej at j and the earliest arrival time to

j. If i is a recharging station, Si,j is the maximum amount of recharging time that can be performed

at i, namely T tMax
i −T tMin

i . Zi,j is the minimum recharging time required to keep battery feasibility

accounting for the available slack that the previous recharging station.

According to Desaulniers et al. (2016), we have following proposition:
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Proposition 1. The route R is feasible if and only of ∀j ∈R, the label Lj satisfies:

T tMin
j 6 lj, T tMin

j 6 T tMax
j , T rchs

j 6 1, T rtMax
j 6

{
(1− γ)H, j ∈ F
H, otherwise

Clearly, the feasibility checking algorithm is of linear time complexity with respect to the length

of the input route. After checking the feasibility, the total cost of route R is obtained by summing

the travel time of arcs and the excess user ride time of fragments, recalling Theorem 1.

5. Deterministic Annealing Algorithm for the E-ADARP

Based on Section 4.2 and Section 4.3, we establish a DA algorithm that ensures minimal excess

user ride time for a generated solution and integrates an exact route evaluation. Different types of

local search operators are embedded in the proposed DA algorithm to solve the E-ADARP.

DA was first introduced by Dueck and Scheuer (1990) as a variant of simulated annealing. Recent

research shows that DA can obtain near-optimal or optimal solutions for a series of vehicle routing

problems (Bräysy et al. 2008, Braekers, Caris, and Janssens 2014). To the best of our knowledge,

the only paper that implements DA to solve the DARP is that of Braekers, Caris, and Janssens

(2014). Applying DA algorithm provides several advantages, and the most important one is its easy

parameter tuning process, as the DA algorithm mainly relies on a single parameter. In addition, the

DA algorithm is proved to be very efficient in solving the typical DARP. However, Braekers, Caris,

and Janssens (2014) considers a single-objective case in the DARP. To solve the E-ADARP, we

adapt the DA algorithm to accommodate problem-specific features of the E-ADARP by integrating

the proposed excess user ride time optimization approach.

The framework for the proposed DA algorithm is depicted in Algorithm 1. The algorithm input

is an initial solution xinit constructed by a parallel insertion heuristic (presented in Section 5.1)

and the initial settings of DA-related parameters. These parameters include: (i) a maximal number

of iterations Niter; (ii) the initial and maximal temperature Θmax; (iii) restart parameter nimp. It

should be mentioned that the initial solution xinit is feasible for the E-ADARP constraints, except

that only a subset of requests may be served. The solution cost of the initial solution is denoted

as c(x), and the number of requests served in the initial solution is updated to Nreq so that a

lexicographic optimization considers cost comparison in c(x) values only if it does not worsen the

number of requests served. A list of indexed operators opt1, . . . , optz are operated sequentially in

each DA iteration. Our algorithm introduces seven local search operators (presented in Section 5.3),

namely z = 7.

There are two steps in the algorithm: local search and threshold update. At the beginning of the

algorithm, the threshold value T is set to Θmax, and the best solution xb and current solution x′

are initialized to an initial solution xinit. During the local search process, local search operators are
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Algorithm 1 DA Algorithm for the E-ADARP

Input: Initial solution xinit, initial values of Niter, Θmax, and nimp. T is set to Θmax

Output: Best solution xb found by our algorithm;

1: while iter6Niter do

2: iimp← iimp + 1;

3: for j = 1→ z− 1 do

4: Apply local search operator optj on x to obtain neighborhood solution x′;

5: if c(x′)< c(x) +T then

6: x← x′;

7: end if

8: end for

9: if Nreq <n then

10: Apply optz operator to add request to generate neighborhood solution x′;

11: Update the number of requests served in x′ as N ′req;

12: end if

13: if (c(x′)< c(xb) and N ′req =Nreq) or N ′req >Nreq then

14: xb← x′

15: iimp← 0

16: else

17: T ← T −Θmax/Θred

18: if T < 0 then

19: r← random number between 0 and 1

20: T ← r×Θmax

21: if iimp >nimp then

22: x← xb

23: iimp← 0

24: end if

25: end if

26: end if

27: iter← iter+ 1

28: end while

29: return xb

applied to alter the current solution. In the next step, the threshold value is updated and restarted

when the value is negative.

In the local search process, we first remove the existing recharging stations on the current

route and then generate a random neighborhood solution x′ from current solution x by applying
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different operators. In the case of neighborhood solution x′ satisfies c(x′)< c(x) +T but violates

battery constraint, we call an insertion algorithm (presented in Section 5.2) to repair x′ by inserting

recharging stations at proper places. Solution x′ is accepted to become the new current solution

when the number of assigned requests increases or the total cost is less than that of the current

solution plus the threshold value T .

In the threshold update process, when no new global best solution is found, T is reduced by

Θmax/Θred, where Θred is a predefined parameter. To ensure that T is always non-negative, we

reset T to r×Θmax, with r a random number generated between zero and one whenever T becomes

negative. The search is restarted from xb when no improvement is found in nimp iterations and T

becomes negative.

5.1. Parallel insertion heuristic

While in most of the literature, the initial solution is often generated randomly, we construct our

initial solution by a parallel insertion algorithm considering the time window and spatial closeness.

First, we sort all the requests (i, n+ i), i∈ P in increasing order based on ei. Then, we randomly

initialize k routes {R1, · · · ,Rk} (0<k6K with K being the number of total vehicles). Each of the

k first requests in the sorted request list are assigned randomly to different routes. These requests

are deleted from the list of requests.

Then, we sort the route list {R1, · · · ,Rk} in increasing order with regards to the distance between

the last node of the analyzed route and the pickup node of the first request remaining in the request

list. The first request is assigned to the first route in the route list. To insert the selected request,

we enumerate all the possible insertion positions and insert the corresponding pickup node and

drop-off node in a feasible way on this route. If this request cannot be inserted feasibly, then we

move to the second route. This process is repeated until this request is inserted or all the routes are

analyzed. If this request cannot be inserted in any of the existing routes, we move to the second

request in the list and repeat the above process. After this process, if some requests are still not

assigned, a new route is activated, and the above process will be repeated. The algorithm terminates

when the request list is empty or the existing requests in the list cannot be inserted into any of

routes in a feasible way.

5.2. Recharging station insertion for a given route

If a route R∈ x′ only violates the battery constraints and neighborhood solution x′ has c(x′)<

c(x) +T , we insert recharging station to repair R. For each possible insertion position, we select a

random recharging station from the set of available stations to insert. If a feasible route is generated

after insertion, we add it to the list of feasible routes. Otherwise, we store this route in a candidate

route list. Suppose the route is still infeasible after trying all the possible insertion positions. In
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that case, we move to the next iteration to insert another recharging station for all the possible

positions of all the candidate routes. The algorithm returns the repaired minimum-cost feasible

route if R can be repaired or an empty set otherwise. For acceleration, we only consider repairing

the route containing less than Nrch recharging stations and we take Nrch = d|S|/2e.

5.3. Local search

We design seven operators (i.e., opt1, · · · , opt7 in Algorithm 1) to improve the initial solution

generated from the constructive heuristic. Among them, three are intra-route operators (i.e., ex-

pickup, ex-dropoff, and ex-2-neighbor), three are inter-route operators (i.e., 2-opt, relocate, and

exchange). The last operator named add-request is applied in each iteration on neighborhood

solution x′, which is generated after applying opt1, · · · , opt5, if there exists un-served requests.

5.3.1. Intra-route operators Ex-pickup operator swaps the positions of two consecutive

nodes (i+, j+), where node i+ is a pick-up node and node j+ is not the corresponding drop-off

node. An example is shown in Figure 3(a). In each iteration, one pick-up node is selected randomly.

If the successor of this pick-up node does not correspond to its drop-off node, then the two positions

are exchanged.

Ex-dropoff operator creates a neighborhood solution by swapping the positions of two consecutive

nodes (j+, i−), where point i− is a drop-off node and point j+ is not the corresponding pick-up

node. Figure 3(b) shows an example of how ex-dropoff works. In each iteration, one drop-off node

is selected randomly, if the precedent node of this drop-off node does not correspond to its pick-up

node, then the two positions are exchanged.

There is another situation shown in Figure 3(c), where the successor of pick-up node i+ is its

drop-off i−, and the predecessor of drop-off node j− is its corresponding pick-up j+, but we can

still exchange i- and j+ to create a new neighborhood solution. This operation is realized by

ex-2-neighbor operator.

5.3.2. Inter-route operators Two-opt operator selects two random routes and splits each

route into two parts by a randomly selected zero-split node i such that i∈D∪S. Then, the first

part of the first route is connected with the second part of the second route and the first part of the

second route is connected with the second part of the first route. Note that 2-opt is able to realize

the exchange of several requests at one iteration. Figure 4 is an example of how 2-opt operator

works.

Relocate operator randomly removes one request from a random route and re-inserts the request

at the best position of another route. The best position means the position that brings the least

increase on solution cost after inserting the selected request. A simple example is shown in Figure
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(a) Ex-pickup operator example. (b) Ex-dropoff operator example.

(c) Ex-2-neighbor operator example.

Figure 3 Intra-route operators example

Figure 4 2-opt operator example

Figure 5 Relocate operator example

5, where a request (2+,2−) is removed from the first route and reinserted into the second route at

the best positions.
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Figure 6 Exchange operator example

Exchange operator (shown in Figure 6) swaps two random requests of two different routes. The

selected requests are re-inserted into the best position of the other route.

5.3.3. Insertion operator Add-request operator is applied in each iteration when there exists

uninserted requests for current solution x. This operator tries to insert one uninserted request into

a random route of x. When all the requests are served in x, this operator will no longer be applied.

Figure 7 describes how add-request adds uninserted request (h+, h−) on a route.

Figure 7 Add-request operator example

5.4. Implementation details

This section presents the preprocessing works and the algorithm implementation details for allowing

multiple/unlimited visits to recharging stations. The preprocessing works include: time window

tightening, arc elimination, and fragment enumeration.
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5.4.1. Preprocessing works We first introduce two traditional methods introduced by

Cordeau (2006), which includes time window tightening and arc elimination. Then, we introduce

fragments enumeration method.

Time window tightening is executed as:

• For i∈ P , ei is set to max{ei, en+i−mi− si} and li = min{ln+i− ti,n+i− si, li};

• For i∈D, en+i = max{en+i, ei + ti,n+i + si}, and ln+i = min{li +mi + si, ln+i}.

• For s ∈ S, the time window can be tightened by considering the travel time from the origin

depot to recharging station and from recharging station to the destination depot. The earliest time

to start service at charging station s is set to min{ej + tj,s}, ∀j ∈O; the latest time at charging

station s to start service at recharging station is max{Tp− ts,j},∀j ∈ F ;

• For i ∈ O ∪ F , the earliest time window ei is set to max{0,min{ej − ti,j}},∀j ∈ P , and li =

min{li,max{lj + si + tj,i}},∀j ∈D.

The arc elimination process follows the method of Cordeau (2006). We reduce the number of arcs

in the graph by removing arcs that will not lead to a feasible solution.

We further accelerate computations by enumerating all feasible fragments before computation,

as in Alyasiry, Forbes, and Bulmer (2019), Rist and Forbes (2021). This method simplifies route

evaluation and avoids recalculations as we only need to query information from each fragment. We

enumerate all the feasible fragments with depth-first search and calculate their minimum excess

user ride time. Then, the total excess user ride time of a route R can be calculated by summing

EUmin(F),F ⊆R, recalling Theorem 1.

To generate all feasible fragments, we start from each pickup node and extend it node by node

in a feasible way. To do so, we assume that the vehicle starts from each pickup node with a full

battery level. The maximum user ride time, vehicle capacity constraints are checked during the

extension process. For each node on a fragment, it must have a positive battery level.

Note that if a fragment contains less than two requests, we calculate the excess user ride time

directly. If a fragment contains two or more requests and has waiting time generated on some nodes,

we resort to a LP solver (Gurobi) to solve the LP model (Section 4.2). For each feasible fragment,

the obtained minimum excess user ride time value is recorded. In A, we conduct a preliminary test

and provide details for fragment enumeration on each instance. For all the instances, the fragment

enumeration can be fulfilled in a matter of seconds. In the computational experiments, we report

the CPU time which includes the computational time for performing all the preprocessing works in

Section 6.

5.4.2. Adapt DA algorithm to allow multiple visits to each recharging station We

extend the model of Bongiovanni, Kaspi, and Geroliminis (2019) to allow multiple visits to each
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recharging station in Section 6.4. In case of nas = 2,3, we replicate the recharging station set S to

allow at-most-two and at-most-three visits per station. All the ingredients remain the same in these

two cases. In the case of nas =∞, we remove the feasibility checking rule T rchs
j 6 1 to allow one

route visiting multiple times for a station. When selecting a recharging station to insert in a route,

we relax the set of available recharging stations to S. This operation allows inserting a recharging

station that has already been used in other routes.

6. Computational Experiments and Results

In this section, we conduct extensive numerical experiments and analyze the results. All algorithms

are coded in Julia 1.7.2 and are performed on a standard PC with an Intel Xeon Gold 6230 20C at

2.1GHz using a single thread. This section is organized as follows. The benchmark instances for

the computational experiments and abbreviations used in the Tables are introduced in the first

part. Then, a sensitivity analysis is conducted to find good parameter settings for the proposed DA

algorithm in Section 6.2. After ensuring the robustness of parameters and operators, we validate

the performance of the proposed algorithm on the standard E-ADARP instances compared to the

state-of-the-art results in Section 6.3. Section 6.4 investigates the effect of allowing multiple visits

to recharging stations.

6.1. Benchmark instances and abbreviations

This section presents the benchmark instances used to test the algorithm performance, their

characteristics, and the notations for the computational experiments.

6.1.1. Benchmark Instances Instances are named following the pattern xK-n-γ, where K is

the number of vehicles, n is the number of requests, and γ ∈ {0.1,0.4,0.7}. Three sets of instances

are considered in the experiments, which differentiate by x∈ {a,u, r}:
• “a” denotes the standard DARP benchmark instance set from Cordeau (2006) extended with

features of electric vehicle and recharging stations by Bongiovanni, Kaspi, and Geroliminis (2019).

To simplify, we call them type-a instances. For type-a instances, the number of vehicles is in the

range 26K 6 5, and the number of requests is in the range 166 n6 50.

• “u” denotes instances based on the ride-sharing data from Uber Technologies (instance name

starts with “u”) that were adopted from Bongiovanni, Kaspi, and Geroliminis (2019). To simplify,

we call them type-u instances. For type-u instances, the number of vehicles is in the range 2 6K 6 5,

and the number of requests is in the range 166 n6 50, as in type-a instances.

• “r” denotes larger DARP benchmark instances build from Ropke, Cordeau, and Laporte (2007)

using the same extension rules to have E-ADARP instances from DARP instances. To simplify, we

call them type-r instances. For type-r instances, the number of vehicles is in the range 56K 6 8

and the number of requests is in range 606 n6 96.
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Type-a instances are supplemented with recharging station ID, vehicle capacity, battery

capacity, the final state of charge requirement, recharging rates, and discharging rates. The

same operation is applied to type-r instances to generate a large-scale set of instances. The

vehicle capacity is set to three passengers, and the maximum user ride time is 30 min-

utes. Recharging rates and discharging rates are all set to 0.055KWh per minute accord-

ing to the design parameter of EAVs provided in: https://www.hevs.ch/media/document/1/

fiche-technique-navettes-autonomes.pdf. The efficient battery capacity is set to 14.85 KWh,

and the vehicle can approximately visit 20 nodes without recharging.

The ride-sharing dataset of Uber is obtained from the link: https://github.com/dima42/

uber-gps-analysis/tree/master/gpsdata. Type-u instances are created by extracting ori-

gin/destination locations from GPS logs in the city of San Francisco (CA, USA) and applying

Dijkstra’s shortest path algorithm to calculate the travel time matrix with a constant speed setting

(i.e., 35km/h). Recharging station positions can be obtained through Alternative Fueling Station

Locator from Alternative Fuels Data Center (AFDC). For a more detailed description of instances

development, the interested reader can refer to Bongiovanni, Kaspi, and Geroliminis (2019). The

preprocessed data that extract requests information from the raw data provided by Uber Tech-

nologies are published on the website (https://luts.epfl.ch/wpcontent/uploads/2019/03/e_

ADARP_archive.zip).

6.1.2. Abbreviations in the tables DA algorithm has deterministic rules to accept a solution

and the sequence of neighborhoods, which is contrary to Simulated Annealing. There remains a

randomized part in the selection of neighboring solutions. Unless indicated, we perform 50 runs on

each instance with different seeds to analyze the statistical distribution of the solution quality.

For each instance, we present the following values:

• BC ′ is the cost of best solutions from B&C algorithm reported in Bongiovanni, Kaspi, and

Geroliminis (2019);

• BC is the cost of best solutions found by the proposed DA algorithm over 50 runs;

• AC is the average-cost solution found by the proposed DA algorithm over the 50 runs.

• Q1 is the middle number between the best-obtained solution and the median of all the solutions

over 50 runs;

• Q3 is the middle number between the median of all the solutions over 50 runs and the worst

solutions yielded;

To analyze the distribution of the solution found for the 50 runs, we calculate solutions gaps to

BC ′. Assuming a solution with value v (v could be BC, Q1, Q3), we compute its gap to BC ′ by:

gap=
v−BC ′

BC ′
× 100%

https://www.hevs.ch/media/document/1/fiche-technique-navettes-autonomes.pdf
https://www.hevs.ch/media/document/1/fiche-technique-navettes-autonomes.pdf
https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata
https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata
https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip
https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip
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Note that type-r instances for the E-ADARP are studied here for the first time, we therefore

replace BC ′ with BC in the above formula to analyze the gaps of Q1/AC/Q3 to BC.

We present the following average values to analyze the consistency of the proposed DA algorithm:

• Q1% is the average gap to BC ′ of the first quartile value over the different runs;

• Q3% is the average gap to BC ′ of the third quartile value over the different runs;

• BC% is the average gap of BC to BC ′ over the different runs;

• AC% is the average gap of AC to BC ′ over the different runs;

• FeasRatio is the ratio of feasible solutions found among all the solutions generated by DA

algorithm;

• CPU is the average computational time of the DA algorithm (preprocessing time is included)

in seconds;

• CPU′ is the computational time of the B&C algorithm reported in Bongiovanni, Kaspi, and

Geroliminis (2019) in seconds;

• NC (Not Calculable) means that there are unsolved instances under the analyzed parameter

and we cannot calculate gaps.

• NA (Not Available) indicates that corresponding value (e.g., BC, BC ′) is not available as the

analyzed algorithm cannot provide a feasible solution.

• A dash “–” indicates that the DA algorithm finds new best solutions on a previously unsolved

instance and we cannot calculate the gap.

In Section 6.4, we present DA algorithm results when allowing multiple visits to each recharging

station. To distinguish, subscripts “2”, “3”, and “∞” are added to BC, AC, and CPU to denote

nas = 2,3,∞, respectively. As Bongiovanni, Kaspi, and Geroliminis (2019) provides results on type-u

instances with nas = 2,3, we add their reported results in the column named BC ′2 and BC ′3 of Table

11 and compare our DA algorithm results to theirs.

6.2. Parameter tuning for the DA algorithm

The performance of the proposed algorithm depends on several parameters that must be set in

advance. To ensure the algorithm performance, We first identify robust parameter settings. We

analyze different settings of parameters on the type-a instance set, as it contains instances of

different sizes and is enough to select good parameters. For a comprehensive overview, we take into

account different scenarios, i.e., γ = 0.1,0.4,0.7, for each parameter setting.

The DA-related parameters are:

• Number of iterations Niter ;

• Maximum threshold value Θmax;

• Threshold reduction value Θred;
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• Restart parameter nimp.

To avoid re-tuning Θmax when using different instances, we use a relative value for Θmax. The

maximum threshold value is expressed as the product of the average distance between two nodes

in the studied graph (denoted c̄) and a predefined parameter θmax, that is Θmax = c̄× θmax, where

θmax is initially set to 1.5. For other parameters like Θred and nimp, we take the same settings as in

Braekers, Caris, and Janssens (2014): Θred = 300 and nimp = 50.

6.2.1. Sensitivity analysis and parameter tuning for θmax The sensitivity analysis results

for θmax under γ = 0.1,0.4,0.7 are shown in Table 2, and we test seven values for θmax. For each

value of θmax, we perform ten runs on each instance and iterate the proposed algorithm 10000 times

for each run. Under each energy restriction, we report BC%, AC%, Q1%, Q3% over ten runs for

the analyzed θmax value. For the scenario of γ = 0.7, we report FeasRatio and average CPU time.

We present detailed results on each instance under different settings of θmax in B.

Table 2 Sensitivity analysis for θmax under different γ cases on type-a instances

θmax 0.6 0.9 1.2 1.5 1.8 2.1 2.4

γ = 0.1
BC% 0.11% 0.10% 0.19% 0.32% 0.29% 0.28% 0.51%
AC% 0.49% 0.53% 0.74% 0.83% 0.82% 0.94% 1.07%
Q1% 0.23% 0.30% 0.43% 0.54% 0.56% 0.66% 0.81%
Q3% 0.66% 0.73% 0.90% 0.93% 1.04% 1.22% 1.28%

FeasRatio 140/140 140/140 140/140 140/140 140/140 140/140 140/140
CPU (s) 83.93 77.43 78.52 80.09 81.16 82.12 83.42

γ = 0.4
BC% 0.19% 0.27% 0.27% 0.40% 0.49% 0.70% 0.63%
AC% NC 0.68% 0.79% 0.95% 1.18% 1.36% 1.54%
Q1% 0.31% 0.49% 0.57% 0.65% 0.84% 0.96% 1.11%
Q3% 0.72% 0.84% 0.97% 1.21% 1.5% 1.68% 1.83%

FeasRatio 139/140 140/140 140/140 140/140 140/140 140/140 140/140
CPU (s) 121.34 116.97 119.03 121.72 122.97 125.65 127.80

γ = 0.7
FeasRatio 85/140 106/140 106/140 108/140 112/140 105/140 106/140
CPU (s) 227.05 201.68 206.06 212.5 215.86 221.04 222.31

From Table 2, in the case of γ = 0.1, the algorithm performs well under all the settings of θmax.

Among them, 0.6 seems to be the best with regard to gap AC% and computational efficiency.

Other values, such as 0.9 and 1.2, can also be selected as a slight difference is found in the solution

quality compared to that of 0.6. When γ increases to 0.4, the problem becomes more constrained,

and the algorithm with θmax = 0.6 cannot solve all the instances within ten runs. In this case, the

algorithm with setting θmax = 0.9 still outperforms the algorithm with other θmax settings in terms

of solution quality. The problem is highly constrained when γ = 0.7, and some instances may not

have feasible solutions among ten runs. From the results, θmax = 1.8 has the highest proportion

of feasible solutions compared to the algorithm with other θmax values. The DA algorithm with
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setting θmax = 0.9 has a number of feasible solutions slightly less than that of θmax = 1.8. From the

overall performance, we conclude that θmax = 0.9 can provide us with good solution quality and

acceptable computational time in all the cases. We set θmax = 0.9 in all the further experiments.

For values of Θred and nimp, we keep the initial settings, i.e, Θred = 300 and nimp = 50.

6.2.2. Contribution of local search operators As the algorithm largely relies on local

search operators, their usefulness is verified. In this part, we analyze the contribution of local search

operators to improve the solution quality. The effectiveness of each local search operator is presented,

and the results of six different algorithm configurations are shown in Table 3. In each of these

configurations, one operator is excluded from the algorithm, and we run each algorithm configuration

ten times, with each run iterating the respective algorithm 10000 times. We calculate the average

solution gap of BC%, AC%, Q1%, and Q3%. Results for different algorithm configurations setting

the previously selected parameter values (θmax = 0.9) are summarized in Table 3. For the scenario

γ = 0.7, we report CPU times and FeasRatio.

Table 3 Experimental results when removing a single operator: Ex-pickup, Ex-dropoff, Ex-2-neighbor, Relocate,

Exchange, and 2-opt

Removing None Ex-pickup Ex-dropoff Ex-2-neighbor Relocate Exchange 2-opt

γ = 0.1
BC% 0.10% 0.14% 0.23% 0.19% 0.25% 0.38% 2.64%
AC% 0.52% 0.52% 0.55% 0.56% 1.16% 0.68% 5.60%
Q1% 0.30% 0.40% 0.40% 0.44% 0.79% 0.51% 3.76%
Q3% 0.73% 0.74% 0.90% 0.79% 1.64% 1.00% 6.19%

FeasRatio 140/140 140/140 140/140 140/140 139/140 140/140 140/140
CPU (s) 77.43 74.88 71.41 88.97 57.53 79.51 68.92

γ = 0.4
BC% 0.27% 0.27% 0.27% 0.38% 0.38% 0.27% 2.56%
AC% 0.68% 0.73% 0.74% 0.78% 1.15% 0.84% 4.92%
Q1% 0.49% 0.51% 0.49% 0.64% 0.86% 0.63% 3.66%
Q3% 0.84% 0.93% 1.22% 1.06% 1.63% 1.10% 6.03%

FeasRatio 140/140 140/140 140/140 139/140 136/140 140/140 140/140
CPU (s) 116.97 109.24 106.25 134.29 81.92 115.52 105.08

γ = 0.7
FeasRatio 106/140 96/140 106/140 90/140 86/140 97/140 74/140
CPU (s) 201.68 191.54 185.69 237.5 137.17 210.65 182.31

We can find that each operator performs very well in improving the solution quality, especially the

2-opt operator. Additionally, the relocate and 2-opt operator contributes to provide more feasible

solutions in the case of γ = 0.4,0.7. Therefore, it is necessary to include these operators in local

search. As for add-request, it is essential for inserting requests that are not served in the current

solution. From the above analysis, the usefulness of each local search operator is proved.
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6.2.3. Sensitivity analysis on number of iterations Then, we conduct the sensitivity

analysis for the number of iterations Niter. To identify a good Niter, we conduct experiments with

all the energy-level restrictions on type-a instances. We test ten values of Niter, and report BC%,

AC%, Q1%, Q3% over ten runs. For the scenario of γ = 0.7, as different settings of Niter result in a

different number of feasible solutions, we compare FeasRatio. The results are shown in Table 4.

Table 4 Statistical comparison of DA performance under different iteration times for all γ values on type-a

instances

Niter 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Low energy restriction γ = 0.1

BC% 0.60% 0.44% 0.35% 0.31% 0.20% 0.17% 0.14% 0.13% 0.11% 0.10%
AC% NC NC 0.95% 0.82% 0.73% 0.68% 0.63% 0.59% 0.56% 0.53%
Q1% 1.42% 0.82% 0.61% 0.52% 0.45% 0.42% 0.36% 0.34% 0.31% 0.30%
Q3% 2.35% 1.69% 1.12% 1.02% 0.96% 0.88% 0.83% 0.79% 0.76% 0.73%

FeasRatio 138/140 139/140 140/140 140/140 140/140 140/140 140/140 140/140 140/140 140/140
CPU (s) 10.15 17.5 24.86 32.43 39.92 47.45 54.92 62.38 69.79 77.43

Medium energy restriction γ = 0.4

BC% 1.07% 0.72% 0.57% 0.48% 0.40% 0.37% 0.34% 0.31% 0.30% 0.27%
AC% NC NC NC 1.17% 1.03% 0.90% 0.84% 0.78% 0.73% 0.68%
Q1% 1.69% 1.18% 0.96% 0.82% 0.72% 0.66% 0.63% 0.57% 0.54% 0.49%
Q3% 2.98% 2.09% 1.61% 1.39% 1.22% 1.14% 1.08% 0.99% 0.87% 0.84%

FeasRatio 138/140 139/140 139/140 140/140 140/140 140/140 140/140 140/140 140/140 140/140
CPU (s) 14.45 25.82 37.21 48.62 59.94 71.29 82.74 94.12 105.7 116.97

High energy restriction γ = 0.7

FeasRatio 79/140 88/140 94/140 95/140 96/140 97/140 100/140 102/140 103/140 106/140
CPU (s) 21.94 41.83 61.7 81.88 101.73 121.63 141.56 161.64 181.63 201.68

From Table 4, we observe that the values of BC%, AC%, Q1%, Q3% are improved with more

iterations. Among ten values of Niter, 10000 iterations provide us with the best solution quality. We

therefore set Niter to 10000 to conduct experiments. The performance of DA is also demonstrated

as small results dispersion is found under all the values of Niter. Moreover, we also notice that

the computational time grows approximately linearly with the number of iterations, which is a

computational advantage compared with the B&C algorithm.

Note that choosing Niter = 8000 or Niter = 9000 slightly degrades the performances. With such

parameters, the computational time will be decreased. Choosing Niter = 10000 is more robust,

especially keeping in mind the evaluation of larger type-r instances.

6.3. DA algorithm performance on the E-ADARP instances

In this section, we present the performance of our DA algorithm after tuning parameters from

the previous section. Table 5, Table 6, and Table 7 present our DA algorithm results on type-a,

-u, and -r instances under γ = 0.1,0.4,0.7, respectively. In each table, we report the values of BC,

AC, Q1, Q3, and their corresponding gaps with BC ′ (presented in the column named “BC ′”). If

we obtain better solutions than the best-reported results of Bongiovanni, Kaspi, and Geroliminis
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(2019), we mark them in bold with an asterisk. We mark our solutions in bold if they are equal to

those reported in Bongiovanni, Kaspi, and Geroliminis (2019).

It should be noted that we find strictly better integer solutions than the reported optimal results

of Bongiovanni, Kaspi, and Geroliminis (2019) in case of γ = 0.4,0.7. The reason is that in the model

of Bongiovanni, Kaspi, and Geroliminis (2019), the employed “big M” values were not correctly

computed. We refer to supplementary material for a more in-depth analysis and how the “big M”

values should be set correctly. To distinguish these incorrect results, we mark them in italics in the

column of “BC ′” and mark our obtained solutions in bold with double stars. The corresponding

BC% values are therefore negative.

6.3.1. Type-a instances results under different energy restrictions We first conduct

experiments on type-a instances considering different scenarios γ = 0.1,0.4,0.7. A higher γ value

means a higher minimum battery level that vehicles must keep when returning to the destination

depot. Recalling that each recharging station can only be visited at most once. The E-ADARP

model is more constrained with an increasing γ. In Table 5, we compare our algorithm results to

the best reported results in Bongiovanni, Kaspi, and Geroliminis (2019).

We obtain equal/improved solutions for 36 out of 42 instances. Among them, 13 are the new best

solutions. For some instances, we obtain better solutions than the reported optimal solutions in

Bongiovanni, Kaspi, and Geroliminis (2019). These instances are: a2-24-0.4, a3-30-0.4, a3-36-0.4,

a2-24-0.7, a3-24-0.7, and a4-24-0.7.

In all the scenarios, the proposed DA algorithm has quite small gaps to the best-reported results

in Bongiovanni, Kaspi, and Geroliminis (2019). The average BC% is 0.05% and 0.13% in case

of γ = 0.1,0.4, and other values AC%, Q1%, Q3% are quite acceptable. In the case of γ = 0.7,

we consistently provide new solutions for a2-20, a4-32, and a5-40, while B&C cannot solve these

instances optimally or feasibly within two hours. Particularly, the generated new solutions on

instance a4-32 and a5-40 have a much lower solution cost compared to the former reported best

solutions in Bongiovanni, Kaspi, and Geroliminis (2019), with an average gaps of -7.49 % and -5.22%,

respectively. Our algorithm demonstrates its performance by continuously finding high-quality

solutions.

In terms of computational efficiency, the CPU time for the proposed DA algorithm grows

approximately in a linear way with the size of instances. The average CPU time for all instances

is 96.71s, and the proposed DA algorithm can efficiently solve large-scale instances within maters

of minutes. Therefore, we conclude that our DA algorithm can consistently provide high-quality

solutions in a short computational time.
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Table 5 Results of the proposed DA algorithm on type-a instances under γ = 0.1,0.4,0.7

γ = 0.1 Proposed DA algorithm, 10000 iterations, 50 runs Bongiovanni et al.,
Instance BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC′ CPU′(s)

a2-16 237.38 0 237.38 0 237.38 0 237.38 0 39.27 237.38∗ 1.2
a2-20 279.08 0 279.08 0 279.08 0 279.08 0 73.83 279.08∗ 4.2
a2-24 346.21 0 346.21 0 346.21 0 346.21 0 160.57 346.21∗ 9.0
a3-18 236.82 0 236.82 0 236.82 0 236.82 0 25.16 236.82∗ 4.8
a3-24 274.80 0 274.80 0 274.80 0 274.80 0 58.28 274.80∗ 13.80
a3-30 413.27 0 413.27 0 413.27 0 413.27 0 54.26 413.27∗ 102
a3-36 481.17 0 481.17 0 481.17 0 481.17 0 152.53 481.17∗ 106.80
a4-16 222.49 0 222.49 0 222.49 0 222.49 0 19.47 222.49∗ 3.6
a4-24 310.84 0 310.84 0 310.84 0 312.44 0.51% 29.57 310.84∗ 31.2
a4-32 393.96 0 393.95 0 395.12 0.29% 397.58 0.92% 51.96 393.96∗ 612
a4-40 453.84 0 458.22 0.97% 459.42 1.23% 460.56 1.48% 92.04 453.84∗ 517.2
a4-48 555.93 0.25% 560.19 1.02% 561.26 1.21% 562.87 1.50% 141.78 554.54 7200
a5-40 414.80 0.07% 418.48 0.96% 420.35 1.41% 422.56 1.94% 64.92 414.51∗ 1141.8
a5-50 561.41 0.40% 567.82 1.55% 570.58 2.04% 573.51 2.56% 137.31 559.17 7200

Summary 0.05% 0.32% 0.44% 0.64% 78.64 1210.54
γ = 0.4 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC′ CPU′(s)
a2-16 237.38 0 237.38 0 237.38 0 237.38 0 52.85 237.38∗ 1.8
a2-20 280.70 0 280.70 0 280.70 0 280.70 0 140.70 280.70∗ 49.8
a2-24 347.04∗∗ -0.29% 347.04 -0.29% 347.04 -0.29% 347.04 -0.29% 230.99 348.04∗ 25.2
a3-18 236.82 0 236.82 0 236.82 0 236.82 0 26.30 236.82∗ 4.2
a3-24 274.80 0 274.80 0 274.80 0 276.11 0.48% 67.85 274.80∗ 16.8
a3-30 413.34∗∗ -0.01% 413.34 -0.01% 413.34 -0.01% 413.34 -0.01% 88.67 413.37∗ 99
a3-36 483.06∗∗ -0.22% 483.83 -0.06% 483.86 -0.06% 485.43 0.27% 157.79 484.14∗ 306.6
a4-16 222.49 0 222.49 0 222.49 0 222.49 0 19.39 222.49∗ 5.4
a4-24 311.03 0 311.28 0.08% 311.65 0.20% 313.21 0.70% 31.97 311.03∗ 39.6
a4-32 394.26 0 395.05 0.20% 397.21 0.75% 400.32 1.54% 62.95 394.26∗ 681.6
a4-40 453.84 0 457.20 0.74% 459.46 1.24% 461.06 1.59% 116.65 453.84∗ 417.6
a4-48 558.11 0.63% 561.40 1.23% 563.47 1.60% 565.35 1.94% 177.51 554.60 7200
a5-40 416.25 0.42% 418.97 1.08% 420.32 1.40% 422.75 1.99% 72.64 414.51∗ 1221
a5-50 567.54 1.26% 572.23 2.09% 574.56 2.51% 576.11 2.79% 162.82 560.50 7200

Summary 0.13% 0.36% 0.52% 0.79% 100.65 1233.47
γ = 0.7 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC′ CPU′(s)
a2-16 240.66 0 240.66 0 240.66 0 240.66 0 95.75 240.66∗ 5.4
a2-20 293.27∗ – 293.27 – 294.11 – NA NA 172.77 NA 7200
a2-24 353.18∗∗ -1.40% 366.49 2.31% NA NA NA NA 206.58 358.21∗ 961.2
a3-18 240.58 0 240.58 0 240.58 0 240.58 0 58.30 240.58∗ 48
a3-24 275.97∗∗ -0.63% 275.97 -0.63% 277.43 -0.10% 279.13 0.51% 123.71 277.72∗ 152.4
a3-30 424.93∗ – 432.29 – 436.20 – NA NA 77.73 NA 7200
a3-36 494.04 0 497.11 0.62% 502.27 1.67% 505.95 2.41% 125.42 494.04 7200
a4-16 223.13 0 223.13 0 223.13 0 223.13 0 31.32 223.13∗ 67.2
a4-24 316.65∗∗ -0.49% 318.21 0 318.31 0.03% 320.87 0.84% 53.73 318.21∗ 1834.8
a4-32 397.87∗ -7.49% 401.58 -6.63% 405.85 -5.63% 408.69 -4.97% 71.44 430.07 7200
a4-40 479.02∗ – NA NA NA NA NA NA 114.74 NA 7200
a4-48 582.22∗ – 610.75 – NA NA NA NA 164.39 NA 7200
a5-40 424.26∗ -5.22% 433.12 -3.24% 436.94 -2.39% 441.15 -1.45% 97.51 447.63 7200
a5-50 603.24∗ – NA NA NA NA NA NA 158.39 NA 7200

Summary – – – – 110.84 4333.40

6.3.2. Type-u instances results under different energy restrictions On type-u

instances, we conduct experiments under different energy-restriction levels γ = 0.1,0.4,0.7. The

results are shown in Table 6.

The proposed DA algorithm finds equal solutions for 22 out of 42 instances and finds new

best solutions for 12 previously solved and unsolved instances. Particularly, on instance u2-24-0.1,

u2-24-0.4, u4-40-0.4, and u3-30-0.7, we find strictly better solutions than the reported optimal
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Table 6 Results of the proposed DA algorithm on type-u instances under γ = 0.1,0.4,0.7

γ = 0.1 Proposed DA algorithm, 10000 iterations, 50 runs Bongiovanni et al.,
Instance BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC′ CPU′(s)

u2-16 57.61 0 57.61 0 57.61 0 57.61 0 120.06 57.61∗ 21
u2-20 55.59 0 55.59 0 56.34 1.34% 56.34 1.34% 401.82 55.59∗ 9.6
u2-24 90.73∗∗ -0.60% 90.84 -0.47% 90.84 -0.47% 90.98 -0.32% 599.73 91.27∗ 432
u3-18 50.74 0 50.74 0 50.74 0 50.93 0.37% 108.32 50.74∗ 10.8
u3-24 67.56 0 67.87 0.46% 68.16 0.89% 68.16 0.89% 111.49 67.56∗ 130.2
u3-30 76.75 0 77.21 0.60% 77.80 1.37% 78.65 2.47% 174.11 76.75∗ 438
u3-36 104.27 0.22% 104.87 0.79% 105.42 1.33% 106.36 2.23% 420.72 104.04∗ 1084.8
u4-16 53.58 0 53.58 0 53.58 0 53.58 0 51.37 53.58∗ 48
u4-24 90.13 0.34% 90.72 1.00% 90.85 1.14% 90.95 1.25% 55.26 89.83∗ 13.2
u4-32 99.29 0 99.29 0 99.42 0.13% 99.67 0.38% 119.12 99.29∗ 1158.6
u4-40 133.11 0 134.46 1.02% 135.18 1.55% 136.08 2.23% 154.00 133.11∗ 185.4
u4-48 147.75∗ -0.37% 148.87 0.39% 149.69 0.93% 150.42 1.43% 840.96 148.30 7200
u5-40 121.86 0 123.11 1.03% 123.38 1.25% 124.47 2.14% 113.81 121.86 1141.8
u5-50 144.22 0.78% 145.04 1.36% 145.63 1.77% 146.30 2.24% 245.52 143.10 7200

Summary 0.03% 0.44% 0.80% 1.19% 251.16 1795.11
γ = 0.4 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC′ CPU′(s)
u2-16 57.65 0 57.65 0 57.65 0 57.65 0 156.61 57.65∗ 25.8
u2-20 56.34 0 56.34 0 56.34 0 56.34 0 606.64 56.34∗ 12
u2-24 91.24∗∗ -0.43% 91.27 -0.39% 91.72 0.10% 92.06 0.47% 817.79 91.63∗ 757.2
u3-18 50.74 0 50.74 0 50.74 0 50.99 0.50% 124.95 50.74∗ 13.8
u3-24 67.56 0 67.87 0.46% 68.16 0.89% 68.16 0.89% 141.01 67.56∗ 220.8
u3-30 76.75 0 77.12 0.48% 77.93 1.54% 78.65 2.48% 285.81 76.75∗ 336.6
u3-36 104.49 0.41% 105.65 1.53% 106.37 2.22% 107.19 3.01% 898.90 104.06∗ 2010
u4-16 53.58 0 53.58 0 53.58 0 53.58 0 60.52 53.58∗ 44.4
u4-24 90.72 1.00% 90.72 1.00% 91.00 1.30% 91.12 1.44% 65.57 89.83∗ 28.2
u4-32 99.29 0 99.29 0 99.42 0.13% 99.90 0.61% 156.27 99.29∗ 2667.6
u4-40 133.78∗∗ -0.10% 135.43 1.14% 135.83 1.44% 136.56 1.98% 303.06 133.91∗ 2653.2
u4-48 148.48∗ – 149.86 – 150.81 – 151.77 – 1390.74 NA 7200
u5-40 121.96∗ -0.22% 123.08 0.69% 123.63 1.15% 124.42 1.79% 160.80 122.23 7200
u5-50 143.68 0.38% 145.66 1.76% 146.60 2.42% 147.15 2.80% 391.46 143.14 7200

Summary – – – – 397.15 2169.26
γ = 0.7 BC BC% Q1 Q1% AC AC% Q3 Q3% CPU(s) BC′ CPU′(s)
u2-16 59.19 0 59.26 0.11 60.01 1.38 60.19 1.69 419.57 59.19∗ 338.4
u2-20 56.86 0 58.39 2.69 58.39 2.69 58.88 3.55 1527.60 56.86∗ 72
u2-24 92.84∗ – 94.33 – 99.38 – NA NA 502.50 NA 7200
u3-18 50.99 0 50.99 0 50.99 0 50.99 0 206.92 50.99∗ 24
u3-24 68.39 0 68.39 0 68.44 0.08% 68.73 0.49% 375.75 68.39∗ 400.2
u3-30 77.94∗∗ -0.26% 78.72 0.74% 79.37 1.57% 79.56 1.81% 1094.81 78.14∗ 3401.4
u3-36 106.00 0.20% 106.41 0.59% 107.57 1.68% 107.92 2.01% 1606.43 105.79 7200
u4-16 53.87 0 53.87 0 53.87 0 53.87 0 96.90 53.87∗ 88.8
u4-24 90.07 0.12% 90.97 1.12% 90.97 1.12% 90.97 1.12% 254.45 89.96∗ 22.8
u4-32 99.50 0 100.01 0.51% 101.09 1.60% 101.75 2.26% 325.31 99.50∗ 2827.2
u4-40 136.08∗ – 137.65 – 138.98 – NA NA 708.04 NA 7200
u4-48 152.58∗ – 157.85 – 162.62 – NA NA 1958.80 NA 7200
u5-40 123.52∗ – 125.30 – 126.10 – 127.08 – 359.59 NA 7200
u5-50 143.51∗ -0.59% 148.16 2.64% 149.52 3.58% 152.36 5.54% 922.19 144.36 7200

Summary – – – – 780.10 3598.2

solutions in Bongiovanni, Kaspi, and Geroliminis (2019). In each scenario, our best solutions have

quite small gaps to the BC ′ reported in Bongiovanni, Kaspi, and Geroliminis (2019). We further

demonstrate our algorithm consistency via other statistical values (Q1%, AC%, Q3%), as our

algorithm continuously finds high-quality solutions with the increasing size of instances. In terms

of computational efficiency, our algorithm has an average CPU time of 476.14s. Our algorithm
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outperforms the B&C algorithm on most instances, as we obtain equal/better solutions within a

much shorter computational time.

6.3.3. Type-r instances results under different energy restrictions We present our

algorithm results on type-r instances in Table 7. These results are the first solutions found for these

new instances and can serve as benchmark results for future studies.

In scenarios γ = 0.1 and γ = 0.4, we find feasible solutions for 19 out of 20 instances, with an

average CPU time of 269.71s and 373.89s, respectively. When increasing from γ = 0.1 to γ = 0.4, the

statistical dispersion also increases, but the dispersion remains quite acceptable. For instance r7-84,

most of the runs with γ = 0.4 do not find a feasible solution. For instance r8-96, our DA algorithm

cannot find a feasible solution among 50 runs with γ = 0.4. These instances seem challenging for

future works.

When γ = 0.7, we found no feasible solution for all the type-r instances, despite 50 runs and

10000 iterations. One reason is that many of these instances are too constrained to be feasible for

γ = 0.7 with the limitation of visiting recharging stations. However, it opens a perspective to prove

it using exact methods with lower bounds.

Table 7 Results of the proposed DA algorithm with 10000 iterations 50 runs on type-r instances under

γ = 0.1,0.4

γ = 0.1 BC Q1 Q1% AC AC% Q3 Q3% CPU(s)

r5-60 691.83 699.93 1.17% 706.20 2.08% 710.43 2.69% 178.44
r6-48 506.72 509.67 0.58% 512.69 1.18% 515.39 1.71% 229.31
r6-60 692.00 696.67 0.67% 700.15 1.18% 703.95 1.73% 127.03
r6-72 777.44 788.12 1.37% 794.69 2.22% 801.87 3.14% 208.39
r7-56 613.10 620.69 1.24% 624.51 1.86% 630.72 2.87% 88.20
r7-70 760.90 772.45 1.52% 778.84 2.36% 786.02 3.30% 209.76
r7-84 889.38 900.34 1.23% 904.88 1.74% 913.88 2.75% 322.66
r8-64 641.99 647.87 0.92% 652.59 1.65% 657.49 2.41% 612.06
r8-80 803.52 820.96 2.17% 828.67 3.13% 834.19 3.82% 357.75
r8-96 1053.11 1069.98 1.60% 1080.80 2.63% 1089.96 3.50% 363.46

Summary 1.25% 2.00% 2.79% 269.71

γ = 0.4 BC Q1 Q1% AC AC% Q3 Q3% CPU(s)

r5-60 697.97 710.30 1.77% 718.44 2.93% 727.27 4.20% 293.25
r6-48 506.91 509.48 0.51% 514.46 1.49% 517.53 2.10% 257.59
r6-60 694.78 702.67 1.14% 706.07 1.62% 710.80 2.31% 173.43
r6-72 799.60 811.85 1.53% 821.17 2.70% 832.07 4.06% 349.98
r7-56 613.66 620.58 1.13% 624.40 1.75% 627.51 2.26% 99.91
r7-70 766.05 778.70 1.65% 784.54 2.41% 791.07 3.27% 273.52
r7-84 932.12 964.04 3.43% NA NA NA NA 584.26
r8-64 638.36 649.84 1.80% 652.30 2.18% 657.02 2.92% 641.63
r8-80 811.19 823.70 1.54% 833.05 2.69% 841.76 3.77% 448.14
r8-89 NA NA NA NA NA NA NA 617.17

Summary NA NA NA 373.89
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6.3.4. Conclusion of algorithm performance On both type-a and -u instances, we observe

the limit of solving capabilities of the B&C. Even with a time limit of two hours, it is difficult for

B&C to solve medium-to-large-sized E-ADARP instances, especially under a high energy restriction.

Our DA algorithm can provide high-quality solutions for highly constrained instances within a

reasonable computational time. We also show that our DA algorithm can tackle larger-sized instances

with up to 8 vehicles and 96 requests. Nineteen type-r instances for γ = 0.1 and γ = 0.4 are solved

feasibly, and these results are the first solutions found for these new instances, which can serve as a

benchmark for future studies. To conclude, the proposed DA algorithm remains highly effective and

can provide optimal/near-optimal solutions even facing highly constrained instances. The proposed

DA algorithm significantly outperforms the B&C algorithm for medium-to-large-sized instances,

and its consistency seems quite acceptable for such difficult instances.

6.4. Sensitivity analysis of the maximum number of charging visits per station

As discussed in Section 3.4, the hypothesis of visiting each recharging station at most once is not

realistic. We adjust our DA algorithm as mentioned in Section 5.4.2 to allow multiple visits to

each recharging station. The adjusted DA algorithm is able to investigate the effect of increasing

the value of nas on solution cost and feasibility. Recalling that we analyze four different cases:

nas = 1,2,3,∞.

For type-a instances, as in the scenario of γ = 0.1, we obtain optimal solutions for most of the

instances, and other instances are solved without visiting recharging stations. Therefore, we focus

on scenarios of γ = 0.4,0.7 and analyze the effect of allowing multiple visits in these cases. For

type-u and -r instances, we conduct experiments with adjusted DA algorithm with nas = 2,3,∞

under γ ∈ {0.1,0.4,0.7}. The detailed results are presented in C. In Table 10 and 12, we compare

DA algorithm results on each instance with setting nas = 1,2,3,∞ and we mark the best one(s) in

bold. In Table 11, we compare our algorithm results under each setting of nas with the reported

results in Bongiovanni, Kaspi, and Geroliminis (2019). Improved solutions are marked in bold with

an asterisk while equal solutions are marked in bold. In the column of BC∞, if the obtained solution

is better than other solutions obtained under nas = 1,2,3, we mark it in bold with double stars. On

each instance, the adjusted DA algorithm performs 50 runs with 10000 iterations per run.

From these results, we observe that the previous difficulties for the DA algorithm to solve the

E-ADARP instances are reduced considering multiple visits per station. The major findings are:

(1) allowing multiple visits to each recharging station improves the solution quality as we found

lower-cost solutions. Particularly, we obtain feasible solutions for all type-r instances under γ = 0.7

with nas = 3,∞, while no feasible solution is found with nas = 1; (2) among nas = 2,3,∞, the DA

algorithm performs the best with nas =∞ in terms of solution quality; (3) the computational
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time increases with nas; (4) on average, allowing at-most-two and -three visits per station slightly

increase the computational time, which is more applicable in practice. Allowing at-most-three visits

per station strikes a good balance between solution quality and computational time. A potential

perspective from these results would be to investigate more realistic constraints, e.g., on the capacity

of recharging stations, rather than limiting visits to recharging stations in the E-ADARP.

7. Conclusions and Perspectives

This paper proposes an efficient DA algorithm to solve the E-ADARP, which aims to minimize

a weighted-sum objective, including the total travel time and the total excess user ride time. To

minimize the total excess user ride time, we propose a fragment-based representation of paths. A

new method is developed upon this representation to calculate the minimum excess user ride time

for a given route. Another challenge in solving the E-ADARP involves incorporating the partial

recharging at recharging stations, which complicates the feasibility checking of a given route; to

resolve this issue, we propose an exact route evaluation scheme of linear time complexity that can

accurately handle the effect of allowing partial recharging and validate the feasibility of solutions.

These two methods compose an exact and efficient optimization of excess user ride time for an

E-ADARP route. To the best of our knowledge, this is the first time that total excess user ride

time is optimized in an exact way for the E-ADARP.

In computational experiments, we first prove the effectiveness and accuracy of our DA algorithm

compared to the best-reported results of Bongiovanni, Kaspi, and Geroliminis (2019). On 84 existing

E-ADARP instances, our DA algorithm obtains equal solutions for 45 instances and provides better

solutions on 25 instances. On the previously solved instances, the DA algorithm improves the

solution quality by 0.16% on average. On newly introduced large-scale E-ADARP instances, we

provide new solutions for 19 instances. These results may serve as benchmark results for future

studies. We then extend the E-ADARP model to allow unlimited visits to each recharging station.

The previous difficulties for DA local search are lessened under this more realistic situation, and

the results are less dispersed than the results of the at-most-one visit to each recharging station.

Our extension of the E-ADARP model thus offers a new perspective in proposing a more realistic

constraint in the E-ADARP for recharging stations, e.g., considering capacity and scheduling

constraints in recharging stations.

Our results offer other new perspectives for the E-ADARP in terms of algorithmic and modeling

aspects. First, some instances remain unsolvable even after 50 independent runs of the DA algorithm.

One reason may be that no feasible solution exists for these instances, which remain challenging for

future studies using heuristic and exact methods. Another method to deal with highly-constrained

instances involves using mathematical programming to explore large neighborhoods with many
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infeasibilities, as in Dupin, Parize, and Talbi (2021). The E-ADARP could also be extended to

consider user’s inconvenience as a second objective, which helps understand the conflicting interests

between service providers and users and provide a high-quality approximation of Pareto front for

decision makers. The proposed excess user ride time optimization approach can also be adapted to

solve the classical DARP in the context of multiple objectives, in which the total excess user ride

time is minimized as a separate objective. Another way that the E-ADARP model may be improved

involves taking into account more real-life characteristics. For example, time-dependent travel times

occur with traffic jams in peak hours. Relatedly, the static E-ADARP can be extended to dynamic

E-ADARP, taking into account updates of requests during the day (e.g., new requests, cancellations,

modifications). Having quick and efficient heuristic algorithms for the dynamic E-ADARP is crucial

in such a context where metaheuristics also seem promising.
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Appendix A: Preliminary experimental results for fragment enumeration

We provide all the details for enumerating all the fragments for each instance. In Table 8, Nfrag denotes the

number of fragments generated, Legavg and Legmax denote the average and maximum length of fragments,

respectively. NLP represents the number of time LP is solved, and CPU is the total computational time for

enumeration in seconds.

Table 8 Details of fragments enumeration for all the instances

Nfrag Legavg Legmax NLP CPU(s)
a2-16 32 3.06 6 0 0.94
a2-20 51 3.41 6 1 0.23
a2-24 64 3.72 8 1 0.09
a3-18 71 4.25 8 4 0.04
a3-24 110 4.71 12 0 0.06
a3-30 89 3.66 8 0 0.12
a3-36 114 4.12 12 1 0.27
a4-16 78 4.51 8 4 0.04
a4-24 91 4.07 8 2 0.07
a4-32 206 5.58 12 3 0.20
a4-40 242 5.45 12 6 0.37
a4-48 355 5.33 12 15 0.61
a5-40 337 5.65 12 3 0.38
a5-50 659 8.25 24 33 0.99
Avg 178.5 4.70 10.57 5.21 0.32

u2-16 61 3.80 6 0 1.05
u2-20 180 5.26 12 7 0.32
u2-24 66 3.27 4 0 0.06
u3-18 78 3.95 8 0 0.04
u3-24 129 4.25 8 0 0.08
u3-30 255 5.06 8 19 0.29
u3-36 276 5.14 12 12 0.30
u4-16 75 4.03 8 1 0.04
u4-24 57 3.19 6 0 0.05
u4-32 177 4.14 10 3 0.21
u4-40 149 4.01 8 2 0.26
u4-48 1177 9.01 18 7 1.69
u5-40 335 5.28 14 1 0.49
u5-50 584 6.13 14 6 0.96
Avg 257.07 4.75 9.71 4.14 0.42
r5-60 632 6.44 16 44 2.61
r6-48 4082 14.20 36 414 6.89
r6-60 809 6.58 18 40 1.65
r6-72 1080 7.12 22 36 2.51
r7-56 1089 7.92 18 83 1.70
r7-70 2340 8.32 18 183 4.14
r7-84 2892 11.66 30 405 7.77
r8-64 11694 18.23 42 3517 40.52
r8-80 5822 14.89 30 260 14.07
r8-96 3155 9.30 26 312 9.65
Avg 3359.50 10.47 25.6 526.4 9.15

Appendix B: DA algorithm results on type-a instances under different θmax values

We present the DA algorithm results with different settings of θmax in Table 9, where Fθmax
denotes the

number of feasible solutions obtained for the associated instance among 10 runs of the DA algorithm with

θmax.
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Table 9 DA algorithm results on type-a instances with different settings of θmax
θmax = 0.6 θmax = 0.9 θmax = 1.2 θmax = 1.5 θmax = 1.8 θmax = 2.1 θmax = 2.4

γ = 0.1 BC0.6%AC0.6% BC0.9%AC0.9% BC1.2%AC1.2% BC1.5%AC1.5% BC1.8%AC1.8% BC2.1%AC2.1% BC2.4%AC2.4%
a2-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3-24 0 0 0 0 0 0.74% 0 0.37% 0 0 0 0.15% 0 0.52%
a3-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3-36 0 0 0 0 0 0.12% 0 0 0 0.11% 0 0.10% 0 0.62%
a4-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a4-24 0 0 0 0 0 0 0 0.70% 0 0.67% 0 0.35% 0 0.70%
a4-32 0 0.13% 0 1.04% 0.02% 0.79% 0.08% 1.31% 0 1.02% 0.06% 1.11% 0.09% 1.22%
a4-40 0 0.62% 0 1.24% 0 1.23% 0.89% 1.38% 0 1.6% 0 1.81% 1.24% 1.85%
a4-48 0.34% 0.71% 0.30% 0.94% 0.67% 1.78% 0.90% 1.99% 0.82% 2.16% 1.17% 2.38% 1.55% 3.3%
a5-40 0.44% 1.36% 0.29% 1.91% 0.42% 1.34% 0.78% 1.75% 0.96% 2.46% 1.16% 2.75% 1.16% 2.55%
a5-50 0.71% 1.68% 0.74% 2.14% 1.61% 2.99% 1.83% 2.56% 2.33% 3.29% 1.57% 3.80% 3.13% 3.98%
Avg 0.11% 0.49% 0.10% 0.53% 0.19% 0.74% 0.32% 0.83% 0.29% 0.82% 0.28% 0.94% 0.51% 1.07%
γ = 0.4 BC0.6%AC0.6% BC0.9%AC0.9% BC1.2%AC1.2% BC1.5%AC1.5% BC1.8%AC1.8% BC2.1%AC2.1% BC2.4%AC2.4%
a2-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2-24 -0.29% -0.29% -0.29% -0.29% -0.29% -0.29% -0.29% -0.21% -0.29% 0.05% -0.29% -0.12% -0.29% 0.01%
a3-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3-24 0 0 0 0.27% 0 0 0 0.23% 0 0.74% 0 0.74% 0 0.53%
a3-30 -0.01% NC -0.01% -0.01% -0.01% -0.01% -0.01% -0.01% -0.01% 0.06% -0.01% 0.08% -0.01% -0.01%
a3-36 -0.22% -0.06% -0.16% 0.01% -0.06% 0.05% -0.03% 0.30% -0.13% 0.94% -0.22% 0.64% -0.06% 1.14%
a4-16 0 0 0 0 0 0 0 0 0 0 0 0.12% 0 0.12%
a4-24 0 0.45% 0 0.09% 0.08% 0.54% 0.08% 0.70% 0 0.50% 0.08% 0.55% 0 0.70%
a4-32 0 0.20% 0.22% 1.26% 0.22% 0.75% 0 1.0% 0 1.64% 1.18% 1.65% 0.17% 1.55%
a4-40 0.27% 0.98% 0 1.28% 0 1.41% 0.27% 1.70% 0.99% 1.61% 1.18% 2.58% 1.01% 3.41%
a4-48 1.04% 1.50% 1.46% 2.37% 1.8% 2.53% 1.85% 2.88% 2.36% 4.44% 2.87% 4.02% 3.17% 4.54%
a5-40 0.35% 1.56% 0.55% 1.19% 0.86% 1.40% 0.55% 1.52% 1.21% 2.24% 1.42% 2.35% 1.86% 3.36%
a5-50 1.46% 2.03% 2.07% 2.84% 1.19% 3.45% 3.14% 4.30% 2.71% 3.94% 3.56% 5.25% 2.92% 5.63%
Avg 0.19% NC 0.27% 0.68% 0.27% 0.79% 0.40% 0.95% 0.49% 1.18% 0.7% 1.36% 0.63% 1.54%
γ = 0.7 BC0.6% F0.6 BC0.9% F0.9 BC1.2% F1.2 BC1.5% F1.5 BC1.8% F1.8 BC2.1% F2.1 BC2.4% F2.4

a2-16 0 9 0 10 0 10 0 10 0 10 0 10 0 10
a2-20 - 7 - 8 - 10 - 7 - 10 - 7 - 8
a2-24 0.85% 1 0.85% 8 0.85% 8 0.85% 8 0.82% 10 0.82% 10 0.82% 10
a3-18 0 10 0 10 0 10 0 10 0 10 0 10 0 10
a3-24 -0.63% 10 -0.63% 10 -0.33% 10 -0.63% 10 -0.63% 10 -0.33% 10 -0.38% 10
a3-30 - 5 - 9 - 6 - 9 - 10 - 8 - 8
a3-36 0.51% 4 0 10 0.02% 10 0.36% 10 0.56% 10 0.98% 10 2.34% 10
a4-16 0 10 0 10 0 10 0 10 0 10 0 10 0 10
a4-24 0 10 -0.49% 10 -0.49% 10 0 10 -0.49% 10 0.03% 10 0.03% 10
a4-32 -7.31% 10 -6.40% 10 -7.49% 10 -6.80% 10 -5.20% 10 -5.06% 10 -6.07% 10
a4-40 - 2 - 1 - 2 - 4 - 2 NA 0 NA 0
a4-48 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0
a5-40 -4.43% 10 -3.81% 10 -5.23% 10 -2.44% 10 -1.25% 10 -3.00% 10 -1.47% 10
a5-50 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0

“-” indicates we obtain new best solution on previously unsolved instance and the gap cannot be calculated.

Appendix C: Sensitivity analysis of increasing the maximum number of charging
visits per station

Tables 10, 11, and 12 present the DA algorithm results on type-a, type-u, and type-r instances with allowing at-

most-one, at-most-two, at-most-three, and unlimited visits per recharging station, respectively. The maximum

allowed charging visits per station is denoted by nas.
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Table 10 Solution quality and performance on type-a instances when increasing the maximum number of

charging visits per station

DA with nas = 1 DA with nas = 2 DA with nas = 3 DA with nas = ∞
γ = 0.4 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC∞ AC∞ CPU∞
a2-16 237.38 237.38 52.85 237.38 237.38 52.65 237.38 237.38 53.07 237.38 237.38 50.65
a2-20 280.70 280.70 140.70 280.70 280.70 148.12 280.70 280.70 141.97 280.70 280.70 144.92
a2-24 347.04 347.04 230.99 346.28 346.28 286.96 346.28 346.28 284.47 346.28 346.28 265.80
a3-18 236.82 236.82 26.30 236.82 236.82 26.93 236.82 236.82 26.43 236.82 236.82 25.36
a3-24 274.80 274.80 67.85 274.80 274.80 71.07 274.80 274.80 69.48 274.80 274.80 66.66
a3-30 413.34 413.34 88.67 413.34 413.34 104.70 413.34 413.34 106.13 413.34 413.34 103.54
a3-36 483.06 483.86 157.79 481.17 481.46 255.25 481.17 481.17 264.23 481.17 481.17 248.95
a4-16 222.49 222.49 19.39 222.49 222.49 19.71 222.49 222.49 19.08 222.49 222.49 17.78
a4-24 311.03 311.65 31.97 311.03 311.65 31.54 311.03 311.65 31.15 311.03 311.65 29.53
a4-32 394.26 397.21 62.95 394.26 397.31 65.66 394.26 397.21 63.85 394.26 397.27 61.71
a4-40 453.84 459.46 116.65 453.84 459.18 125.28 453.84 459.11 116.86 453.84 458.74 121.04
a4-48 558.11 563.47 177.51 558.18 564.63 235.32 557.86 564.21 238.60 558.96 564.86 231.45
a5-40 416.25 420.32 72.64 415.62 420.09 71.75 415.43 420.16 72.01 415.79 419.82 70.78
a5-50 567.54 574.56 162.82 564.90 575.04 190.93 567.40 574.64 189.18 567.13 574.28 184.43

Avg 100.65 120.42 119.75 115.90

γ = 0.7 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC∞ AC∞ CPU∞
a2-16 240.66 240.66 95.75 240.66 240.66 125.10 240.66 240.66 124.90 240.66 240.66 119.29
a2-20 293.27 294.11 172.77 286.52 286.52 331.90 285.86 285.86 327.01 286.52 288.89 316.22
a2-24 353.18 NA 206.58 352.25 363.17 373.77 350.49 361.02 390.86 354.38 374.68 357.33
a3-18 240.58 240.58 58.30 238.82 238.82 70.27 238.82 238.82 69.52 238.82 238.82 65.89
a3-24 275.97 277.43 123.71 275.20 275.20 154.90 275.20 275.94 155.39 275.20 275.20 150.02
a3-30 424.93 436.20 77.73 416.87 417.90 173.80 415.71 417.35 176.38 415.71 417.07 170.95
a3-36 494.04 502.27 125.42 486.36 487.34 332.47 484.85 487.59 350.73 484.85 487.91 343.02
a4-16 223.13 223.13 31.32 222.49 223.13 33.40 222.49 222.49 36.24 222.49 222.49 31.37
a4-24 316.65 318.31 53.73 315.98 317.99 74.82 315.98 317.99 80.77 315.98 317.99 70.97
a4-32 397.87 405.85 71.44 395.84 402.85 127.78 394.99 402.38 142.98 394.94 401.82 123.77
a4-40 479.02 NA 114.74 458.98 467.15 235.88 458.73 465.04 250.11 458.52 467.60 226.05
a4-48 582.22 NA 164.39 569.23 576.26 379.04 566.26 577.30 434.97 568.08 575.96 403.27
a5-40 424.26 436.94 97.51 417.35 424.29 153.00 416.89 423.96 169.49 419.33 425.29 149.77
a5-50 603.24 NA 158.39 583.37 590.81 320.55 576.54 589.38 367.00 579.15 588.98 352.73

Avg 110.84 206.19 219.74 205.76
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Table 11 Solution quality and performance on type-u instances when increasing the maximum number of

charging visits per station

DA with nas = 1 DA with nas = 2 DA with nas = 3 DA with nas = ∞
γ = 0.1 BC AC CPU BC′ BC2 AC2 CPU2 BC′2 BC3 AC3 CPU3 BC′3 BC∞ AC∞ CPU∞
u2-16 57.61 57.61 120.06 57.61∗ 57.61 57.61 124.25 57.61∗ 57.61 57.61 126.90 57.61∗ 57.61 57.61 182.64
u2-20 55.59 56.34 401.82 55.59∗ 55.59 55.59 421.77 55.59∗ 55.59 55.59 440.65 55.59∗ 55.59 55.59 642.95
u2-24 90.73∗ 90.84 599.73 91.27∗ 90.73∗ 90.73 572.00 91.27∗ 90.73∗ 90.73 592.75 91.27∗ 90.73 90.73 1021.42
u3-18 50.74 50.74 108.32 50.74∗ 50.74 50.74 111.63 50.74∗ 50.74 50.74 112.69 50.74∗ 50.74 50.74 172.79
u3-24 67.56 68.16 111.49 67.56∗ 67.56 68.16 115.43 67.56∗ 67.56 68.16 117.24 67.56∗ 67.56 68.16 173.10
u3-30 76.75 77.80 174.11 76.75∗ 76.75 77.55 182.98 76.75∗ 76.75 77.55 168.08 76.75∗ 76.75 77.55 268.96
u3-36 104.27 105.42 420.72 104.04∗ 104.27 105.45 578.30 104.04∗ 104.27 106.10 552.64 104.04∗ 104.27 105.48 775.41
u4-16 53.58 53.58 51.37 53.58∗ 53.58 53.58 51.14 53.58∗ 53.58 53.58 49.18 53.58∗ 53.58 53.58 72.84
u4-24 90.13 90.85 55.26 89.83∗ 89.91 90.85 57.23 89.83∗ 90.08 90.85 56.87 89.83∗ 90.08 90.85 79.82
u4-32 99.29 99.42 119.12 99.29∗ 99.29 99.42 114.88 99.29∗ 99.29 99.42 118.06 99.29∗ 99.29 99.42 162.58
u4-40 133.11 135.18 154.00 133.11∗ 133.11 135.34 163.78 133.11∗ 133.14 135.21 159.92 133.11∗ 133.11 135.23 216.58
u4-48 147.75∗ 149.69 840.96 148.30 147.73∗ 149.89 917.71 148.37 147.43∗ 149.52 902.77 149.14 147.33∗∗ 149.37 1403.39
u5-40 121.86 123.38 113.81 121.86 121.86 123.54 116.57 121.86 121.86 123.74 118.30 121.86 121.86 123.59 149.98
u5-50 144.22 145.63 245.52 143.10 143.27 145.73 258.43 142.83 143.51 145.91 279.38 142.83 143.14∗∗ 146.05 393.68
Avg 251.16 270.43 271.10 408.30
γ = 0.4 BC AC CPU BC′ BC2 AC2 CPU2 BC′2 BC3 AC3 CPU3 BC′3 BC∞ AC∞ CPU∞
u2-16 57.65 57.65 156.61 57.65∗ 57.65 57.65 171.29 57.65∗ 57.65 57.65 168.11 57.65∗ 57.65 57.65 276.29
u2-20 56.34 56.34 606.64 56.34∗ 56.34 56.34 690.19 56.34∗ 56.34 56.34 682.00 56.34∗ 56.34 56.34 1006.29
u2-24 91.24∗ 91.72 817.79 91.63∗ 91.14∗ 91.43 836.02 91.27∗ 91.14∗ 91.43 885.85 91.27∗ 91.16 91.17 1399.38
u3-18 50.74 50.74 124.95 50.74∗ 50.74 50.74 129.61 50.74∗ 50.74 50.74 133.92 50.74∗ 50.74 50.74 213.60
u3-24 67.56 68.16 141.01 67.56∗ 67.86 68.06 145.32 67.56∗ 67.67 68.16 153.68 67.56∗ 67.56 68.16 214.32
u3-30 76.75 77.93 285.81 76.75∗ 76.75 78.13 306.82 76.75∗ 76.75 78.28 298.28 76.75∗ 76.75 77.85 420.10
u3-36 104.49 106.37 898.90 104.06∗ 104.06 106.68 1038.76 104.06∗ 104.69 106.57 1078.92 104.06∗ 104.31 106.07 1589.46
u4-16 53.58 53.58 60.52 53.58∗ 53.58 53.58 62.49 53.58∗ 53.58 53.58 63.21 53.58∗ 53.58 53.58 85.00
u4-24 90.72 91.00 65.57 89.83∗ 90.21 90.90 68.48 89.83∗ 90.13 90.90 70.04 89.83∗ 90.08∗∗ 90.85 91.67
u4-32 99.29 99.42 156.27 99.29∗ 99.29 99.42 166.76 99.29∗ 99.29 99.42 162.08 99.29∗ 99.29 99.42 230.20
u4-40 133.78∗ 135.83 303.06 133.91∗ 133.61∗ 135.75 318.07 133.68∗ 134.23 136.16 326.55 134.01 133.36∗∗ 136.19 457.33
u4-48 148.48∗ 150.81 1390.74 NA 148.18∗ 150.53 1247.04 150.96 148.23∗ 150.21 1454.38 150.78 147.75∗∗ 149.71 2050.93
u5-40 121.96∗ 123.63 160.80 122.23 121.96∗ 123.50 163.39 122.22 121.96 123.77 166.90 121.96 121.96 123.94 237.16
u5-50 143.68 146.60 391.46 143.14 143.78 146.36 401.78 142.83 143.50 146.21 415.65 143.48 143.42∗∗ 145.65 619.05
Avg 397.15 410.43 432.83 835.06
γ = 0.7 BC AC CPU BC′ BC2 AC2 CPU2 BC′2 BC3 AC3 CPU3 BC′3 BC∞ AC∞ CPU∞
u2-16 59.19 60.01 419.57 59.19∗ 58.17 58.17 460.44 58.17∗ 58.17 58.17 530.24 58.17∗ 58.75 59.46 663.32
u2-20 56.86 58.39 1527.60 56.86∗ 56.86 58.03 1561.63 56.86∗ 56.86 57.98 1583.70 56.86∗ 56.86 58.39 2619.96
u2-24 92.84∗ 99.38 1065.06 NA 92.43∗ 105.67 1307.99 97.50 92.43∗ 101.95 1529.29 NA 92.77 100.36 2090.28
u3-18 50.99 50.99 206.92 50.99∗ 50.99 50.99 206.48 50.99∗ 50.99 50.99 217.78 50.99∗ 50.99 50.99 301.43
u3-24 68.39 68.44 375.75 68.39∗ 68.24 68.39 389.47 68.06∗ 68.24 68.51 419.27 68.06∗ 68.06∗∗ 68.41 544.52
u3-30 77.94∗ 79.37 1094.81 78.14∗ 77.94∗ 79.09 1132.97 78.16 77.94∗ 79.02 1293.92 78.16 77.83∗∗ 79.11 1595.22
u3-36 106.00 107.57 1606.43 105.79 106.39∗ 107.62 1521.37 107.65 106.39 107.07 1605.03 106.18 105.98∗∗ 106.95 2690.77
u4-16 53.87 53.87 96.90 53.87∗ 53.87 53.87 100.33 53.87∗ 53.87 53.87 103.29 53.87∗ 53.87 53.87 133.65
u4-24 90.07 90.97 254.45 89.96∗ 89.96 90.97 263.46 89.83∗ 89.91 90.97 282.62 89.83 89.83∗∗ 90.72 375.00
u4-32 99.50 101.09 325.31 99.50∗ 99.50 99.95 321.35 99.50∗ 99.50 100.34 342.44 99.50∗ 99.50 100.28 526.67
u4-40 136.08∗ 138.98 708.04 NA 134.98∗ 138.37 731.95 137.49 135.38∗ 138.01 730.23 137.61 134.94∗∗ 136.20 971.29
u4-48 152.58∗ 162.62 1958.80 NA 150.55∗ 154.19 1962.85 NA 151.57∗ 155.36 1955.60 NA 149.51∗∗ 152.90 2907.41
u5-40 123.52∗ 126.10 359.59 NA 124.04∗ 126.08 385.25 125.14 123.71∗ 125.63 401.18 124.18 123.32∗∗ 125.15 506.11
u5-50 143.51∗ 149.52 922.19 144.36 144.24∗ 148.13 923.51 164.19 143.51∗ 148.53 1001.25 144.10 142.89∗∗ 146.10 1165.39
Avg 780.10 804.93 856.84 1220.79



Su, Puchinger, and Dupin: A DA Algorithm for the E-ADARP
42

Table 12 Solution quality and performance on type-r instances when increasing the maximum number of

charging visits per station

DA with nas = 1 DA with nas = 2 DA with nas = 3 DA with nas = ∞
γ = 0.1 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC∞ AC∞ CPU∞
r5-60 691.83 706.20 178.44 689.75 703.86 175.42 688.52 706.91 180.86 687.68 705.59 171.75
r6-48 506.72 512.69 229.31 506.45 513.62 241.23 507.03 513.63 231.32 506.91 514.15 241.89
r6-60 692.00 700.15 127.03 690.15 701.15 133.74 692.24 701.86 137.18 691.07 702.09 128.33
r6-72 777.44 794.69 208.39 776.68 795.41 212.78 775.93 793.96 208.77 777.46 795.14 210.51
r7-56 613.10 624.51 88.20 614.61 623.65 91.27 615.61 623.52 84.50 614.18 622.69 87.32
r7-70 760.90 778.84 209.76 761.16 776.92 212.08 761.25 778.05 202.26 760.10 777.10 202.03
r7-84 889.38 904.88 322.66 884.43 903.96 318.05 890.47 905.78 339.95 885.89 905.13 300.21
r8-64 641.99 652.59 612.06 640.05 653.65 645.07 642.09 653.44 773.82 640.24 653.81 647.97
r8-80 803.52 828.67 357.75 807.04 826.91 366.82 799.00 826.71 376.87 804.02 826.92 372.21
r8-96 1053.11 1080.80 363.46 1052.19 1078.29 358.23 1064.64 1081.49 377.77 1049.98 1077.21 366.73

Avg 269.71 275.47 291.33 272.90

γ = 0.1 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC∞ AC∞ CPU∞
r5-60 697.97 718.44 293.25 703.00 721.56 308.94 692.84 710.40 288.01 691.72 709.78 285.00
r6-48 506.91 514.46 257.59 506.45 511.62 248.38 506.75 511.00 258.81 507.25 514.64 255.83
r6-60 694.78 706.07 173.43 693.80 706.11 175.96 693.03 703.13 174.80 692.83 701.86 174.24
r6-72 799.60 821.17 349.98 795.88 814.03 342.96 776.17 800.29 336.47 781.22 801.86 342.33
r7-56 613.66 624.40 99.91 612.76 625.42 98.97 616.24 623.58 100.81 615.74 623.51 99.11
r7-70 766.05 784.54 273.52 763.46 785.69 275.48 760.09 783.13 280.49 761.58 778.04 273.50
r7-84 932.12 NA 584.26 897.50 932.05 488.49 897.34 915.24 446.76 896.91 916.23 456.77
r8-64 638.36 652.30 641.63 642.34 652.65 646.45 639.01 652.80 671.52 637.84 652.17 719.50
r8-80 811.19 833.05 448.14 816.17 834.80 438.40 808.14 828.89 420.03 813.16 829.92 450.94
r8-96 NA NA 617.17 1089.18 1129.20 588.26 1060.48 1098.13 545.21 1058.41 1090.04 564.49

Avg 373.89 361.23 352.29 362.17

γ = 0.7 BC AC CPU BC2 AC2 CPU2 BC3 AC3 CPU3 BC∞ AC∞ CPU∞
r5-60 NA NA 507.76 731.84 770.95 484.01 704.97 725.74 483.86 708.54 723.73 492.51
r6-48 NA NA 502.21 518.87 540.88 507.06 509.80 525.98 486.31 509.76 525.10 483.94
r6-60 NA NA 327.25 716.48 741.76 300.67 700.82 713.33 306.60 697.57 711.52 289.76
r6-72 NA NA 590.56 920.61 NA 605.16 798.26 817.20 561.24 796.19 826.48 574.02
r7-56 NA NA 221.09 644.19 662.06 208.57 622.66 640.69 210.29 625.91 641.82 212.05
r7-70 NA NA 510.60 866.06 NA 507.14 777.85 803.20 465.43 781.56 800.35 480.03
r7-84 NA NA 790.95 NA NA 753.17 906.14 938.15 623.70 915.61 938.49 705.25
r8-64 NA NA 1207.35 664.02 698.61 1170.20 647.02 666.20 1185.16 649.93 668.48 1290.02
r8-80 NA NA 868.04 966.47 NA 846.51 829.54 857.56 707.30 843.26 865.90 744.33
r8-96 NA NA 860.97 NA NA 845.14 1105.82 1145.82 646.04 1097.76 1136.43 806.99

Avg 638.68 622.76 567.59 607.89


	1 Introduction
	2 Literature Review
	2.1 Related literature of DARPs with EVs
	2.2 Related literature of E-VRPs
	2.3 Minimizing total or excess user ride time in DARPs 
	2.4 Conclusion and proposed solution methodology

	3 The E-ADARP Description
	3.1 Notation and problem statement
	3.2 Objective function of the E-ADARP 
	3.3 Constraints of the E-ADARP 
	3.4 Multiple visits at recharging stations?

	4 Excess User Ride Time Optimization
	4.1 Representation of paths
	4.2 Excess user ride time optimization for a fragment
	4.3 Exact route evaluation scheme of linear time complexity

	5 Deterministic Annealing Algorithm for the E-ADARP
	5.1 Parallel insertion heuristic
	5.2 Recharging station insertion for a given route
	5.3 Local search
	5.3.1 Intra-route operators
	5.3.2 Inter-route operators
	5.3.3 Insertion operator

	5.4 Implementation details
	5.4.1 Preprocessing works
	5.4.2 Adapt DA algorithm to allow multiple visits to each recharging station


	6 Computational Experiments and Results
	6.1 Benchmark instances and abbreviations
	6.1.1 Benchmark Instances
	6.1.2 Abbreviations in the tables

	6.2 Parameter tuning for the DA algorithm
	6.2.1 Sensitivity analysis and parameter tuning for max
	6.2.2 Contribution of local search operators
	6.2.3 Sensitivity analysis on number of iterations

	6.3 DA algorithm performance on the E-ADARP instances
	6.3.1 Type-a instances results under different energy restrictions
	6.3.2 Type-u instances results under different energy restrictions
	6.3.3 Type-r instances results under different energy restrictions
	6.3.4 Conclusion of algorithm performance

	6.4 Sensitivity analysis of the maximum number of charging visits per station

	7 Conclusions and Perspectives
	A Preliminary experimental results for fragment enumeration
	B DA algorithm results on type-a instances under different max values
	C Sensitivity analysis of increasing the maximum number of charging visits per station


