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Abstract

This paper investigates the Electric Autonomous Dial-a-Ride Problem (E-ADARP) which consists of scheduling

electric autonomous vehicles (EAVs) to transport users from specific origins to specific destinations within predefined

time windows. We propose a Deterministic Annealing (DA) meta-heuristic where efficient local search operators are

integrated to enhance the solution’s quality. The potential visits to the recharging stations are explicitly handled by

a bi-directional insertion algorithm. Computational experiments prove the effectiveness of the proposed algorithm

in solving E-ADARP. The experiments are conducted under three scenarios: low, medium, and high energy level

restriction, representing the constraint on the minimum level of the battery capacity at the end of the route. For

each scenario, adapted instances from the literature are tested and an average gap of 0.58% is achieved compared to

the best-known solutions for E-ADARP. Several new best solutions are found on previously solved and unsolved

instances. Then, we investigate the effect of allowing multiple visits to the recharging stations. The experiments

show that this operation can efficiently decrease the total cost and improve the solution feasibility. Furthermore, we

establish new benchmark instances based on literature with up to 8 vehicles and 96 requests, with our algorithm

providing feasible solutions that the exact method from the literature cannot solve in a given amount of time. These

results are an indicator of the high performance of the proposed algorithm.

Keywords: Dial-a-Ride problem, Electric autonomous vehicles, Deterministic annealing, Local search,

Meta-heuristic, Vehicle routing

1. Introduction

With an astounding growth in automobile ownership, a series of transport-related problems appear worldwide.

These problems, such as greenhouse gas emissions and urban traffic congestion, have severely impacted both the

economy and the environment. For example, the cost of congestion in the United States alone is approximately

$121 billion per year, including 5.5 billion hours of time lost and an extra 2.9 billion gallons of fuel burned [1].The

increasing emission of greenhouse gas worldwide leads to climate change and the rise of sea levels. To address these

concerns, two effective axes have been introduced: using clean energy powered vehicles and providing ride-sharing

services. In replacing conventional unsustainably-fueled vehicles with electric powered ones, the rechargeable battery
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as a power source has the advantages of zero greenhouse gas emission, less energy cost per mile, and lower noise [2].

However, limitations, such as driving range and the potential need to recharge on the route, have a direct impact on

vehicle routing results when dispatching battery electric vehicles to fulfill pickup and delivery tasks. In this study,

we consider the optimal scheduling of the EAVs for user-specific transport requirements.

Ride-sharing services is the second possible axis being investigated. Ride-sharing services can reduce the number

of vehicles on the route, rendering transport more efficient, benefiting customers with discounted ride price. Ride-

sharing service is therefore a win-win strategy from both economic and environmental aspects. The Dial-a-Ride

Problem (DARP) is a class of combinatorial optimization problems where customers can formulate transportation

requests from a specified origin (or pickup point) to a destination (or drop-off point). A fleet of vehicles serves

customers by providing ride-sharing services, respecting a series of constraints (e.g., time-window constraint, capacity

constraint, maximum user ride time constraint). This problem is a variant of the vehicle routing problem and has

been widely studied in previous literature (e.g., [3], [4], [5], [6],[7], [8] ). However, the studies that combine electric

vehicles with DARP are scarce. To the best of our knowledge, the only work explicitly considering the use of EAVs

in the context of DARP is the work of [9].

Our study determines the optimal routes in the Electric Autonomous Dial-a-Ride Problem (E-ADARP). A partial

recharging policy is employed in our study, and the discharging and recharging rates are assumed to be constant.

Additionally, a minimum battery level should be satisfied by vehicles when they return to the depot. All the user

requests are known in advance and need to be served.

As E-ADARP extends from classical DARP, the exact methods cannot solve large-scale instances within reasonable

computational time. Using soft computing techniques such as heuristics and meta-heuristics is the most viable way

to find a near-optimal solution for large-scale instances in an acceptable time frame. We established a meta-heuristic

approach, namely Deterministic Annealing (DA) meta-heuristic enhanced by a Local Search (LS) for intensification.

The recharging stations are explicitly handled by a bi-directional insertion algorithm. An adaptive update of

a threshold value for the acceptation criterion is also applied in each iteration. In numerical studies, we assess

the performance of the proposed algorithm on modified Cordeau instances ([10]) that have been supplemented

with charging stations and battery specifications. The real open source data provided by Uber Technologies

(https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata) is also used in the experiments. After

verifying the algorithm’s effectiveness, we extend the model and consider the multiple visits on the recharging

stations. We investigate the effect of allowing multiple visits to the same recharging station in contrast to [9].

Moreover, we introduce the new Ropke instances ([11]) that have been supplemented with problem-related features

to conduct large-scale experiments.

The remainder of this paper is organized as follows. The next section presents an overview of related literature.

Section 3 provides the problem definition. The meta-heuristic algorithm to solve E-ADARP into near optimum is

presented in Section 4. In Section 5, the algorithm performance is first compared to the benchmark provided by

Bongiovanni. Next, extensive numerical experiments are conducted on Cordeau instances, Ropke instances and Uber

instances and new benchmark results are generated. The paper ends up with the conclusion and future work.
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2. Literature Review

There are two major approaches in the literature to solve DARP. One is the exact method approach, and the

other is the approximation approach (i.e., heuristic/meta-heuristic method). A detailed literature review on the

dial-a-ride problem can be found in [12] and [13]. According to the problem features of E-ADARP, we focus on

reviewing the representative works that relate to the following characteristics: heterogeneous vehicle fleets, multiple

depots, and the use of electric vehicles.

Parragh [14] formally introduces the heterogeneous DARP (H-DARP) that considers the needs of different users

(i.e., staffs, patients) and satisfies their requirements (i.e., normal set, sketchers, wheelchairs) by assigning different

types of vehicles. A Variable Neighborhood Search (VNS) is employed and tested on 36 instances with up to four

vehicles and 48 requests. Parragh et al. [15] extend the previous work by considering driver-related constraints into

H-DARP. The column generation is combined with the VNS method and yields high-quality solutions for realistic

instances. Braekers et al. [16] proposed a new variant of DARP by considering multiple depots and heterogeneous

vehicle fleets. Each vehicle is assigned to a specific depot, and the vehicle should start from and end up with the

same depot. Both the exact method and meta-heuristic method are used in their study, and Deterministic Annealing

is first used in solving the DARP. The proposed algorithm is tested on DARP benchmark instances with up to 13

vehicles and 144 requests, and several best-known solutions for unsolved instances are improved. Based on the work

of Braekers et al. [16] and Masmoudi et al. [17] develop a hybrid genetic algorithm to solve H-DARP. The algorithm

is tested on 92 benchmark instances and 40 newly introduced instances. The average gap of the found solutions with

the optimal or best-known solutions is less than 0.5 %.

In the context of electric DARP, Masmoudi et al. [18] consider using electric vehicles in the H-DARP, and

the recharging operation is realized by swapping battery from battery-swap stations. They use a realistic energy

consumption model to formulate the problem, and three enhanced Evolutionary Variable Neighborhood Search

(EVO-VNS) are introduced. Bongiovanni et al. [9] study electric autonomous DARP (E-ADARP), where the authors

consider partial recharging policy, detour to recharging stations, and selection of destination depots. In the objective

function, they minimize the weighted sum of total travel time and total user excess ride time. They formulate the

problem into a three-index, a two-index model, and new valid inequalities tailored by problem-specific constraints

are introduced in a branch-and-cut algorithm. Based on standard instances from [10], they establish new instances

that are supplemented with recharging stations and related parameters. The exact method proposed in this work

can solve instances with up to 5 vehicles and 40 requests into optimality. However, no heuristic or meta-heuristic

algorithm has been proposed yet for E-ADARP.

We also review some vehicle routing problems that proposed the heuristic approach to solve VRPs with electric

vehicles (e.g., [19], [20], [21], [22, 23]). Among them, Erdoğan and Miller-Hooks [19] first proposed a green vehicle

routing problem using alternative fuel vehicles. A set of recharging stations are allowed to be visited during vehicle

trips. Two constructive heuristics are designed to obtain feasible solutions and enhanced by means of local search to

further reduce the total traveled distance. However, the capacity restrictions and time window constraints are not

considered in their model. Based on this work, Schneider, Stenger, and Goeke [20] propose a more complicated model

named E-VRPTW. They extend the work of [19] by using electric vehicles and considering limited vehicle capacity
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and specified customer time window. A Variable Neighborhood Search (VNS) hybridized by Tabu Search in local

search is proposed to address E-VRPTW. The recharging stations are inserted or removed by a specific operator.

Similar to [19], the recharged energy is assumed to be linear with the recharging time, and a full recharging policy is

applied. All the vehicles in this study are assumed to be identical in terms of vehicle and battery capacity. Goeke

and Schneider [21]extend the homogeneous E-VRPTW by considering a mixed fleet of electric and conventional

vehicles. A realistic energy consumption model that integrates speed, load, and road gradient is employed. To

address the problem, they propose an Adaptive Large Neighborhood Search algorithm using the surrogate function

to evaluate violations efficiently. Hiermann, Puchinger, Ropke, and Hartl [22] extend the work of [21] by taking into

account the heterogeneous aspect (i.e., fleet composition). They solve the problem by Adaptive Large Neighborhood

Search (ALNS). A labeling algorithm is embedded to optimize the positions of recharging stations. The recharging

policy considered in this work is also fully recharging with a constant recharging rate. Hiermann et al. [23] extend

their previous study by applying a partial recharging policy for a mixed fleet of conventional, plug-in hybrid, and

electric vehicles. The engine mode selection for plug-in hybrid vehicles is considered as a decision variable in their

study. A layered optimization algorithm is presented. This algorithm combines labeling technics and a greedy route

evaluation policy to calculate the amount of energy required to be charged, as well as determine the engine mode

and energy types. This algorithm is finally hybridized with a set partitioning problem to generate better solutions

from obtained routes.

Based on our review, the use of electric vehicles is widely studied in the VRPs but not yet in the DARPs.

Furthermore, there is no meta-heuristic designed to tackle DARP with EAVs. With the future prevalence of electric

vehicles and autonomous vehicles, using the meta-heuristic method to solve complex E-ADARP is of great value.

3. Problem Definition

In this section, we recall the E-ADARP definition proposed by [9]. The problem is defined on a complete directed

graph G = (V,A) where V presents the set of vertices and A the set of arcs. V is further partitioned into two

subsets: N = 1, 2, · · · , i, · · · , 2n presents the pickup and drop-off nodes set, and F = 2n+ 1, · · · , 2n+ f is the set

of recharging stations. It should be noted that the user nodes must be visited exactly once. The depot should

be visited at the start and at the end of the tour. If it is necessary, the depot can serve as a recharging station.

Moreover, the destination depot is not predefined for each vehicle and can be selected from a set of optional depots.

For each user request, a pickup node and a drop-off node is associated. Each request is a couple (i, n+ i), where

i = 1, · · · , n. All the user requests are known at the beginning of the planning horizon.

For each vehicle k ∈ K, the maximum capacity for each vehicle is denoted as V Ck. For each driver, the maximum

route duration is Tmax. The battery capacity is supposed to be identical for all the electric vehicles, denoted as

BCk. Vehicles can be heterogeneous in terms of vehicle and battery capacity. In our case, we follow the study of [9],

and vehicles are assumed to be identical in terms of their vehicle and battery capacity.

For each user node i ∈ N , the time window is defined as [ei, li], in which ei and li represent the earliest and

latest time, respectively. Each user pickup and drop-off node is associated with a load qi and a service duration si.

As for drop-off point n+ i, qn+i = −qi (i = 1, · · · , n). On the set of origin and destination depot, load and service
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duration at the depot is zero. The cost and travel time on each arc is denoted as ci,j , and ti,j , respectively. The

maximum travel duration for request i is denoted as mi.

At the recharging station, the amount of energy recharged is supposed to be proportional to the time spent at

the facilities. The recharging rate of facilities at recharging station f is denoted as αf , according to their recharging

technologies (i.e., fast recharging or slow recharging). As we have mentioned beforehand, the vehicle can be partially

recharged while visiting recharging stations and should return to the destination depot with a minimal battery level.

We define a minimal battery level ratio γ to present the minimum battery level that vehicles must maintain at the

end of routes. The recharging station can only be visited when there is no passenger on-board. Regardless of the

features that the electric vehicle fleet inherits, vehicle autonomy should be taken into account. The route duration

constraints are not included as we do not need to consider the driver’s shift. Moreover, the destination depot will

not be predefined at the beginning of the time horizon, and it will be decided during the service.

To summarize, the E-ADARP consists of the following features that are different from the typical DARPs: (1)

detour to recharging station on the route, (2) partial recharging at recharging station, (3) vehicle can locate at

different origin depots, (4) vehicle can select from a set of optional destination depot, (5) no restriction for route

duration time.

The following constraints should be satisfied:

(1) Every route starts from an origin depot and ends at a destination depot;

(2) For each request, its corresponding pickup and drop-off node should belong to the same route, and the pickup

node should be visited before its drop-off node;

(3) User nodes and origin depots should only be visited once, while each destination depot can be visited at most

once;

(4) The maximum vehicle capacity should be respected at each node;

(5) Each node should be visited within its time window [ei, li] where i ∈ V . Waiting time occurs when the vehicle

arrives earlier than the earliest time window;

(6) The maximum user ride time should not be exceeded for any of the users;

(7) The battery level at the destination depot should surpass the minimal battery level;

(8) The energy contains in the vehicle should not exceed the battery capacity;

(9) To consider the user’s inconvenience, we set the objective function as a weighted sum of total travel time and

total excess user ride time;

For a mathematical formulation of E-ADARP, readers can refer to [9].

4. Meta-heuristic Algorithm

The studied E-ADARP is a combinatorial optimization problem and can hardly be solved exactly for benchmark

instances of realistic sizes. Indeed, many aspects (e.g., time window constraints, energy constraints, optimizing

visits to recharging stations, recharging time) should be accounted for when evaluating a single route. In order to

solve large-scale instances within a reasonable computational time, heuristics and meta-heuristics can be applied.

Meta-heuristics have a more global view than heuristics because they allow to deteriorate the current solutions
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or even accept the infeasible intermediate solutions. Comparing to heuristics, meta-heuristics are less likely to be

trapped in a local optimum and can provide a more profound search.

In this section, we establish a meta-heuristic algorithm, namely Deterministic Annealing (DA) meta-heuristic

enhanced by a Local Search (LS) for intensification, to obtain near-optimum solutions for E-ADARP. Deterministic

Annealing is a variant of simulated annealing meta-heuristic and is first introduced by [24]. Recent researches show

that deterministic Annealing can obtain near-optimal or optimal solutions for a series of vehicle routing problems

([25, 16], [26]). To the best of the authors’ knowledge, the only paper that implements deterministic Annealing to

solve DARP is that of [16], and it proves the great potential of DA to tackle such problems.

The mechanism of the DA method is illustrated as follows: in each iteration, we apply local search operators to

obtain the neighborhood solution x′. For each operator, once the obtained neighborhood solution’s cost f(x′) is less

than the current solution cost f(x), the generated neighborhood solution is accepted. Otherwise, if f(x′)− f(x) is

smaller than the threshold value T , the generated solution is also accepted. The threshold value is updated in each

iteration after the local search and is gradually lowered until zero ([16]). The global best solution is updated by only

accepting the solution that is better than the current best solution or the solution that contains more customers (in

the case that initial solution cannot insert all customer requests).

There are several reasons for choosing Deterministic Annealing in the meta-heuristic algorithm. The main

reason is that: unlike the extensively applied Adaptive Large Neighborhood Search (ALNS), which relies on various

parameters (weight factors, operator related parameters) and tedious parameter tuning process, Deterministic

Annealing largely relies on a single parameter T , leading to a more efficient application in practice. Secondly, the

successful application of Deterministic Annealing in [16] to tackle DARP has proven robust in handling complex

DARP. Finally, as mentioned in the literature review, Deterministic Annealing has been applied to tackle neither

DARP nor VRP with electric vehicles. It brings us the research potential to explore whether the algorithm can

tackle complex E-DARP problem. From our algorithm results, the proposed meta-heuristic performs well compared

to the results provided by the exact method.

This section is organized as follows. Firstly, the algorithm structure will be presented, particularly the mechanism

of updating the threshold value iteratively and the restart mechanism. Secondly, the constructive heuristic to generate

the initial solution will be illustrated. Then, the local search operators will be discussed, where a bi-directional

insertion algorithm is embedded in each operator to explicitly determine the insertion of the recharging station.

Some techniques used to reduce the neighborhood size is illustrated at the end.

4.1. Algorithm structure

The algorithm structure for the proposed Deterministic Annealing and Local Search (hereafter DA+LS) is

presented in Algorithm 1.The algorithm input is the obtained solution from a parallel insertion heuristic. The

solution cost is denoted as c(x), and the number of requests served in the solution is Nbreq. It should be mentioned

that the initial solution found by parallel insertion heuristic is not guaranteed to be feasible; we thus do not consider

inserting recharging stations to repair battery infeasibility in this process. The un-inserted requests are called

”rejected” requests and will be inserted in the local search process by a specific operator named “AddNewRequest”.

No infeasibility is tolerated during the initial solution construction process. There are basically two steps in the

6



main algorithm: local search and threshold update. At the beginning of the algorithm, the threshold value T is set

to Tmax, and the best solution xb and current solution x′ are initialized to initial solution xinit. The number of

iteration is denoted as Nbiter. During the local search process, the local search operators are applied to alter the

current solution. In the next step, the threshold value is updated and restart when the value is negative.

In the local search process (line 3 to line 20), the number of operators used depends on the number of assigned

requests in the initial solution. In case of existing un-inserted requests, an operator named “AddNewRequest” is

designed to add these requests into the neighboring solution found by intra-route/inter-route operators (line 15 to

line 17). Once all the requests have been properly included in the routes, this operator is deactivated. During the

local search process, when encountering battery-infeasible solutions, the bi-directional insertion algorithm is called

to insert recharging stations at proper places. Each operator (intra- or inter-route) returns the best neighbor x′

from current solution x if it exists. Solution x′ is accepted to become the new current solution when the number

of assigned requests increases or the total cost is less than that of the current solution plus the threshold value T .

Once the new solution x′ is accepted, it will also be checked whether it is the best solution xb or not.

Algorithm 1 Deterministic Annealing Algorithm

Input: Initial solution generated by parallel heuristic

Parameter initialization: T = Tmax, nimp, Nbiter, iimp = 0,iter = 0;

x = xb = xinit;

c(xb) = c(x) = c(xinit);

Nbreq =
∑
k∈K

∑
i∈Pu

vi,k;

Output: Improved feasible solution xb;

1: while iter 6 Nbiter do

2: iimp ← iimp + 1;

3: for j = 1→ noper do

4: Apply local search operator on x to obtain neighboring solution x′;

5: if x is battery-infeasible solution then

6: bi-directional insertion algorithm to repair in-feasibility;

7: end if

8: if c(x′) < c(x) + T then

9: x← x′;

10: end if

11: end for

12: if Nbreq 6 Nbuser then

13: noper ← AddNewRequest

14: end if

15: iter ← iter + 1

16: Nb′req ←
∑
k∈K

∑
i∈Pu

v′i,k

17: if c(x′) < c(xb) and Nb′req = Nbreq or Nb′req > Nbreq then

18: xb ← x′
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19: iimp ← 0

20: end if

21: if iimp > 0 then

22: T ← T − Tmax/Tred

23: if T < 0 then

24: r ← random number between 0 and 1

25: T ← r × Tmax

26: if iimp > nimp then

27: x← xb

28: iimp ← 0

29: end if

30: end if

31: end if

32: end while

33: return xb

In the threshold update process (line 21 to line 31), when no global best solution is found, the threshold value is

reduced by Tmax/Tred, where Tred is a predefined parameter. When T becomes negative, the threshold value is reset

to r × Tmax, with r a random number generated between zero and one. The search is restarted from xb when T is

negative, and no improvement is found in nimp iterations.

4.2. Insertion Heuristic

We use a parallel insertion heuristic to obtain the initial solution. In the first step, we randomly generated m

routes (0 < m < K with K being the number of total vehicles). All the requests are sorted in increasing order with

regards to their earliest time window ei. Each of the m first requests in the sorted list are assigned randomly to

different routes. These requests are deleted from the original list. Next, we try to insert the rest users one by one

into the routes with regards to various constraints.

The insertion process is based on two steps. In the first step, the distance between the last assigned element

in each existing routes with the first element in the list is calculated and sorted in increasing order. Then, route

by route, the new users will be examined its feasibility. If this user can be inserted into one route, its pickup and

drop-off nodes will be inserted at their best positions (i.e., the position that has minimum increase on total cost) in

this route. We delete this customer node in the sorted list and move to the next. If the insertion of the customer

node is infeasible, then this customer node will be kept in the list, and we move to the next. If some users are

still not assigned, a new route is activated, and the above process will be repeated. The algorithm below explicitly

describes the whole insertion process.

4.3. Local Search Operators

Seven operators have been applied to improve the initial solution generated from the constructive heuristic.

Among them, three are intra-route operators (i.e., exchange-pickup, exchange-drop-off, exchange-two-neighboring-

node), three are inter-route operators (i.e., relocate, exchange, and 2-opt). We don’t apply the complex intra-route
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Algorithm 2 Parallel Insertion Heuristic

Input: Initialize the set of non-assigned users sorted in increasing order of earliest pickup time;

Randomly selected m vehicles and assign the first m users to different vehicles;

Output: x∗: Optimal routing schedule for each vehicle

1: repeat

2: Select the first non-assigned user from the list;

3: Sort vehicles in increasing order of distance between the last assigned user and the selected user;

4: Select the first vehicle in the list;

5: repeat

6: Check the feasibility of the user’s pickup and drop-off nodes;

7: if one or more feasible options are found then

8: Insert the user in the best position;

9: else

10: Select the next vehicle in the list;

11: end if

12: until the user is inserted;

13: Remove the user from the list of non-assigned users;

14: until any user cannot be inserted into any routes;

operator such as ejected chains (e.g., [27]) as the advanced operator can actually be realized by elementary moves,

which is more computationally efficient in the case of large iteration times. To tackle the requests that could not be

inserted into any routes during the constructive heuristic, the AddNewRequest is applied in each iteration to try to

add un-inserted requests into routes.

Exchange pickup aims at swapping the position of two consecutive points (i, j), which point i is a pickup node

and point j is not the corresponding drop-off node. In each iteration, one pickup node is selected randomly. If the

succeeder of this pickup node does not corresponds to its drop-off node, then the two positions are exchanged. The

following Figure is an example of applying this operator.

Figure 1 Exchange pickup

Exchange drop-off is designed to swapping the position of two neighboring nodes (i, j), in which point j is a

drop-off node and point i is not the corresponding pickup node. In each iteration, one drop-off node is selected

randomly, if the precedent node of this drop-off node does not correspond to its pickup node, then the two positions
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are exchanged.

Figure 2 Exchange dropoff

There is another situation shown in the following Figure, where the successive node of pickup node Pi is its

drop-off Di, and the previous node of drop-off node Dj is its corresponding pickup Pj , but we can still exchange Di

and Pj to obtain a new solution. This operation is realized by exchange-two-neighboring-node.

Figure 3 Exchange two neighbor

Relocate operator removes a user request from its current route and re-insert the request in the best position

in the route of another vehicle. The operator is applied on a randomly selected user request of a single randomly

selected route. It should be mentioned that this operator may eliminate a route if the selected route contains only

one request. When the number of routes activated in the solution is less than the number of available vehicles,

assigning a request to an idle vehicle is acceptable.

The exchange operator swaps two requests of two different routes. The pickup (drop-off) vertex of the first route

can only be inserted in the same position as the pickup (drop-off) vertex of the second route. The re-insertion of the

second request to the first route should be fulfilled at the best insertion position.

The 2-opt operator selects two random routes (denoted as route1,route2) and removes an arc from each of them.

The removed arc is connected with the remaining part of the other route in the route pair. That is, the first part of

the route1 is connected with the second part of the route2; the first part of the route2 is connected with the second

part of the route1.

AddNewRequest operator is applied in each iteration, trying to insert the ”rejected” requests into routes. While

there are no more ”rejected” requests to be inserted, this operator is deactivated.

4.4. Bi-directional Insertion Algorithm

Each operator is embedded with the bi-directional insertion algorithm when there is a battery-infeasible solution

to be repaired. The algorithm structure is shown in the following pseudo-code. There are two algorithms included
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in the bi-directional insertion algorithm, namely the forward insertion algorithm (shown in 4) and the backward

insertion algorithm (shown in 5). Their corresponding pseudo-codes are depicted below.

In the bi-directional algorithm (3), line 1 to line 7 determines the position list that can be inserted in a recharging

station. As we stated in the previous section, the vehicle can only go to the recharging station when the vehicle load

is zero. Since the orders of nodes on the route is fixed, the possible positions of recharging stations are also fixed.

We first calculate the energy list that contains the energy levels for nodes. If all the energy levels are positive, we

directly use the backward insertion algorithm to insert recharging stations from the end of route. Otherwise, the

forward insertion algorithm is then called to repair the battery negativity. Once the energy levels are repaired to be

positive, the backward insertion algorithm is employed to generate a battery feasible solution xr.

Algorithm 3 Bi-directional Insertion Algorithm Structure

Input: Battery infeasible solution x;

Output: Repaired feasible solution xr;

1: cap = 0,pos = ∅;

2: for i = 1→length(route) do

3: cap = cap+ qroute[i];

4: if cap = 0 then

5: pos = pos ∪ i;

6: end if

7: end for

8: Calculate energy list that contains energy level at each node;

9: if energy levels in the route are positive then

10: Backward Insertion Algorithm to repair the minimum battery level constraint;

11: else

12: Forward insertion algorithm to repair the negative battery level;

13: Adjust the values of elements in pos;

14: Backward Insertion Algorithm to repair the minimum battery level constraint;

15: end if

16: return xr

The forward insertion algorithm (4) is applied to repair the battery-positive constraint. It starts from the

last zero-load node that has a positive energy level. The recharging time (denoted as RT ) is calculated as the

minimum of time required to recharge to satisfy the battery constraint (denoted as RequiedT ime) and time allowed

by respecting the time window on the next visited node (denoted as AllowedT ime). If RT is not zero and there

is at least one reachable recharging station from this position, then the recharging station that has the minimum

detour is inserted. Otherwise, the solution cannot be fixed and the insertion process is terminated. Each time when

inserting a recharging station, the energy list is updated. Once the energy level at the end depot is positive, the last

inserted recharging station position will be recorded and the forward insertion is ended.

We use the backward insertion algorithm (5) to repair the minimum battery level infeasibility. Firstly, We reverse
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Algorithm 4 Forward Insertion Algorithm

Input: Energy negative solution x;

Output: Energy-positive route x′, last inserted position index indexend, updated energy list;

1: Calculate last energy-positive node index;

2: while end depot energy is negative do

3: RT = max{0,min{RequiredT ime,AllowedT ime}};

4: if RT is not zero and there exists reachable recharging stations then

5: Inserting the recharging station that has minimum detour;

6: if energy constraint satisfied then

7: Record indexend;

8: Update energy list;

9: else

10: Recharge RT ;

11: Update energy list;

12: Move to the next position;

13: end if

14: else

15: Solution cannot be fixed, return ∅, ∅, ∅;

16: end if

17: end while

18: return x′, indexend, updated energy list;
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the position list and start to insert a recharging station from the end of the route (line 2). For each position, the

recharging time RT is calculated similar to the forward insertion algorithm. If RT is not zero and there is at least

one reachable recharging station from this position, then the recharging station that has the minimum detour is

inserted. Otherwise, the solution is discarded. After inserting the recharging station, the energy list is updated and

battery constraints are re-examined. If the energy constraint is satisfied, this solution is returned. Otherwise, the

vehicle can only recharge RT , and the next possible position is considered. The algorithm is ended when the time

window constraint is violated (RT = 0) or all the possible positions have been tested. If the solution cannot be

repaired after trying all possible positions, the solution is discarded.

Algorithm 5 Backward Insertion Algorithm

Input: Possible position set pos and indexend, energy-positive route x′, updated energy list;

Output: Repaired feasible solution xr;

1: violation = true;

2: Reverse pos;

3: for i = 1→ indexend do

4: RT = max{0,min{RequiredT ime,AllowedT ime}};

5: if RT is not zero and there exists reachable recharging stations then

6: Inserting the recharging station that has minimum detour;

7: if energy constraint satisfied then

8: violation = false

9: Return repaired solution, violation;

10: else

11: Recharge RT ;

12: Update energy list;

13: Move to the next position;

14: end if

15: else

16: Discard solution;

17: end if

18: end for

19: if violation == true then

20: Discard solution;

21: end if

4.5. Reducing Neighborhood Size

In the local search process, the neighborhood is searched by using different operators. As we iterate the meta-

heuristic thousands of times to find high-quality solutions, the size of the neighborhood has a direct impact on

computational efficiency. In order to decrease the computation time, several technics are applied to reduce the size of

the neighborhood, including time window tightening, arc elimination ([10]), and customer correlations measure ([28])
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A time-window tightening process is executed: (1) for user pickup nodes, ei was set to max{ei, en+i −mi − si}

and li = min{ln+i − ti,n+i − si, li}; for user drop-off nodes, e(n + i) = max{en+i, ei + ti,n+i + si}, and ln+i =

min{li +mi + si, ln+i}, (2) for recharging station, the time window can be tightened by considering the travel time

from the origin depot to recharging station and from recharging station to the destination depot. The earliest time

to start service at charging station f is set to min{ej + tj,f}, where j is the origin depot; the latest time at charging

station f to start service at recharging station is max{Tp − tf,j}, where j is the destination depot, (3) for origin and

destination depot, the earliest time window ei is set to max{0,min{ej − ti,j}}, where j is user pickup node set, and

li = min{li,max{lj + si + tj,i}}, where j is user drop-off node set.

The arc elimination process follows the method of [10]. Several arcs can be removed from the graph as they will

not lead to a feasible solution. This operation significantly decreases the neighborhood size and computational time.

Finally, to further improve computational efficiency, we make reference to [28] and apply a customer-correlation

measure to reduce the number of neighbors considered. A set of ”promising” arcs are calculated for each customer

node using the following formula:

r(u, v) = du,v + rWT ×max{ev − du − tu,v − lu, 0}+ rTW ×max{eu + du + tu,v − lv, 0}

Where rWT is the parameter associated with waiting time, rTW is the parameter associated with time window

violation. The set size of promising arcs is set to 40 and rWT = 0.2,rTW = 1.0 as used in [28].

5. Numerical Experiments

In this section, we conduct extensive numerical experiments and analyze the results. All the algorithms are

implemented in Julia 1.3.0 and performed on a 3.20 GHz Intel Core computer with 32G RAM. Three sets of instances,

namely adapted instances from [10], [9], and [11] are considered (hereafter called adapted Cordeau, Uber, and Ropke

instances), and three different scenarios (i.e., low-energy, medium energy, and high-energy restriction) for each set

of instances are discussed. Algorithm results are compared to the exact results presented in [9]. This section is

organized as follows. The benchmark instances used to test the algorithm performance are introduced in the first

part. Then the sensitivity analysis is conducted on the existing instances to find good parameter settings for the

parameters in deterministic Annealing. Additionally, we illustrate the design decisions on the main components of

our algorithm by analyzing the contribution of each operator on solution quality. After ensuring the robustness of

parameters and operators, we first compare separately the results of the algorithm with that of the exact model

under different scenarios on each set of instances. To keep the results comparable, we restrict visits on recharging

stations as the authors did in [9]. Then, we relax the constraint on visits to the recharging stations and we compare

the results with these in the previous part. The effect of allowing multiple visits on the recharging station is analyzed.

Based on previous literature [11], we establish adapted new instances with problem-related characteristics. Finally,

the proposed algorithm is performed on the newly-introduced instances to provide feasible solutions under different

energy restrictions.
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5.1. Benchmark Instances

Three sets of instances are considered in the experiments: (1) the standard DARP benchmark instance set

(instance name starts with “a”) from [10] supplemented with features of electric vehicle and recharging stations. (2)

instances based on the ride-sharing data from Uber Technologies (instance name starts with “u”) that adopted from

[9], and (3) the adopted large DARP benchmark instances from [11] are also included (with up to 8 vehicles and 96

requests). In each set of instances, three different minimum energy restrictions, namely γ = 0.1, γ = 0.4, γ = 0.7,

representing respectively low-energy, medium-energy, and high-energy restriction scenario are discussed. We present

the algorithm results under each of the energy settings. The higher the value of γ, the stricter the requirement for

the energy maintained when vehicles return to the depot.

The instances adopted from [10] are supplemented with recharging station ID, vehicle capacity, battery capacity,

the final state of charge requirement, recharging rates, and discharging rates. The same operation is applied to

instances adopted from [11] to generate large-scale set of instances. The vehicle capacity is set to three passengers,

and the maximum user ride time is 30 minutes. Recharging rates and discharging rates are all set to 0.055KWh

per minute according to the design parameter of EAVs provided in: https://www.hevs.ch/media/document/1/

fiche-technique-navettes-autonomes.pdf. The efficient battery capacity is set to 14.85 KWh, and the vehicle

can approximately visit 20 nodes without recharging.

The ride-sharing dataset of Uber is obtained from the link: https://github.com/dima42/uber-gps-analysis/

tree/master/gpsdata. The Uber instances are created by extracting origin/destination locations from GPS

logs in the city of San Francisco (CA, USA) and applying Dijkstra’s shortest path algorithm to calculate the

travel time matrix with a constant speed setting (i.e., 35km/h). Recharging station positions can be obtained

through Alternative Fueling Station Locator from Alternative Fuels Data Center (AFDC). For a more detailed

description of instances development, the interested reader can refer to [9]. The preprocessed data that extract

requests information from the raw data provided by Uber Technologies are published on the EPFL website

(https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip).

5.2. Parameter Adjusting

The performance of the proposed algorithm depends on several parameters that should be set in advance. We

should therefore identify the robust parameter settings in order to ensure the algorithm performance.

The related parameters are (1) Number of iterations Nbiter, (2) Maximum threshold value Tmax, (3) Threshold

reduction value Tred, (4) Restart parameter nimp.

To avoid re-tuning Tmax when using different types of instances, we use a relative value for Tmax. The maximum

threshold value is expressed as the product of the average distance between two nodes in the studied graph (denoted

c̄) and a predefined parameter tmax, that is Tmax = c̄ × tmax, where tmax is set to 1.5. Other initial parameter

values are set to Tred = 300 and nimp = 50 based on the preliminary results. Firstly, the number of iterations Nbiter

is investigated under these parameter settings, and the results are shown in Table 1. To identify the iteration times,

it is enough that we select one energy-level restriction (i.e., γ = 0.1) and analyze the results. We test six values

of Nbiter, and the average gap between the best solution results over five runs on 14 instances that the number

of requests ranging from small to large are reported. The algorithm results are compared with the best results so
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far. Based on the algorithm results, Nbiter = 5000 seems to strike a good balance between solution quality and

computational time and we select this value to conduct the following experiments.

Table 1

Sensitivity analysis for the number of iterations

Nbiter 1000 2000 3000 4000 5000 6000

Average gap (%) 1.31% 0.93% 0.65% 0.49% 0.40% 0.38%

Average CPU (s) 46.47 100.83 136.98 179.28 203.43 247.69

The values of tmax, Tred and nimp are correlated, which results in a huge number of combinations. Among these

parameters, tmax mainly impacts the solution quality ([16]). Therefore, in this part, we concentrate on investigating

the best value of tmax. We set seven values for tmax and for each value of tmax, we perform five runs on each instance.

To have a global view for the parameter performance, we also run the instances while considering different levels

of energy restrictions (γ = 0.1, γ = 0.4, γ = 0.7). The corresponding results are summarized in Table 2. For each

value, the solution gap between the best solutions of the proposed algorithm over five runs and the exact results is

calculated.

Table 2

Sensitivity analysis for tmax

tmax 0.6 0.9 1.2 1.5 1.8 2.1 2.4

Average gap (%) 1.97 % 1.45% 1.2% 0.51% 1.16% 2.07% 2.11 %

Average CPU (s) 227.51 228.52 234.11 231.04 238.58 258.94 269.33

From the above Table, tmax = 1.5 can provide us with good solution quality and acceptable computational time.

For values of Tred and nimp, we keep the initial settings.

5.3. Meta-heuristic Algorithm Design Decision

As the algorithm relies largely on local search operators, the usefulness of operators should be verified. In this

part, for each operator, we compare the objective function values over five runs when excluding this operator. All

E-ADARP instances (Cordeau instances, Uber instances) are tested, and the solution gap from the exact results are

calculated. Results for all inter- or intra-route operators are summarized in Table 3, with average solution gaps

and computational time being reported. We can find that each operator performs well in improving the solution

quality, especially the 2-opt operator. Therefore, it is necessary to include these operators in local search. As

for AddNewRequest, it is essential for inserting the un-inserted requests of constructive heuristic. From the above

analysis, the usefulness of each local search operator is proved.
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Table 3

Contribution of operators

Operator Average gap (%) Average CPU (s)

base 0.37% 203.43

2-opt 4.14% 217.03

exchange 0.75% 214.45

relocate 1.45% 155.38

exchange pickup 0.64% 190.59

exchange drop-off 0.68% 207.95

exchange neighboring 0.62% 201.70

5.4. Algorithm performance on E-ADARP Instances

Our proposed algorithm is tested on the existing E-ADARP instances including adopted instances from Cordeau’s

work ([10]) and Bongiovanni et al. [9]. To verify the robustness of the algorithm, under each energy restriction

setting, we compare the results of the algorithm on each instance to the results of three-index and two-index model

in [9]. On each instance, we perform ten runs and report on the best obtained objective values and average CPU

time. In order to keep the results comparable to the reported results, in this section, we only allow each recharging

station to be visited at most once. For each Table in this section, ”BC” means the best solution cost, ”AT” presents

the average computation time, ”Obj” is the objective function value of solutions obtained by the three-index or

two-index exact model.

5.4.1. Low-energy restriction scenario: γ =0.1

Table 4 shows the results of the proposed Deterministic Annealing and Local Search (hereafter DA + LS)

algorithm and the three-index and two-index exact model. We run the algorithm on adapted Cordeau and Uber

instances while setting a low-energy restriction for vehicles returning on the depots. For the sake of clarity, we report

the average gaps and CPU time between proposed DA + LS results and three-index/two-index exact model results.

Detailed results on each instance are shown in Appendix 7.1

Table 4

Results comparison on Cordeau and Uber instances γ = 0.1

Cordeau instances DA + LS algorithm Three-index model[9] Two-index model[9]

AT(s) 203.43 4505.23 1210.54

Gap - NAa 0.37%

Uber instances DA + LS algorithm Three-index model[9] Two-index model[9]

AT(s) 281.71 5422.16 1280.83

Gap - NAa 0.69%

a NA indicates the gap cannot be calculated due to the unequal number of solved instances.
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From the results, the average gaps between the proposed algorithm and the exact two-index model are quite

small for both of the instance sets (i.e., 0.37 % and 0.69 %). For Cordeau instances, the proposed algorithm can find

optimal solutions for 9 out of 14 instances, while the exact three-index model can only solve 6 instances optimally

and 3 instances cannot be solved within a two-hour time limit. Thus, it is not fair to calculate the solution gap

between our algorithm results with the three-index model as the number of solved instances is not equal and we fill

the table with ”NA”.

5.4.2. Medium-energy restriction scenario: γ = 0.4

The average gaps between proposed DA + LS and three-index/two-index exact model results when γ = 0.4 are

presented below. Detailed results on each instance can be found in Appendix 7.2

Table 5

Results comparison on Cordeau and Uber instances γ = 0.4

Cordeau instances DA + LS algorithm Three-index model[9] Two-index model[9]

AT(s) 265.58 4547.79 1233.47

Gap - NAa 0.64%

Uber instances DA + LS algorithm Three-index model[9] Two-index model[9]

AT(s) 324.84 5451.17 2169.25

Gap - NAa 0.57%

a NA indicates the gap cannot be calculated due to the unequal number of solved instances.

From the above results, when we strict the energy requirement for vehicles returning to the depots, the average

computational time increases, indicating the increasing complexity to find the feasible solutions. Compared to the

results of the exact two-index model, the average gap on Cordeau instances is 0.64%, and 0.57 % on Uber instances.

All the instances can be solved with our algorithm and 6 out of 14 are optimally solved. Additionally, we have found

a better solution (i.e., a3-24) comparing to the two-index model result.

5.4.3. High-energy restriction scenario: γ = 0.7

Table 6 shows the results of the DA + LS algorithm and the three-index and two-index exact model on Cordeau

instances under high-level energy constraint. The columns named ”3index” and ”2index” represent the gaps between

the heuristic results and the three-index model or two-index model results, respectively. The bold numbers indicate

the optimal solutions. Surprisingly, we find three new best solutions (marked in bold with a star) compared to the

the two-index model solutions. Furthermore, we observe that some of the instances cannot be solved even though we

run the algorithm ten times. The explanation is: in this scenario, vehicles should keep 70% energy while ending their

trips, therefore necessitating the visits to the recharging stations in the middle of trips. However, we restrict visits

to one per recharging station, cutting off the neighborhood solutions of multiple visiting recharging stations. We

have shown in the later section that relaxing the visit to the recharging station can efficiently improve the feasibility.
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Table 6

Results comparison on Cordeau instances γ = 0.7

Instance DA + LS algorithm Three-index model[9]a Two-index model[9]a Gap%

γ = 0.7 BC(min) AT(s) Obj(min) CPU(s) Obj(min) CPU(s) 3index 2index

a2-16 240.66 172.46 240.66∗ 29.4 240.66∗ 5.4 0 0

a2-20 NA 427.00 NA 7200 NA 7200 NA NA

a2-24 364.19 337.16 358.21∗ 3539.4 358.21∗ 961.2 1.67 % 1.67 %

a3-18 240.58 111.07 240.58∗ 642.6 240.58∗ 48 0 0

a3-24 281.82 237.78 277.72∗ 2957.4 277.72∗ 152.4 1.48% 1.48%

a3-30 NA 232.04 NA 7200 NA 7200 NA NA

a3-36 NA 321.11 NA 7200 494.04 7200 NA NA

a4-16 223.13 51.17 223.13∗ 2179.2 223.13∗ 67.2 0 0

a4-24 318.29 122.56 321.03 7200 318.21∗ 1834.8 -0.85% 0.03%

a4-32 427.92∗ 206.37 NA 7200 430.07 7200 NA -0.50%

a4-40 NA 310.56 NA 7200 NA 7200 NA NA

a4-48 NA 371.45 NA 7200 NA 7200 NA NA

a5-40 434.49∗ 236.87 NA 7200 447.63 7200 NA -2.94%

a5-50 625.95∗ 328.42 NA 7200 NA 7200 NA NA

Avg 224.11 5296.29 4333.5 NAb NAb

a Results on a 3.6 GHz Intel(R) Core(TM) with 16 Gb of RAM.

b NA indicates the gap cannot be calculated due to the unequal number of solved instances.

* Numbers in bold with star indicate new solution found by proposed algorithm.

We also compare the algorithm results with the exact-model results on 14 Uber instances under high-energy

restriction. The results are summarized in Table 7.
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Table 7

Results comparison on Uber instances γ = 0.7

Instance DA + LS algorithm Three-index model[9]a Two-index model[9]a Gap%

γ = 0.7 BC(min) AT(s) Obj(min) CPU(s) Obj(min) CPU(s) 3index 2index

u2-16 59.19 456.79 59.19∗ 1545.6 59.19∗ 338.4 0 0

u2-20 56.86 701.75 56.86∗ 133.8 56.86∗ 72 0 0

u2-24 NA 335.67 NA 7200 NA 7200 NA NA

u3-18 50.99 121.59 50.99∗ 481.2 50.99∗ 24 0 0

u3-24 68.98 304.85 69.30 7200 68.39∗ 400.2 -0.46% 0.86%

u3-30 78.83 571.51 80.35 7200 78.14∗ 3401.4 -1.89% 0.88%

u3-36 107.13 518.45 NA 7200 105.79 7200 NA 1.27%

u4-16 53.87 69.68 53.87 7200 53.87∗ 88.8 0 0

u4-24 92.11 130.47 89.96∗ 6045.6 89.96∗ 22.8 2.39% 2.39%

u4-32 100.53 162.48 NA 7200 99.50∗ 2827.2 NA 1.04%

u4-40 NA 257.65 NA 7200 NA 7200 NA NA

u4-48 NA 429.58 NA 7200 NA 7200 NA NA

u5-40 NA 239.94 NA 7200 NA 7200 NA NA

u5-50 144.75 276.42 NA 7200 144.36 7200 NA 0.27%

Avg 326.92 5729.01 3598.2 NAb 0.67%

a Results on a 3.6 GHz Intel(R) Core(TM) with 16 Gb of RAM.

b NA indicates the gap cannot be calculated due to the unequal number of solved instances.

Similar results can be found in the above Table. The average gaps between the results of the proposed algorithm

with the results of exact two-index model is 0.67 %. Our algorithm shows its competence when tackling instances

under higher energy restriction and larger-sized instances.

5.5. Effect of Allowing Multiple Visits to a Recharging Station

In the previous part, we analyze the algorithm results when allowing one visit per recharging station. In the real

world, it is more practical that one recharging station is visited multiple times by a vehicle. In this part, we relax

the constraint for visiting the recharging stations. Similarly, three scenarios, namely low-energy, medium-energy, and

high-energy restriction are taken into account. In each scenario, we perform 10 runs on each instance and compare

the results with the best results of the heuristic algorithm in the previous part (restrict the visit to the recharging

station).

5.5.1. Low-energy restriction scenario: γ = 0.1

The experiment results under low-energy restriction are summarized in the following Table.
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Table 8

Results comparison: multiple visits v.s. single visit under γ = 0.1

γ = 0.1 Multiple visits Single visit Gap% γ = 0.1 Multiple visits Single visit Gap%

Instances BC(min) BC(min) Obj Instances BC(min) BC(min) Obj

a2-16 237.38 237.38 0 u2-16 57.61 57.61 0

a2-20 279.08 279.08 0 u2-20 55.59 55.59 0

a2-24 346.21 346.21 0 u2-24 91.27 91.27 0

a3-18 236.82 236.82 0 u3-18 50.74 50.74 0

a3-24 274.80∗∗ 274.81 -0.004% u3-24 67.87∗∗ 68.05 -0.26%

a3-30 413.27 413.27 0 u3-30 77.09 76.75 0.44%

a3-36 481.40 481.40 0 u3-36 104.21∗∗ 105.50 -1.22%

a4-16 222.49 222.49 0 u4-16 53.58 53.58 0

a4-24 310.84 310.84 0 u4-24 90.85 90.72 0.14%

a4-32 394.81∗∗ 395.36 -0.14% u4-32 99.58∗∗ 99.77 -0.19%

a4-40 456.53 453.84 0.59% u4-40 134.94 134.17 0.57%

a4-48 562.78∗∗ 563.45 -0.12% u4-48 149.45∗∗ 149.73 -0.19%

a5-40 418.23 418.23 0 u5-40 123.23∗∗ 123.57 -0.28%

a5-50 570.09∗∗ 571.49 -0.24% u5-50 145.85∗∗ 146.68 -0.57%

Avg 0.006% -0.11%

** Double stars indicate by allowing multiple visits, we find lower-cost solution or solve new instances.

With the low-energy restriction, all the instances can be solved optimally/near-optimally without visiting the

recharging stations several times. The obtained results for both of the cases are similar, with a slight decrease

in the solution cost on Uber instances when allowing multiple visits. In this case, allowing multiple visits cannot

improve the results as vehicles do not need to recharge or visit a recharging station several times to fulfill the energy

requirement at the end of the route.

5.5.2. Medium-energy restriction scenario: γ = 0.4

We further conduct experiment with setting a medium-level energy restriction at the end of the route. The

experiment results are summarized in the following Table.
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Table 9

Results comparison: multiple visits v.s. single visit under γ = 0.4

γ = 0.4 Multiple visits Single visit Gap% γ = 0.4 Multiple visits Single visit Gap%

Instances BC(min) BC(min) Obj Instances BC(min) BC(min) Obj

a2-16 237.38 237.38 0 u2-16 57.65 57.65 0

a2-20 280.70 280.70 0 u2-20 56.34 56.34 0

a2-24 348.92∗∗ 350.68 -0.50% u2-24 91.63 91.63 0

a3-18 236.82 236.82 0 u3-18 50.74 50.74 0

a3-24 274.80 274.80 0 u3-24 67.56∗∗ 67.96 -0.59%

a3-30 414.06 413.93 0.03% u3-30 76.99 76.75 0.31%

a3-36 481.40∗∗ 487.58 -1.27% u3-36 105.62 105.62 0

a4-16 222.49 222.49 0 u4-16 53.58 53.58 0

a4-24 311.03∗∗ 312.33 -0.42% u4-24 90.95 90.94 0.01%

a4-32 396.10∗∗ 396.45 -0.09% u4-32 99.64 99.29 0.35%

a4-40 453.84 453.84 0 u4-40 134.38∗∗ 135.92 -1.13%

a4-48 560.51∗∗ 569.87 -1.64% u4-48 149.87∗∗ NA NA

a5-40 419.83∗∗ 419.98 -0.04% u5-40 123.98 122.57 1.15%

a5-50 568.90∗∗ 574.02 -0.89% u5-50 145.69∗∗ 146.51 -0.56%

Avg -0.34% NAa

** Double stars indicate by allowing multiple visits, we find lower-cost solution or solve new instances.

a NA indicates the gap cannot be calculated due to the unequal number of solved instances.

It can be observed that, allowing multiple visits to the recharging station can: (1) further decrease the solution

cost, (2) solve unsolved instance (i.e., u4-48). By carefully comparing the routing result of each instance, 17.9%

instances visit a recharging station multiple times.

5.5.3. High-energy restriction scenario: γ = 0.7

We also analyze the effect of allowing multiple visits to the recharging station with high-energy restriction. The

experiment results are summarized in the following Table.
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Table 10

Results comparison: multiple visits v.s. at most one visit under γ = 0.7

γ = 0.7 Multiple visits Single visit Gap% γ = 0.7 Multiple visits Single visit Gap%

Instances BC(min) BC(min) Obj Instances BC(min) BC(min) Obj

a2-16 240.66 240.66 0 u2-16 58.47∗∗ 59.19 -1.22%

a2-20 281.72∗∗ NA NA u2-20 56.86 56.86 0

a2-24 350.39∗∗ 364.19 -3.79% u2-24 NA NA NA

a3-18 240.04∗∗ 240.58 -0.22% u3-18 50.99 50.99 0

a3-24 276.27∗∗ 281.82 -1.97% u3-24 68.39∗∗ 68.98 -0.86%

a3-30 421.39∗∗ NA NA u3-30 78.28∗∗ 78.83 -0.70%

a3-36 494.27∗∗ NA NA u3-36 105.79∗∗ 107.13 -1.25%

a4-16 222.49∗∗ 223.13 -0.29% u4-16 53.87 53.87 0

a4-24 316.79∗∗ 318.29 -0.47% u4-24 91.69∗∗ 92.11 -0.46%

a4-32 395.79∗∗ 427.92 -7.51% u4-32 99.50∗∗ 100.53 -1.02%

a4-40 461.54∗∗ NA NA u4-40 153.15∗∗ NA NA

a4-48 576.57∗∗ NA NA u4-48 NA NA NA

a5-40 422.00∗∗ 434.49 -2.87% u5-40 128.79∗∗ NA NA

a5-50 583.28∗∗ 625.95 -6.82% u5-50 145.80 144.75 0.73%

Aver NAa NAa

** Double stars indicate by allowing multiple visits, we find lower-cost solution or solve new instances.

a NA indicates the gap cannot be calculated due to the unequal number of solved instances.

It is clear from the above Table that allowing multiple visits to recharging stations can efficiently decrease

the total cost. Moreover, all the unsolved instances in the Cordeau instance set can be solved when the visits to

recharging stations are not limited. As for the Uber instance set, two unsolved instances can be solved. The Uber

instances are easier to be solved than the Cordeau instances because the number of recharging stations associated

in each instance is larger than the Cordeau instances. The Cordeau instance set thus has a larger improvement

compared to the Uber instance set while relaxing the visits to the recharging station. In the case of high-energy-level

constraint (i.e., γ = 0.7), 20 out of 28 instances have been further solved/improved while allowing multiple visits to

the recharging station.

5.6. Results on Large-scale E-ADARP Instances

In the existing literature ([9]), E-ADARP can be solved by up to 5 vehicles and 40 requests. We also employ the

proposed algorithm to solve the newly-introduced Ropke instances with up to 8 vehicles and 96 requests. We present

the results that limit the visit to recharging station in the first part. Then, we relax the visit to the recharging stations

and present the corresponding results in the second part. For each part, three different energy-level restrictions are

considered.
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5.6.1. Case 1: Visit the recharging station at most once

The results of three energy restrictions with limiting the visit to recharging station are shown below:

Table 11

Algorithm results on Ropke instances with recharging station being visited at most once

Instances BC(min) AC(min) AT(s) Instance BC(min) AC(min) AT(s)

γ = 0.1 γ = 0.4

a5-60 705.38 722.33 419.33 a5-60 NA NA 609.37

a6-48 520.94 529.79 186.56 a6-48 517.80 527.08 214.14

a6-60 704.93 720.21 290.38 a6-60 737.72 771.55 363.87

a6-72 807.68 827.18 446.28 a6-72 NA NA 791.96

a7-56 625.24 641.98 179.24 a7-56 627.20 638.90 201.74

a7-70 788.84 802.99 301.64 a7-70 867.64 867.64 397.85

a7-84 920.38 930.79 483.89 a7-84 NA NA 621.06

a8-64 653.39 671.46 203.37 a8-64 663.37 680.57 225.18

a8-80 841.99 861.02 317.50 a8-80 874.98 915.81 486.12

a8-96 1107.73 1130.18 489.74 a8-96 NA NA 817.27

When adding a high-energy restriction (γ = 0.7) on the Ropke instance set, none of the instances can be solved.

It is due to the limited recharging station associated for each instance (only 3 recharging stations). With the

increasing size of the problem, when all the recharging stations have been visited by vehicles, the other vehicles

cannot return to the depot with enough energy. We then conduct experiments on allowing unlimited visits to the

recharging stations.

5.6.2. Case 2: Visit the recharging station multiple times

The results of three energy restrictions without limiting the visit to recharging station are shown as the following

Tables. From the results, when the multiple visits to the recharging stations are allowed, all the instances can be

solved when γ = 0.7 and γ = 0.4. The advantages of considering multiple visits in the model have been proved.
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Table 12

Algorithm results on Ropke instances with recharging station being visited multiple

times

Instances BC(min) AC(min) AT(s) Instance BC(min) AC(min) AT(s)

γ = 0.1 γ = 0.4

a5-60 707.57 725.72 410.93 a5-60 714.05 725.96 550.53

a6-48 519.83 529.41 182.12 a6-48 516.99 525.02 202.55

a6-60 707.49 715.60 279.29 a6-60 706.96 716.64 327.04

a6-72 795.41 819.97 439.66 a6-72 803.03 825.93 607.21

a7-56 625.94 644.53 174.76 a7-56 629.01 642.75 200.44

a7-70 777.71 805.00 289.66 a7-70 791.28 812.34 351.47

a7-84 909.36 931.47 459.66 a7-84 925.36 948.58 557.85

a8-64 659.11 678.24 191.40 a8-64 659.53 669.54 212.03

a8-80 851.22 867.19 313.05 a8-80 850.64 864.74 411.64

a8-96 1099.64 1139.16 483.55 a8-96 1113.15 1142.23 688.69

Table 13

Algorithm results on Ropke instances with recharging sta-

tion being visited multiple times

Instances BC(min) AC(min) AT(s)

γ = 0.7

a5-60 736.06 742.80 1196.07

a6-48 537.18 542.60 405.64

a6-60 714.01 728.79 634.82

a6-72 827.22 840.25 1476.84

a7-56 639.70 662.17 472.40

a7-70 819.06 836.35 759.50

a7-84 941.18 964.68 997.01

a8-64 679.73 685.55 430.71

a8-80 856.71 886.80 859.40

a8-96 1146.49 1159.15 1393.42

6. Conclusion and Extension

The E-ADARP is a new variant of DARP that differs from the classic DARPs in terms of energy constraints,

requiring the impact of visiting recharging stations and the energy requirement to be considered. E-ADARP is
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thus more complex. This paper proposed a improved deterministic annealing meta-heuristic that is capable of

solving medium to large-sized E-ADARP. The meta-heuristic is enhanced by efficient local search operators. A

bi-directional insertion algorithm is integrated to handle the recharging station positions and recharging duration

when necessary. In numerical experiments, we first prove the effectiveness and accuracy of proposed algorithm under

different scenarios (low-energy, medium-energy, and high-energy restrictions) with comparing to the exact results

in previous literature ([9]). The average gap between the algorithm results and the exact results is 0.58% and we

have found new solutions on both solved and unsolved instances. Considering the practical world, we also analyze

the situation where the multiple visits to the recharging station are allowed. The results demonstrate that in this

case, the solution quality can be further improved and most unsolved instances can be solved. As the exact method

proposed in the previous literature cannot solve large-scale instances, we develop new instances based on [11], adding

problem-related features and make it suitable for our problem. We therefore present the new solutions obtained on

large-scale instances under different energy restrictions.

These results offer several new perspectives. The E-ADARP model may be improved to take into account more

real-life characteristics. Firstly, time-dependent travel times may occur, especially with traffic jams in peak hours.

Secondly, the objective function may consider users’ convenience with less waiting or travel times which may be

conflicting with the global financial optimization. Operators of our DA heuristic may be extended to consider

additional constraints. Having several objective functions, a perspective is to design population multi-objective

meta-heuristics, like evolutionary algorithms, to handle conflicting objectives. Our local search operators may be

re-used inside evolutionary algorithms to provide mutation operators. Lastly, the nature of the problem is strongly

related to dynamic optimization, with new requests to serve or modifications due to uncertainties like traffic jams.

Having quick and efficient heuristic algorithms for dynamic E-ADARP is there a crucial issue, where meta-heuristics

are promising.

7. Appendix A. Algorithm results comparing with the exact method results

7.1. Low-energy restriction: γ = 0.1

Table 14 and Table 15 show the results of proposed DA + LS algorithm and the three-index and two-index

exact model on adapted Cordeau and Uber instances, respectively. In this scenario, the vehicles should return to

the depots with at least 10% of battery capacity. The bold numbers indicate the algorithm found the best-known

solutions.
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Table 14

Results comparison on Cordeau instances with γ = 0.1

Instance DA + LS algorithm Three-index model[9]a Two-index model[9]a Gap%

γ = 0.1 BC(min) AT(s) Obj(min) CPU(s) Obj(min) CPU(s) 3index 2index

a2-16 237.38 115.53 237.38∗ 7.2 237.38∗ 1.2 0 0

a2-20 279.08 247.73 279.08∗ 400.2 279.08∗ 4.2 0 0

a2-24 346.21 342.33 346.21∗ 154.8 346.21∗ 9.0 0 0

a3-18 236.82 68.09 236.82∗ 442.2 236.82∗ 4.8 0 0

a3-24 274.81 138.15 274.81∗ 1273.8 274.81∗ 13.80 0 0

a3-30 413.27 229.28 413.27 7200 413.27∗ 102 0 0

a3-36 481.40 342.08 481.72 7200 481.17∗ 106.80 -0.07 % 0.05 %

a4-16 222.49 36.90 222.49∗ 3195 222.49∗ 3.6 0 0

a4-24 310.84 75.26 310.84 7200 310.84∗ 31.2 0 0

a4-32 395.36 147.06 413.02 7200 393.96∗ 612 -4.28 % 0.36%

a4-40 453.84 254.10 NA 7200 453.84∗ 517.2 NA 0

a4-48 563.45 417.86 NA 7200 554.54 7200 NA 1.61 %

a5-40 418.23 164.16 490.49 7200 414.51∗ 1141.8 -14.73 % 0.90 %

a5-50 571.49 269.47 NA 7200 559.17 7200 NA 2.20 %

Avg 203.43 4505.23 1210.54 NAb 0.37 %

a Results on a 3.6 GHz Intel(R) Core(TM) with 16 Gb of RAM.

b NA indicates the gap cannot be calculated due to the unequal number of solved instances.

The detailed results of algorithm on Uber instances when γ = 0.1 are shown as below:
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Table 15

Results comparison on Uber instances with γ = 0.1

Instance DA + LS algorithm Three-index model[9]a Two-index model[9]a Gap%

γ = 0.1 BC(min) AT(s) Obj(min) CPU(s) Obj(min) CPU(s) 3index 2index

u2-16 57.61 195.84 57.61∗ 268.2 57.61∗ 21 0 0

u2-20 55.59 406.69 55.59∗ 19.20 55.59∗ 9.6 0 0

u2-24 91.27 341.08 91.27 7200 91.27∗ 432 0 0

u3-18 50.74 88.13 50.74∗ 630 50.74∗ 10.8 0 0

u3-24 68.05 185.40 68.78 7200 67.56∗ 130.2 -1.06% 0.73 %

u3-30 76.75 373.17 76.99 7200 76.75∗ 438 -0.31 % 0

u3-36 105.50 585.38 109.12 7200 104.04∗ 1084.8 -3.32% 1.40%

u4-16 53.58 49.59 53.58∗ 6716.4 53.58∗ 48 0 0

u4-24 90.72 81.57 89.83∗ 3476.4 89.83∗ 13.2 0.99% 0.99%

u4-32 99.77 192.02 NA 7200 99.29∗ 1158.6 NA 0.48%

u4-40 134.17 290.49 136.93 7200 133.11∗ 185.4 -2.02% 0.80%

u4-48 149.73 622.96 NA 7200 148.30 7200 NA 0.96%

u5-40 123.57 186.91 NA 7200 121.86 7200 NA 1.40%

u5-50 146.68 344.70 NA 7200 143.10 7200 NA 2.50%

Avg 281.71 5422.16 1280.83 NAb 0.69 %

a Results on a 3.6 GHz Intel(R) Core(TM) with 16 Gb of RAM.

b NA indicates the gap cannot be calculated due to the unequal number of solved instances.

7.2. Medium-energy restriction: γ = 0.4

Table 16 and Table 17 show the results of proposed DA + LS algorithm and the three-index and two-index

exact model on adapted Cordeau and Uber instances, respectively. In this scenario, the vehicles should return to

the depots with at least 40% of battery capacity. The bold numbers indicate the algorithm found the best-known

solutions.
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Table 16

Results comparison on Cordeau instances with γ = 0.4

Instance DA + LS algorithm Three-index model[9]a Two-index model[9]a Gap%

γ = 0.4 BC(min) AT(s) Obj(min) CPU(s) Obj(min) CPU(s) 3index 2index

a2-16 237.38 144.81 237.38∗ 7.8 237.38∗ 1.8 0 0

a2-20 280.70 561.60 280.70∗ 358.2 280.70∗ 49.8 0 0

a2-24 350.68 427.36 348.04∗ 252 348.04∗ 25.2 0.76 % 0.76%

a3-18 236.82 76.70 236.82∗ 285.6 236.82∗ 4.2 0 0

a3-24 274.80∗ 160.60 274.80∗ 1973.4 274.81∗ 16.8 0 -0.003%

a3-30 413.93 290.61 413.80 7200 413.37∗ 99 0.03% 0.14 %

a3-36 487.58 397.12 489.99 7200 484.14∗ 306.6 -0.49 % 0.71 %

a4-16 222.49 40.34 222.49∗ 3192 222.49∗ 5.4 0 0

a4-24 312.33 98.01 311.03 7200 311.03∗ 39.6 0.42% 0.42%

a4-32 396.45 171.15 394.32 7200 394.26∗ 681.6 0.54% 0.56%

a4-40 453.84 302.74 NA 7200 453.84∗ 417.6 NA 0.38%

a4-48 569.87 521.46 NA 7200 554.60 7200 NA 2.75 %

a5-40 419.98 182.89 454.81 7200 414.51∗ 1221 -7.66% 1.32%

a5-50 574.02 342.69 NA 7200 560.50 7200 NA 2.41 %

Avg 265.58 4547.79 1233.47 NAb 0.64%

a Results on a 3.6 GHz Intel(R) Core(TM) with 16 Gb of RAM.

b NA indicates the gap cannot be calculated due to the unequal number of solved instances.

* Numbers in bold with star indicate new solution found by proposed algorithm.

The detailed results when we test our algorithm on adapted Uber instances with γ = 0.4 are shown as below:
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Table 17

Results comparison on Uber instances with γ = 0.4

Instance DA + LS algorithm Three-index model[9]a Two-index model[9]a Gap%

γ = 0.1 BC(min) AT(s) Obj(min) CPU(s) Obj(min) CPU(s) 3index 2index

u2-16 57.65 277.02 57.65∗ 229.8 57.65∗ 25.8 0 0

u2-20 56.34 544.79 56.34∗ 83.4 56.34∗ 12 0 0

u2-24 91.63 399.40 NA 7200 91.63∗ 757.2 0 0

u3-18 50.74 106.29 50.74∗ 772.8 50.74∗ 13.8 0 0

u3-24 67.96 226.28 67.77 7200 67.56∗ 220.8 0.28% 0.59%

u3-30 76.75 435.40 78.15 7200 76.75∗ 336.6 -1.79% 0

u3-36 105.62 654.33 NA 7200 104.06∗ 2010 NA 1.50%

u4-16 53.58 66.85 53.58∗ 5297.4 53.58∗ 44.4 0 0

u4-24 90.94 101.99 89.83∗ 5133 89.83∗ 28.2 1.24% 1.24%

u4-32 99.29 229.43 NA 7200 99.29∗ 2667.6 NA 0

u4-40 135.92 334.47 NA 7200 133.91∗ 2653.2 NA 1.50%

u4-48 NA 539.37 NA 7200 NA 7200 NA NA

u5-40 122.57 236.48 NA 7200 122.23 7200 NA 0.28%

u5-50 146.51 395.70 NA 7200 143.14 7200 NA 2.35%

Avg 324.84 5451.17 2169.25 NA 0.57%

a Results on a 3.6 GHz Intel(R) Core(TM) with 16 Gb of RAM.

b NA indicates the gap cannot be calculated due to the unequal number of solved instances.
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