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Abstract Porous silicon (PSi) seems to be a promis-
ing material for acoustic transducers due to its man-
ufacturing ease and high abilities. Yet, the investiga-
tion on wave propagation in this porous material is re-
quired to enhance the sensitivity. According to Biot’s
theory, wave propagation is governed by the porous
matrix moduli (i.e. Young’s modulus, bulk modulus,
and shear modulus). These parameters as well as Pois-
son ratios are difficult to measure and are often esti-
mated using ultrasonic measurements. In this paper, the
elastic parameters of porous silicon skeleton varying
with porosity are investigated using FEM simulations.
The silicon substrate from which the PSi is formed has
a (100) crystallographic orientation and the pores are
cylinder-like. Six pore shapes were designed in order to
investigate the influence of pore morphology on elas-
tic parameters. These shapes are chosen according to
the pore geometries obtained by electrochemical etch-
ing and designed as orthotropic structures. The results
show that the morphology of the pores has a significant
influence on the elastic moduli, therefore, should be
taken into consideration in further research. The sim-
ulation results are in good agreement with the exper-
imental data reported in literature for Young’s modu-
lus. Moreover, the power-law fittings of Young’s mod-
uli and the shear moduli as functions of porosity are
proposed and the fitting errors are discussed.
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1 Introduction

As an artificial material whose morphology can easily
be controlled during the manufacturing process, porous
Silicon (PSi) seems to be a very promising material
in many areas, e.g. drug delivery [1], anodes [2], dye-
sensitized solar cells [3], micro-fuel cells [4], etc.. PSi
could also compatible with acoustic transducers [5] with
cleanroom manufacturing, and can be integrated into
lab-on-chips systems. Yet, to optimize the performance
of PSi in the acoustic applications, the wave propaga-
tion and the factors that will affect this propagation in
this material needs to be accurately characterized. For
this purpose according to Biot’s theory [6,7], a good
knowledge of the elastic parameters (including elastic
moduli and the Poisson ratio) of PSi is required.

The optical, electrical and thermal properties of PSi
have been widely studied [8,9] due to their numerous
application fields. Similarly, the elastic properties of
PSi have also been studied by several researchers. Fro
example, using X-Ray Diffraction, K. Barla et al. [10,
11] showed that the lattice constant of the porous layer
increases according to the porosity φ (the volumetric
ratio of pores to the bulk PSi). Young’s modulus was
directly related to lattice constants and thus, to the pore
morphology. Da Fonseca et al. [12,13] used acoustic
microscopy to investigate the acoustic properties of PSi
manufactured from p+-type (100) crystalline silicon
wafer. He described the longitudinal and shear wave
velocities, VL and VS , as empirical functions of poros-
ity as VL/S = VL0/S 0(1 − φ)n, where subscript ’0’ refers
to the velocity in crystalline silicon and n is a fitting pa-
rameter depending on pore shape. Measurements have
shown a good agreement with theory using Da Fonseca
formulas [14,15]. Using transmission spectroscopy, G.
N. Aliev et al. [16] derived a semi-empirical relation of
wave velocity and porosity which is the same as Fon-
seca’s fitting formula. They assumed that the Poisson
ratio of PSi (νp) is independent of φ. Based on this as-

International Journal of Solids and Structures manuscript No.
(will be inserted by the editor)

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0020768319304627
Manuscript_8ba7037183d37b4f71f51e8654b0cd72

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0020768319304627


2 Xiaoyue Gong et al.

sumption, Martini et al. [17] have studied the mechan-
ical properties of sintered mesoporous silicon using Fi-
nite Element Methods (FEM). Thus, they modeled PSi
using randomly distributed spherical pores and con-
cluded that the properties of the sintered PSi are in
good agreement with experiments. D. Bellet et al. [18]
applied nano-indentation technique to the investigation
of Young’s modulus of PSi with porosity ranging from
36% to 90% and showed that the doping level has an
influence on PSi Young’s modulus. Moreover, they pointed
out that the main difference between p+ and p-type
PSi is the pore morphology. By taking PSi Poisson ra-
tio as a constant (νp = 0.10), Bellet concluded that
the p+-type-〈100〉 oriented PSi Young’s modulus fol-
lows a power-law function: Ep = A(1 − φ)2, where
A = 120 GPa. By using a discrete homogenization ap-
proach, Magoariec and Danescy [19] treated PSi as a
cubic material and gave a similar function as Bellet.
C. Populaire et al. [20] proposed a new function for
Young’s modulus as: Ep = E0(1 − φ)2, where E0 is the
Young’s modulus of crystalline silicon.

The works above gave explanations on the micro-
scopic mechanics of elastic parameters of PSi and they
all mentioned that pore structure is one of the key fac-
tors for estimating the elastic properties of PSi. But
their discussions are limited by their assumptions, such
as constant Poisson ratio.Moreover, the anisotropic prop-
erty of PSi has not been mentioned. While, the discus-
sion of porous materials’ anisotropic properties has a
theoretical basis presented in [21], where the equations
for general cases of porous medium are presented. In
particular, the isotropic case is detailed and the case
of orthotropic and transverse isotropic are mentioned.
Therefore, it is necessary to investigate in detail the
anisotropic properties of our material. To this end, an
investigation of the influence on its elastic properties
corrected to pore structure is proposed. Considering
the influence of these factors cannot be easily stud-
ied or quantified by experiments, FEM simulations are
proposed in this article.

Thus, the following part of the paper presents the
theoretical background used for elastic parameters de-
termination is presented. Then, the numerical simula-
tions performed on six different shapes that correspond
to common pore geometries are detailed. Finally, the
results of simulated elastic parameters of our orthotropic
PSi models are presented and discussed.

2 Theoretical background

The microscopic analysis of an elastic wave propagat-
ing in a solid begins by the definition of stress-strain
relation. The Hooke’s law formulates this relation as:

σ = C · e (1)

where σ is the stress tensor (either compression or an
extension) applied to a given medium and e is the resul-
tant strain tensor; C is the stiffness tensor. In the case of
crystals, the tensors σ and e have orders of two, while
C is a four-ordered tensor. The number of independent
components in C depends on the symmetry of the crys-
tal (up to 21 for triclinic). For an orthotropic structure
which has three mutually-orthogonal twofold symme-
try axes, its stiffness tensor has nine independent pa-
rameters that can be written in the matrix form as:

C =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


(2)

In the case of a material having cubic symmetry, such
as crystalline silicon, only 3 components are indepen-
dent in its C (c12 = c13 = c23, c11 = c22 = c33 and
c44 = c55 = c66). Using formulas (1) and (2), the elastic
parameters of crystalline silicon can be deduced from
its stiffness tensor [16][22] as:

E0 =
1
2

(c11 − c12)(c11 + 2c12)
c11 + c12

v0 =
c12

c11 + c12

G0 = c44

K0 =
c11 + 2c12

3

(3)

where E0 is the Young’s modulus, ν0 the Poisson ratio,
G0 the shear modulus and K0 the bulk modulus. Since it
is orthotropic material, its elastic parameters vary with
directions. Therefore, to be specified, the subscript "0"
stands for the principle direction of bulk solids, without
any pores inside.

Hooke’s Law can also be rewritten as a strain-stress
relationship:

e = S · σ (4)

where S is the compliance tensor which equals to the
inverse of the stiffness tensor C. This relationship is
useful to estimate the elastic parameters of an orthotropic
medium as it is directly related to the Young’s modulus
Ei, Shear modulus, Gi j and Poisson ratio νi j in each di-
rection as shown in formula (5). Here, the coordinates
are set to be parallel to the principle directions of the
silicon crystal, i.e. the x-axis aligns to [100], y-axis to
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(5)

It is seen that these elastic parameters relate the
stress to the resulted strain. As a result, the elastic pa-
rameters can be obtained by applying different kinds
of stress loads and observing the associated strains.
As an example, by applying a normal stress (tension
or compression) σi on ik− surface of porous medium,
with the lateral surfaces being free, we obtain relations
ei = σi/Ei, e j = −(σiνi j)/Ei, and ek = −(σiνik)/Ei

from formula (5). By inverting these relations, the elas-
tic parameters are deduced:

Ei = σi/ei

νi j = −e j/ei

Gi j = τi j/γi j

(6)

Considering the axial symmetry of the pores, we
also have the following relations: Ey = Ez ; νxy = νxz , νyx =

νzx , νyz = νzy, thus the number of independent elastic
parameters for an orthotropic materialis reduced.

By applying a hydrostatic pressure on the surface
of the medium, i.e. σx = σy = σz = p, and shear
stress τx = τy = τz = 0, then ex = ( 1

Ex
−

νyx

Ey
−

νzx
Ez

)p,

ex = ( 1
Ex
−

νyx

Ey
−

νzy

Ez
)p, ez = ( 1

Ez
−

νxz
Ex
−

νyz

Ey
)p. Finally, the

bulk modulus for PSi Kb is deduced by the relation:

Kb =
p

ex + ey + ez
(7)

which means that the bulk modulus is computed us-
ing the hydrostatic pressure divided by the resultant
volume decrement. According to the formula (6) and
(??)7), it is convenient to use FEM simulations to com-
pute the elastic parameters.

3 Numerical simulations

In this paper, we will consider only the PSi obtained by
electrochemical etching on silicon wafer[23]. Accord-
ing to the morphology characterization of PSi through
SEM (scanning electron microscope) imaging,PSi is
treated as orthotropic porous material. It is considered
that the PSi is etched from a (100) oriented silicon
wafer, and the geometric model used for simulations
is with straight and periodically distributed pores ori-
ented to the x-coordinate. The values of the stiffness
constants (the independent components of C) for a [100]
oriented pure silicon crystal are shown in Table 1 [24].

Table 1 Values of stiffness constants (in GPa) for Silicon at
room temperature

c11 c12 c44

165.6 63.9 79.5

Table 2 Values of elastic parameters for bulk Silicon at room
temperature

E0 ν0 G0 K0

130GPa 0.28 79.5GPa 97.8GPa

Fig. 1 The RVE of PSi sample with cylindrical pores parameter
a represents the spatial period.

By using formulas (3) and the values in Table 1,
the corresponding elastic parameters for bulk silicon
are then calculated and presented in Table 2.

In order to lower the computational cost, the pores
are set to be uniform and axisymmetric, thus, a cubic
sample with only one pore in its middle is good enough
to be a representative volume element (RVE). The spa-
tial period of the cubic RVE is set as a = 25nm, as
shown in Fig. 1. It is worth mentioning that this spatial
period does not affect the simulation results for elastic
parameters, and it is defined here only for FEM com-
putations. The inside of the pore is empty, i.e., without
any fluids or particles. The remaining solid part, or the
skeleton, of the cube is pure silicon.

Thanks to the symmetries, periodic boundary con-
ditions are set to further decrease the computation cost.
Fig. 2 shows an example set of boundary conditions for
the simulation on Young’s modulus along x-axis where
an extension stress parallel to the x-direction is loaded
on the yz- surface of the RVE. After FEM computing,
the displacement vector u = (u, v,w) and the strain ten-
sor e of the RVE are obtained. Fig. 3 illustrates the
computation result for displacement under the bound-
ary conditions described in Fig. 2. Thus, based on for-
mula (6), Ei, ν ji and G ji can be obtained. According
to stress-strain relation (5), components of the compli-
ance tensor of PSi (si j) is then calculated, as well as the
stiffness tensor C (by inverting S ).

In fact, pores in PSi are not always as perfect as
cylinders, but present different morphologies depend-
ing on the etching conditions and substrate properties
like doping type and level, crystalline orientation, etc.
[25]. It has been shown that pores etched at low cur-
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Fig. 2 Description of boundary conditions for computing
Young’s modulus Ex

Fig. 3 (a) The normal stress loaded on x-direction (blue arrows)
and the displacement field (red arrows); (b) Deformation of PSi

Fig. 4 Cross sections of typical pore shapes via SEM image (a)
PSi exhibits a branched morphology [27]. (b) PSi with bigger
and cylindrical pores (image comes from lab. GREMAN)

rent density generally have lower porosity and exhibit
branched morphology [26], like in Fig. 4(a) [27]. On
the contrary, high current density generally leads to
bigger pores, with a cylindrical morphology, like in
Fig. 4(b) (image comes from lab. GREMAN).

Thus, to extend the study range and obtain reliable
results, different kinds of pore morphology are inves-
tigated. Firstly, in addition with the cylindrical pore in
Fig. (1), four other typical pore shapes have been de-
signed (shown in Fig. 5 according to achievable PSi
morphology, and they are respectively named as: cylin-
drical, sin-shaped, two-radius, varying-radius and branched
models. To be specific, the sin-shaped model shows
small radius variations of the pores and the shape of
the wall does not change with the increase of pore size;
the two-radius model has two different radii of pores
with a ratio of 1:1.5; the varying-radius model has great
radius variation on the pore wall and this variations
increases with the growth of pore size; the branched
model has several side branches symmetrically distributed
along the main cylindrical pore. In addition, the stud-
ied crystalline orientation is 〈100〉 and the pore direc-

Fig. 5 Different morphological models implemented in the
FEM simulation.

Fig. 6 Hybrid model (one main cylindrical pore with both side
branches and secondary pores).

tion is parallel to X-axis. Multiple porosities are ob-
tained by changing the size of the pores. By using these
morphological models, the influence of pore shapes on
the elastic parameters can be studied. It is worth not-
ing that,the computed results for the elastic parameters
here are actually for the RVEs, therefore, they are re-
garded as the effective values of the PSi being an elastic
material.

In addition, considering the pore morphologies given
in Fig. 5, the porosity is limited to 63%. To reach higher
porosities, a hybrid model with secondary pores and
branches is proposed accordingly. The designed exam-
ple in Fig. (6) is for a porosity of 60%. It is close to
a branched model at lower porosity, while with the in-
crease of porosity, it becomes more like a combination
of cylinders with different radii. The porosity of this
model can reach up to 89%.

4 Results and discussions

The simulated results are presented firstly by compar-
ing with data from the literature to show the reliability.
Then, by plotting the elastic moduli and fitting them
as power laws of porosity, the differences in the elas-
tic moduli between the six models are presented and
analyzed.

Fig. 7 is the comparison between our FEM sim-
ulation results for Ey of branched and hybrid model
and Young’s modulus measured by other researchers
with different approaches. At both low and high poros-
ity range, it seems that our FEM results have higher
consistency with the results of D. Bellet et al. [18] us-
ing nanoindentation technique, as well as with the nu-
merical results of Magoariec et al. using discrete ho-
mogenization approach [19]. The discrepancy appear-
ing between our FEM method and the discrete homog-
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Fig. 8 Young’s modulus of PSi with different pore shapes (It
should be noted that because of the symmetry of our geometrical
models, Ez is identical to Ey.)

enization method at lower porosity indicates that, the
symmetry of the PSi model can influence on its elas-
tic moduli. Therefore, the anisotropic property of the
skeleton should be taken into consideration, especially
at lower porosity (< 40%).

The FEM simulation results for Young’s modulus,
bulk modulus, and shear modulus are respectively pre-
sented in Fig. 8, Fig. 9 and Fig. 10. The influence of the
pore shapes and the porosity on the elastic properties of
PSi therefore can be observed from the variations and
divergences.

From Fig. 8 to 10 it is seen that the evolution of
elastic moduli ( i.e. Young’s modulus, bulk modulus
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Fig. 9 Bulk modulus of PSi with different pore shapes
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and shear modulus) as a function of porosity clearly
have dependence on the pore geometry. While it is also
clear that the influence of pore shapes is different on
each elastic modulus, some similarities between these
pore models are observed. For example, elastic param-
eters with the cylindrical and sin-shaped geometries
are roughly equal, so are the two-radius and varied-
radius geometries. In fact, it is because that the pore
radius does not drastically change between sin-shaped
and cylindrical geometry, whereas the two-radius pore
and varied-radius geometry have huge variations of the
radius on the x-axis direction. Therefore, the sin-shaped
and varying-radius models are not shown in Fig 9 and
10. Nevertheless, the bulk modulus is very similar for
all of the geometries except for the branched one. In
conclusion, it can be pointed out that, some small vari-
ation on the pore wall is negligible, but branches sig-
nificantly differ all the elastic parameters of PSi.

Fitting functions of Young’s modulus E and shear
modulus G of PSi have been proposed by Martini, et
al. [17] as a power law of the porosity defined by:

E = E′0(1 − φ)m

G = G′0(1 − φ)h (8)

where E′0 and G′0 are scale factors which normally equal
respectively to the Young’s modulus and shear modu-
lus of crystalline silicon (presented in equation (3) and
Table 2). m and h are the fitting numbers.

Using these formulations, m and h have been fitted
from numerical values of the elastic parameters. They
are given in Table 3 for the Young moduli and shear
moduli. The fitting errors erri are also calculated based
on formula (9) to indicate the precision of the fitting,
where yi is the simulated result, y′i is the fitting result
and i stands for the position of the data. erri are pre-
sented as error bars in Fig. 8 to Fig. 10, from which
it is observed that the power-law fittings have good
agreement with simulated results at lower porosity for
the cylindrical model, two-radius model and branched
model, but the error becomes higher for higher poros-
ity, like for the hybrid model. Thus, the fittings are not
reliable enough for this range of porosity Moreover,
it should be mentioned that the scale factors here are
slightly different from E0 or G0 in Table 2. The power-
law fittings are just rough estimations of the relations
between the elastic moduli and porosity.

erri = yi − y′i (9)

In addition, the fitting numbers m and h for the hy-
brid model listed in Table 3 show great difference with
the others. This is because they deviate greatly from a
simple power law and have scale factors greatly dis-
tinguished from E0 and G0. This is also observed intu-
itively in Fig. 8 to 10. While they have different con-
tinuity with the results of the other pore models, for

Table 3 Fitting parameters of power law for Young’s and shear
moduli

shape m h
(Ex) (Ey) (Gxy) (Gyz) (Gzx)

cylindrical 1.00 1.58 1.76 3.99 1.64
sin-shaped 1.05 1.62 1.85 3.89 1.72
two-radius 1.43 1.66 2.24 3.36 2.16
varying-radius 1.40 1.62 2.25 3.43 2.14
branched 1.14 2.11 2.67 3.74 3.08
hybrid 0.97 2.05 1.57 3.07 1.49

example, in terms of Ey, the hybrid model succeeds
the trend of the branched model, but for Gxy, it behaves
more like an extension of the cylindrical model.

Values of fitting number m and h for the first five
shape models (from cylindrical to branched model) are
close to the values given by Roberto Martini, except
for Gyz. The divergence comes from the model dif-
ferences, and mainly because the Poisson ratio of PSi
was considered as a constant in [17]. As shown in our
study, the Poisson ratio not only changes with poros-
ity but also with pore shapes and orientations. It can
also be observed that the values for cylindrical and sin-
shaped models are close, whereas the two-radius and
the varying-radius models are close. Thus, they can be
grouped into two families.

5 Conclusion

In this paper, the influence of the pore shape on elas-
tic parameters with different porosities has been suc-
cessfully observed by studying several typical morpho-
logical models of PSi. Results have been obtained by
FEM simulations. From the analysis of the results and
the comparison with experimental data from the liter-
ature, it can be concluded that when the porosity in-
creases, the PSi elastic parameters decrease following
some patterns. In addition, the pore shape has a signifi-
cant effect on those patterns, especially for the branched
pore model. But there still exist some simplifications
on pore shape modeling, i.e., according to the FEM re-
sults for cylindrical and sin-shaped pore, when there
are only small variations on the pore wall, its geometri-
cal model can be simplified as cylinders; whereas when
the variations of the pore wall is too huge to be ig-
nored, like varying-radius pore given in this paper, it
may be regarded as two-radius model; nevertheless,
when there are branches on sides of the main pore, they
can not be disregarded or simplified. These results can
be very useful when modeling on PSi.

In further work, coupling between solid and fluid
phases will be investigated in order to be included in
Biot theory. Then, wave propagation in a real porous
silicon layer could be simulated or calculated accord-
ing to its real geometrical parameters. It is worth men-
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tioning that when talking about the wave velocity of
PSi, the propagation direction should be taken into con-
sideration, since PSi can strongly behave anisotropi-
cally, especially in low porosity samples (< 40%). There-
fore, wave equations for anisotropic porous materials
will be presented and solved in the following work.
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