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Introduction

In the last two decades, controllability and inverse problems for partial differential equations have been extensively studied using Carleman estimates. The books [START_REF] Bellassoued | Carleman estimates and applications to inverse problems for hyperbolic systems[END_REF], [START_REF] Fu | Carleman estimates for second order partial differential operators and applications[END_REF] and [START_REF] Lerner | Grundlehren der Mathematischen Wissenschaften[END_REF] allow an overview of this tool and its application in those fields. More recently, equations in heterogeneous media have gained a lot of attention in the literature. In particular, we mention the works [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF], [START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF], [START_REF] Di Cristo | Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface[END_REF] concerning elliptic equations, and [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF], [START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF], [START_REF] Jérôme | Controllability of a parabolic system with a diffuse interface[END_REF], [START_REF] Francini | Carleman estimates for the parabolic transmission problem and Hölder propagation of smallness across an interface[END_REF], dealing with parabolic equations.

In the present work, we are interested in systems of transmission wave equations. More precisely, let us consider here the system given by

     ∂ 2
t u(x, t) -div(a(x)∇u(x, t)) = 0, (x, t) ∈ Ω × (0, T ), u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), u(x, 0) = u 0 (x), ∂ t u(x, 0) = v 0 (x),
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where T > 0, Ω ⊂ R 2 is an open set with a Lipschitz boundary ∂Ω, and the coefficient a is piecewise constant and given by a

(x) = a 1 , x ∈ Ω 1 , a 2 ,
x ∈ Ω 2 .

(1.2)

Here, a 1 , a 2 are positive constants and Ω 1 , Ω 2 define a partition of Ω, in the sense that they are non-empty open sets with Lipschitz boundaries and such that Ω 1 ∩ Ω 2 = ∅ and Ω = Int(Ω 1 ∪ Ω 2 ). (1.3) The interface between Ω 1 and Ω 2 is denoted Γ * and given by

Γ * = Ω 1 ∩ Ω 2 = ∂Ω 1 ∩ ∂Ω 2 .
(1.4)

Remark 1.1. A particular example of a partition is given by the case of embedded domains: Ω 1 ⊂ Ω and Ω 2 = Ω \ Ω 1 . In this case we have Γ * = ∂Ω 1 .

The objective of this work is to prove a Carleman inequality for equation (1.1) under suitable geometric hypothesis.

Context of the problem

In the seminal book [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], one of the setting that is studied concerning the wave equation is the case of embedded domains and a main coefficient a(x) of the wave operator which is constant in each one of the subdomains. Using the multiplier method, the author proves the controllability of the system, assuming that the interior domain is star-shaped and the value of a at the exterior domain is smaller than the interior one. Moreover, references [START_REF] Castro | Concentration and lack of observability of waves in highly heterogeneous media[END_REF], [START_REF] Castro | Concentration and lack of observability of waves in highly heterogeneous media[END_REF], [START_REF] Macià | On the lack of observability for wave equations: a Gaussian beam approach[END_REF] even proved that if the monotonicity of the jump of the coefficient across the interface is inverted, then there exist solutions whose energy is arbitrarily concentrated in a neighborhood of the interface, allowing to deduce a lack of controllability. But on the other hand, it seems possible to aim at dealing with less restrictions on the shape of the interface (which is the boundary of the interior domain here).

Up to our knowledge, [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] is the first work where a global Carleman inequality for a wave equation with a jump at an interface is obtained. In this article, the case of embedded domains is studied, under hypotheses of monotonicity of velocities and strict convexity of the inner domain. The Carleman inequalities obtained are the main tool for the study of the Lipschitz stability of an inverse problem, the one of recovering the potential (a zero-order coefficient term) in the equation by means of an observation given by the trace of the normal derivative of the solution on some subset of the external boundary. Those Carleman estimates were also used in [START_REF] Riahi | Stability estimate in determination of a coefficient in transmission wave equation by boundary observation[END_REF] in order to obtain Hölder stability of the related main-coefficient inverse problem. An analogous topic for the Schrödinger equation is investigated in [START_REF] Baudouin | An inverse problem for Schrödinger equations with discontinuous main coefficient[END_REF], where the construction of the weight function is generalized for convex inner domains in R n .

We also want to mention the recent work [START_REF] Gagnon | Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface[END_REF], where the case of an embedded strictly convex domain is considered. In that article, micro-local analysis techniques are used to obtain sufficient conditions for the observation zone, given by a proper subset of the boundary, in order to get observability.

The main objective of the present work is to generalize the Carleman estimate obtained in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF], taking into account the gap between the inner domain being 'strictly convex' and 'star-shaped'. Actually, we will prove a Carleman estimate for a setting where the interface of discontinuity of the main coefficient is not necessarily the boundary of a convex domain, but rather the boundary of a domain that can be seen as a perturbation of a convex set. The main step is the construction of the weight function, performed using the properties of the orthogonal projection. From there, using standard techniques, one can deduce properties of controllability and stability for coefficient inverse problems (see [START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF] for example). Nevertheless, we expect that the method of construction of the Carleman weight performed here could be useful in other studies of wave propagation in discontinuous media.

Notations and main results

Throughout the paper we will denote Q = Ω × (-T, T ), Σ = ∂Ω × (-T, T ) and Σ * = Γ * × (-T, T ). Also, for each j = 1, 2, we denote by n j the unitary exterior normal vector of Ω j , we set Q j = Ω j × (-T, T ), u j = u1 Q j for u ∈ L 2 (Ω) and we define the normal derivative by ∂u j ∂n j = ∇u j • n j .

Taking into account (1.3), (1.4) and the fact that the boundaries of Ω 1 and Ω 2 are Lipschitz, we directly have that equation (1.1) is equivalent to the system

           ∂ 2 t u 1 -a 1 ∆u 1 = 0, in Q 1 , ∂ 2 t u 2 -a 2 ∆u 2 = 0, in Q 2 , u = 0, on Σ, u(•, 0) = u 0 , ∂ t u(•, 0) = u 1 ,
in Ω, coupled with the transmission conditions

   u 1 = u 2 , on Σ * , a 1 ∂u 1 ∂n 1 + a 2 ∂u 2 ∂n 2 = 0, on Σ * . (1.5)
This work relies strongly on the construction of a function µ = µ(x) satisfying the transmission conditions (1.5) and such that it can be used as the spatial part of a Carleman weight function (see Section 2 below). Assuming that such a function µ is given, in a quite usual way we define

φ(x, t) = µ(x) -βt 2 + M, (x, t) ∈ Ω × R, (1.6) 
and, for any λ > 0, we set ϕ(x, t) = e λφ(x,t) , (x, t) ∈ Ω × R.

(1.7)

Remark 1.2. One may already know that a Carleman estimate can be described as a weighted energy estimate. It is, as already mentioned, a specific tool accurately built to prove the stability of an inverse problem or an observability estimate for a controllability goal, situations that are both defined for a given observation term. We would like to highlight the fact that the domain of this observation is intrinsically linked with the weight function used to design the Carleman estimate. Therefore one should bear in mind that our approach aims at building weight functions that makes interface terms vanishing in the process of the proof, allowing the observations to be performed only at the exterior boundary of the domain.

The following Carleman estimates for equation (1.1) are the main result of this work.

Theorem 1.3. Let Ω be a bounded domain with a partition Ω 1 , Ω 2 and a C 3 interface Γ * . Suppose that there exists a function ρ ∈ C 3 (Ω) satisfying

∇ρ = 0 in Ω, (1.8) 
ρ is strictly convex in Ω, (1.9)

and |θ(∇ρ(x), n 1 (x))| < π/4, ∀x ∈ Γ * , (1.10) 
where θ(∇ρ(x), n 1 (x)) denotes the angle between ∇ρ(x) and n 1 (x).

Then there exists ε > 0 such that, for every pair a 1 , a 2 satisfying

1 a 1 a 2 < 1 + ε, (1.11) 
there exist C, s o , λ 0 > 0 and a convex function µ = µ(x), such that, for ϕ defined as in (1.7), we have

sλ Q |u t | 2 + a|∇u| 2 ϕe 2sϕ dxdt + s 3 λ 3 Q |u| 2 ϕ 3 e 2sϕ dxdt C Q |∂ 2 t u -div(a(x)∇u)| 2 e 2sϕ dxdt + sλC Σ + a 2 ∂u ∂n 2 ϕe 2sϕ dσdt (1.12)
for any u ∈ X, λ λ 0 , s s 0 , where Σ + := x ∈ ∂Ω | ∂µ ∂n (x) > 0 × (-T, T ) and

X = u ∈ H 1 0 (Q) | u j ∈ H 2 (Q j ) for j = 1, 2, u satisfies (1.5), ∂ t u(±T, •) = 0 .
Remark 1.4. The function µ will be constructed modifying ρ in order to impose the transmission conditions (1.5) (see (2.3) and (2.4)). Hypothesis (1.10) is a generalization of the particular case of Γ * being part of a curve {x ∈ R 2 : ρ(x) = c} which is the boundary of a strictly convex domain including Ω 1 , that is precisely the hypothesis considered in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]. Indeed, in that case we would have n 1 collinear with ∇ρ on Γ * and then (1.10) is trivially satisfied. Hypothesis (1.10) can be seen as the requirement of Γ * being a perturbation of the boundary of a convex set. See Figure 1. In order to conclude this introductory section, we highlight that the contribution of this article is a Carleman estimate for the wave equation that has the noteworthy quality of holding under extended assumptions where the main coefficient is constant by pieces across a possibly non-convex interface. Up to our knowledge, this result is completely new, and paves the way for the usual applications of Carleman estimates in controllability results (e.g. [START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF]) and stability issues for inverse problems (e.g. [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF], [START_REF] Bellassoued | Carleman estimates and applications to inverse problems for hyperbolic systems[END_REF]).

The rest of the paper is organized as follows: In Section 2 we perform the geometric construction of the spatial part of the weight function, modifying a function which is smooth through the boundary, in order to satisfy the transmission conditions. Section 3 is devoted to present some examples of weight functions allowing estimates for domains with non-convex or flat interfaces. Finally, we prove the Carleman estimate in Section 4.

Construction of weight functions

We will denote, here and throughout the paper, the ratio between the two wave speeds as

ξ = a 1 a 2 . (2.1)
The key of the construction of an appropriate weight functional for the Carleman estimate is the careful choice of its spatial dependance. Let us assume that a function ρ ∈ C 2 (Ω) satisfies (1.8) and (1.9). Those are the main properties needed for ρ in order to be the spatial part of a Carleman weight for the wave equation (1.1) with a = 1, and they are related to the usual pseudoconvexity condition (see Section 4.2 of [5]). A typical example is given by ρ(x) = |x-x 0 | 2 for some x 0 ∈ R 2 \Ω (see [START_REF] Yu | Global uniqueness and stability in determining coefficients of wave equations[END_REF], [START_REF] Baudouin | Lipschitz stability in an inverse problem for the wave equation[END_REF]), but other choices of convex functions are suitable.

The key point of this constructive argument, in order to deal with the jump of the main coefficient of the equation, is the following. We will modify the function ρ in order to fulfill the transmission conditions (1.5). Indeed, we leave ρ unchanged in Ω 1 , and we redefine it in the subdomain Ω 2 in such a way that the obtained function satisfies (1.8), (1.9) and (1.5). We will denote by µ the function constructed this way.

Finally, the function defined by (1.6)-(1.7) will be used as a Carleman weight in the entire domain Ω for equation (1.1).

Definition of µ = µ(x)

In order to define µ, we will use the properties of the orthogonal projection P onto Ω 1 , and µ will be defined using the parameter ξ ∈ (1, 1 + ε). We recall that the projection P (x) of x ∈ R 2 in Ω 1 is defined by being the only point

P (x) ∈ Ω 1 satisfying |x -P (x)| = min{|x -y| : y ∈ Ω 1 }. (2.2)
It is natural to consider two cases. Case 1: Ω 1 is convex. Then the closed set Ω 1 is also convex, and therefore P is well defined in all R 2 . We set, for each

x ∈ Ω, µ(x) = ρ(x), if x ∈ Ω 1 , ξρ(x) + (1 -ξ)ρ(P (x)), if x ∈ Ω 2 \ Ω 1 .
(2.3)

Case 2: General case: Ω 1 is not necessarily convex. Even if Ω 1 is not convex, given that the interface Γ * is regular, there exists a neighborhood U of Γ * in R 2 (called the tubular neighborhood, see for instance [START_REF] Hirsch | Differential topology[END_REF]) such that

P : U ∩ Ω 2 -→ Ω 1 is well defined. Hence, given an open set V such that Γ * ⊂ V ⊂ V ⊂ U , we take a cut-off function η ∈ C ∞ 0 (U ) such that η = 1 in V . We define, for each x ∈ Ω, µ(x) =      ρ(x), if x ∈ Ω 1 , ξρ(x) + (1 -ξ)η(x)ρ(P (x)), if x ∈ U \ Ω 1 , ξρ(x), if x ∈ Ω 2 \ U.
(2.4)

Properties of the function µ

We will prove the properties satisfied by µ which will be used in the proof of the Carleman estimate.

In this work, the non-convex case is the most interesting, so that we will consider µ defined by (2.4). However, we recall also that the definition (2.3) will be used in Subsection 3.2 in order to construct a weight function corresponding to a flat interface, which is also a case not covered by previous results in the literature.

The following proposition proves that the function µ constructed here satisfies the transmission conditions, that are local properties near the interface Γ * .

Proposition 2.1. If ρ ∈ C 1 (Ω), then the function µ defined by (2.4) is well-defined, regular in each one of the sets Ω 1 and Ω 2 and it satisfies the transmission conditions (1.5) on Γ * . Proof. It is known that P is regular in the tubular neighborhood U (see [START_REF] Fitzpatrick | Differentiability of the metric projection in Hilbert space[END_REF] for projections on convex sets, [START_REF] Correa | Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces[END_REF] for the general case). For each

x ∈ Γ * = Ω 1 ∩ Ω 2 ⊂ U , we have P (x) = x and η(x) = 1. Hence µ 2 (x) = ρ(x) = µ 1 (x).
On the other hand, for each x ∈ Γ * , P is constant in the direction of n(x), the unitary normal vector of Γ * at P (x). Then

∇ ρ(P (x)) • n(x) = 0, ∀x ∈ Γ * .
As η = 1 in a neighborhood of Γ * , we can conclude that

∂µ 2 ∂n = ∇ [ξρ + (1 -ξ)ηρ(P (•))] • n = ξ∇ρ • n = ξ ∂µ 1 ∂n on Γ * .
The role of the cut-off function η corresponds to the fact that the orthogonal projection in Ω 1 is not well defined in all R 2 \ Ω 1 . We will handle its effect in the estimates of the weight function by regarding the term (1 -ξ)η(x)ρ(P (x)) in (2.4) as a perturbation of ξρ. In order to do this, we will assume that 1 -ξ is small enough. This is showed in the next result. Proposition 2.2. Suppose that ρ ∈ C 2 (Ω) satisfies (1.8) and (1.9). Then there exists ε > 0 such that, if |ξ -1| < ε, then the function µ defined by (2.4) satisfies the following properties:

• There exists δ > 0 such that µ is strictly positive and

|∇µ| δ > 0 in Ω 1 ∪ Ω 2 , (2.5) 
• There exists c > 0 such that the hessian matrix of µ satisfies

D 2 µ(ζ, ζ) c|ζ| 2 , in Ω 1 ∪ Ω 2 , ∀ζ ∈ R 2 \ {0}. (2.6)
Proof. From hypotheses (1.9) and (1.8) on ρ and the definition (2.4), properties (2.5) and (2.6) are fulfilled by µ = µ 1 in Ω 1 . On the other hand, we can see µ 2 as a perturbation of the function ξρ. Indeed, in U ∩ Ω 2 we have

∇µ 2 (x) = ξ∇ρ(x) + (1 -ξ)∇(ηρ(P (x)))
and

D 2 µ 2 (x) = ξD 2 ρ(x) + (1 -ξ)D 2 (ηρ(P (x))).
Then, taking into account the hypothesis on ρ, we get that ∇µ 2 = 0 and D 2 µ 2 is positive definite if |1 -ξ| is small enough.

Remark 2.3. The definition (2.3) comes naturally, at least locally near the interface, from the transmission conditions (1.5). Indeed, given ρ regular across the interface, and µ 1 = ρ already defined in Ω 1 , it is not difficult to see that µ 1 , µ 2 satisfy (1.5) if and only if

µ 2 (x) = ρ(P (x)) + ξ∇ρ(P (x)) • (x -P (x)) + g(x), x ∈ Ω 2 , (2.7) 
where g is some regular function in Ω 2 satisfying

g = ∂g ∂n 1 = 0 on Γ * .
(2.8)

Our construction in (2.3) corresponds to (2.7) with g(x) = ξ [ρ(x) -ρ(P (x)) -∇ρ(P (x)) • (x -P (x))] .
Using other functions g satisfying (2.8) would allow us to obtain more precise estimates. In particular, a construction where the orthogonal projection P (x) is only used for x near the interface would be useful in order to avoid the use of the cut-off function η in (2.4) and then to consider more general geometries.

Remark 2.4. In the particular case where the interface Γ * is contained in the boundary of a strictly convex set U containing Ω 1 , then we can take ρ as the square of the Minkowski functional (also called gauge function) of U , and then ρ(P (x)) = 1 for any x ∈ Ω 2 . In that case µ 2 is just a multiple of ρ plus a constant. This is precisely the case of the weight function considered in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] (see Subsection 3.1 below). The construction of a more general weight function developed here allows us to deal with two cases not covered in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]: the case of a flat interface (for any a 2 < a 1 , see Subsection 3.2) and also the case of non-convex interface (provided a 2 is not too far away from a 1 , see Theorem 2.4 above and Subsection 3.3).

In the following we explicitly state some inequalities which will be very useful for estimate the traces at the interface in the proof of the Carleman inequality. Proposition 2.5. Hypotheses (1.8) and (1.10) imply that µ 1 , which is equal to ρ on Ω 1 , satisfies

∂µ 1 ∂τ < ∂µ 1 ∂n 1 on Γ * , (2.9 
)

and ∂µ 1 ∂n 1 δ > 0 on Γ * . (2.10)
for some δ > 0, where τ = τ (x) stands for the unitary tangent vector on Γ * at each point x ∈ Γ * and ∂µ 1 ∂τ := ∇µ 1 • τ is the tangential derivative.

Proof. First recall that µ 1 = ρ in Ω 1 . Directly from properties of scalar product, we have that (1.10) is equivalent to

∂µ 1 ∂n 1 = cos(θ)|∇µ 1 | > 1 √ 2 |∇µ 1 | on Γ * , (2.11) 
where θ = θ(∇ρ(x), n 1 (x)) denotes the angle between ∇ρ(x) and n 1 (x).

On the other hand, at each point of Γ * , the orthogonal decomposition

∇µ 1 = ∂µ 1 ∂τ τ + ∂µ 1 ∂n 1 n 1 brings, using (2.11), ∂µ 1 ∂n 1 2 + ∂µ 1 ∂τ 2 = |∇µ 1 | 2 < 2 ∂µ 1 ∂n 1 2 on Γ * .
Taking into account that ∂µ 1 ∂n 1 is non-negative, we obtain (2.9).

Finally, from (1.8), (2.11) and the regularity of ρ, we obtain (2.10).

Remark 2.6. Inequality (2.9) will play a crucial role in the proof that, at the computation of the Carleman estimate for the whole domain, the sum of the resulting trace terms at the interface is non-negative (see Proposition 4.4 and also Remark 4.5). We recall that this inequality, which in fact is equivalent to (1.10), can be regarded as a generalization of the case where ρ is constant on the interface Γ * .

Finally, given the function µ defined in (2.4), the weight function we will use for the Carleman estimate is given, as usual, by

φ(x, t) = µ(x) -βt 2 + M, (x, t) ∈ Ω × R, (2.12) 
where β > 0 will be fixed later (see (4.8)) and M 0 is such that φ 0. Finally, for each λ > 0, we set ϕ = e λφ .

(2.13)

Examples of interfaces

We give here explicit examples of weight functions allowing the general constructions stated in (2.4) and (2.3) corresponding to various media interfaces that can be covered by our approach.

Convex set

Here we consider the particular case of the interface Γ * being part of the boundary of a strictly (or strongly) convex set. This case is essentially covered by previous results in the literature (see [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]), but it is included here in the sake of completeness. We assume that there exists an open strictly convex set C ⊂ R 2 such that Ω 1 = Ω ∩ C, and we take x 0 ∈ C. With a translation argument we can assume that x 0 = 0. Then, we take p as the Minkowsky functional (also called the gauge function) of the strictly convex set C, which is defined for each

x ∈ R 2 , by p(x) = inf{t > 0 | x ∈ tC}. (3.1)
We recall that tC = {tx | x ∈ C}. Finally, we set

ρ = p 2 .
By construction, Γ * is contained in the level curve {ρ = 1}, and then (1.10) is trivially satisfied. Indeed, the weight function defined in (2.3) is equivalent to the function used in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF], where it is proved that ρ is smooth and properties (1.8) and (1.9) are satisfied outside a neighborhood of x 0 . Therefore, if we take x 0 ∈ C \ Ω we can guarantee that those properties are valid in Ω.

In the case Ω 1 ⊂ Ω and C := Ω 1 then we cannot take such x 0 , but instead we take two different points x 1 , x 2 ∈ Ω 1 and then we use the corresponding functions ρ 1 and ρ 2 . Therefore, each function ρ k satisfies (1.8) and (1.9) in Ω \ B ε (x k ) for k = 1, 2 with ε > 0. Taking ε small enough, we can combine the resulting estimates from both weights functions, as is performed in [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF], in order to obtain an estimate in the whole domain (see Subsection 2.3.5 of [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]).

Flat interface

In the particular case where the interface Γ * is given by a segment of a straight line, we can explicitly define a weight function. We recall that this case does not fulfill the hypothesis of [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF], where the only admissible interface is the boundary of a strictly convex set.

In this example the points of the domain Ω ⊂ R 2 are denoted by an ordered pair (x, y) of real numbers. Let us assume that Γ * is contained in the set {y = b}, meaning that Ω 1 is convex (and not strictly convex). We choose the typical function

ρ(x, y) = |(x, y) -(x 0 , y 0 )| 2 ,
so that the function µ defined by (2.3) is given by

µ(x, y) = (x -x 0 ) 2 + (y -y 0 ) 2 , if y < b, (x -x 0 ) 2 + ξ(y -y 0 ) 2 + (1 -ξ)(b -y 0 ) 2 , if y > b. (3.2) 
It is not difficult to obtain the following result.

Proposition 3.1. Given an open and bounded set Ω ⊂ R 2 with Lipschitz boundary, an interface Γ * given by a straight segment and ξ 1, there exists (x 0 , y 0 ) ∈ R 2 such that function µ defined in (3.2) satisfies hypothesis (1.10) and also the conclusions of Propositions 2.1 and 2.2, with no restrictions on the value of ε > 0. Figure 3 shows an example of a flat interface given by a straight segment, ξ = 3, corresponding to ρ(x, y) = |(x, y) -(5, -3)| 2 .

Perturbation of a convex set

This is the most important example considered in this article, since it allows the case of non-convex geometries. We will use again the Minkowski functional introduced in Subsection 3.1. Suppose that Γ * can be approximated by the boundaries of some strictly convex sets in the following sense: there exists a strictly convex domain C (without loss of generality, we can assume that C contains the origin), such that, for each x ∈ Γ * , if t > 0 is the only positive number such that x ∈ t∂C, then

θ(n C (x), n 1 (x)) < π/4, (3.3) 
where θ(n C (x), n 1 (x)) is the angle between the unit normal vectors exteriors to tC = {tz : z ∈ C} and Ω 1 at the point x. Then, we take the Minkowsky functional p defined by C (see (3.1)), and ρ = p 2 . Since each level curve of ρ is given by the boundary of tC for some t > 0, we have that hypothesis (1.10) is satisfied. Similarly to the previous cases, hypotheses (1.8) and (1.9) are satisfied in Ω \ B ε (x 0 ) for any ε > 0 (see Figure 4).

Also, if we cannot take x 0 ∈ C \ Ω, we can combine the weight functions defined by two points x 1 , x 2 ∈ Ω, as was explained also in the subsection 3.1 (see Figure 5).

Proof of the Carleman inequality

This section is devoted to the proof of Theorem 1.3 and is divided into three parts. The first one presents the usual setting and computations concerning a Carleman estimate for a wave operator in a generic domain without boundary conditions, taking into account all the traces at the boundary resulting from the integration by parts. Then, we derive the previous computations in the specific situation studied in this work. The terms at the interior and at the boundary of the whole domain are treated in a classical way, and we carefully study the resulting terms at the interface. Finally, we gather all the informations and conclude the proof.

Carleman inequality with traces at the boundary

We denote the wave operator L a := ∂ 2 t -a∆, and we define

F a (z) := |z t | 2 -a |∇z| 2 . (4.1)
As usual for the proof of Carleman estimates, we perform the following changes of variables 

L(w) = L 1 (w) + L 2 (w) + R(w), (4.2) 
where, for some γ ∈ (0, 1) which we will fix later (see (4.9)),

L 1 (w) = w tt -a∆w + s 2 λ 2 ϕ 2 F a (φ)w, L 2 (w) = (γ -1)sλϕL a (φ)w -sλ 2 ϕF a (φ)w -2sλϕ(φ t w t -a∇φ • ∇w), R(w) = -γsλϕL a (φ)w.
We perform the following computations in a generic set Q = U × (-T, T ) without assuming any boundary condition for w on the boundary Σ = ∂U × (-T, T ), and for a constant. Later, we will apply the obtained results to each one of the subdomains Ω 1 and Ω 2 instead of U . We set

L 1 (w), L 2 (w) L 2 (Q) = 3 i,j=1 I i,j ,
where I i,j denotes the product of the i-th term in L 1 (w) with the j-th term in L 2 (w). Standard computations and integrations by parts allow to obtain (see e.g. [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]):

I 1,1 = -sλ(γ -1) Q L a (φ)|w t | 2 ϕ dxdt + sλ 2 (γ -1) 2 Q |w| 2 (φ tt + λ|φ t | 2 )L a (φ)ϕ dxdt, I 1,2 = sλ 2 Q |w t | 2 F a (φ)ϕ dxdt -sλ 2 Q |w| 2 |φ tt | 2 ϕ dxdt - 5sλ 3 2 Q |w| 2 φ tt |φ t | 2 ϕ dxdt + sλ 3 2 a Q |w| 2 φ tt |∇φ| 2 ϕ dxdt - sλ 4 2 Q |w| 2 |φ t | 2 F a (φ)ϕ dxdt, I 1,3 = sλ Q |w t | 2 (φ tt + λ|φ t | 2 )ϕ dxdt -2sλ 2 a Q w t φ t ∇w • ∇φϕ dxdt +sλa Q |w t | 2 (∆φ + λ|∇φ| 2 )ϕ dxdt -sλ Σ a|w t | 2 ∂φ ∂n ϕ dσdt, I 2,1 = -sλ(γ -1) Σ aL a (φ)w ∂w ∂n ϕ dσdt + sλ(γ -1)a Q |∇w| 2 L a (φ)ϕ dxdt -sλ 2 γ -1 2 a Q |w| 2 L a (φ)(λ|∇φ| 2 + ∆φ)ϕ dxdt -sλ γ -1 2 a Q |w| 2 ∆(L a (φ))ϕ dxdt -sλ 2 (γ -1)a Q |w| 2 (∇φ • ∇L a (φ))ϕ dxdt + sλ γ -1 2 Σ a|w| 2 ∇L a (φ) • nϕ dσdt +sλ 2 γ -1 2 Σ a|w| 2 L a (φ) ∂φ ∂n ϕ dσdt, I 2,2 = sλ 2 Σ aF a (φ)w ∂w ∂n ϕ dσdt - sλ 2 2 Σ a|w| 2 ∇(ϕF a (φ)) • n dσdt + sλ 3 2 a Q |w| 2 F a (φ)(∆φ + λ|∇φ| 2 )ϕ dxdt -2sλ 3 a 2 Q |w| 2 D 2 (φ)(∇φ, ∇φ)ϕ dxdt + sλ 2 2 a Q |w| 2 ∆(F a (φ))ϕ dxdt -sλ 2 a Q |∇w| 2 F a (φ)ϕ dxdt, I 2,3 = sλa Q |∇w| 2 L a (φ)ϕ dxdt + sλ 2 a Q |∇w| 2 F a (φ)ϕ dxdt + 2sλ 2 a 2 Q |∇φ • ∇w| 2 ϕ dxdt -2sλ 2 a Q φ t w t ∇w • ∇φϕ dxdt + 2sλa 2 Q D 2 (φ)(∇w, ∇w)ϕ dxdt +sλ Σ a 2 |∇w| 2 ∂φ ∂n ϕ dσdt + 2sλ Σ a(φ t w t -a∇φ • ∇w) ∂w ∂n ϕ dσdt, I 3,1 = s 3 λ 3 (γ -1) Q |w| 2 L a (φ)F a (φ)ϕ 3 dxdt, I 3,2 = -s 3 λ 4 Q |w| 2 F a (φ) 2 ϕ 3 dxdt, and 
I 3,3 = s 3 λ 3 Q |w| 2 F a (φ)L a (φ)ϕ 3 dxdt + 2s 3 λ 3 Q |w| 2 (|φ t | 2 φ tt + a 2 D 2 (φ)(∇φ, ∇φ))ϕ 3 dxdt +3s 3 λ 4 Q |w| 2 F a (φ) 2 ϕ 3 dxdt + s 3 λ 3 Σ a|w| 2 F a (φ) ∂φ ∂n ϕ 3 dσdt.
With all the previous computations, recalling Q = U × (-T, T ) and Σ = ∂U × (-T, T ) we write

L 1 (w), L 2 (w) L 2 (Q) = A U + Y U + B ∂U , (4.3) 
where A U gathers the so-called 'dominating' internal terms

A U = 2sλ Q |w t | 2 φ tt ϕ dxdt -γsλ Q |w t | 2 L a (φ)ϕ dxdt + 2sλ 2 Q |w t | 2 |φ t | 2 -2w t φ t a∇w • ∇φ + a 2 |∇φ • ∇w| 2 ϕ dxdt + 2sλa 2 Q D 2 (φ)(∇w, ∇w)ϕ dxdt + γsλa Q |∇w| 2 L a (φ)ϕ dxdt + 2s 3 λ 4 Q |w| 2 F a (φ) 2 ϕ 3 dxdt + 2s 3 λ 3 Q |w| 2 (|φ t | 2 φ tt + a 2 D 2 (φ)(∇φ, ∇φ))ϕ 3 dxdt + γs 3 λ 3 Q |w| 2 L a (φ)F a (φ)ϕ 3 dxdt, (4.4) 
B ∂U is the sum of all the boundary terms

B ∂U = 9 i=1 B i (U, ∂U )
with Σ = ∂U × (-T, T ) and

B 1 (U, ∂U ) = -sλ Σ a|w t | 2 ∂φ ∂n ϕ dσdt, B 2 (U, ∂U ) = -(γ -1)sλ Σ aL a (φ)w ∂w ∂n ϕ dσdt, B 3 (U, ∂U ) = (γ -1) 2 sλ 2 Σ a|w| 2 ∂φ ∂n L a (φ)ϕ dσdt, B 4 (U, ∂U ) = (γ -1) 2 sλ Σ a|w| 2 ∂L a (φ) ∂n ϕ dσdt, B 5 (U, ∂U ) = sλ 2 Σ aw ∂w ∂n F a (φ)ϕ dσdt, B 6 (U, ∂U ) = - sλ 2 2 Σ a|w| 2 ∂(ϕF a (φ)) ∂n dσdt, B 7 (U, ∂U ) = 2sλ Σ a ∂w ∂n (φ t w t -a∇φ∇w)ϕ dσdt, B 8 (U, ∂U ) = sλ Σ a 2 |∇w| 2 ∂φ ∂n ϕ dσdt, B 9 (U, ∂U ) = s 3 λ 3 Σ aF a (φ) ∂φ ∂n |w| 2 ϕ 3 dσdt, (4.5) 
and Y U is the sum of the remaining interior terms. In particular, since λ < M ϕ = M e λφ , we have that

|Y U | M sλ 3 Q ϕ 3 |w| 2 dxdt. (4.6) 

Carleman inequality for the transmission system

Assuming the hypothesis of Theorem 1.3, we will fix the constants of the Carleman weight. From hypothesis (2.6) we have that

m 0 := 1 2 inf{a(x)D 2 µ(x)(ζ, ζ) : x ∈ Ω 1 ∪ Ω 2 , ζ ∈ R 2 , |ζ| = 1} > 0. ( 4.7) 
Also, the parameter β of the weight function can be chosen such that it satisfies

0 < β < m 0 inf{a(x)∆µ(x) : x ∈ Ω 1 ∪ Ω 2 } + 2β sup{a(x)∆µ(x) : x ∈ Ω 1 ∪ Ω 2 } + 2β . (4.8) 
Indeed, the expression at the right hand side of (4.8) is a continuous function on β and it takes a positive value at β = 0; therefore (4.8) is fulfilled if β is small enough. Hence, from (4.8) it is clear that we can chose γ such that sup

Ω 1 ∪Ω 2 4β a∆µ + 2β < γ < inf Ω 1 ∪Ω 2 4m 0 a∆µ + 2β . (4.9) 
Remark 4.1. We mention that, the precise value of β from (4.8) is usually important in the applications of Carleman estimate. For instance, in order to apply the Bukgheim-Klibanov method, it would be necessary to take additional hypothesis: typically, we have to take T > T 0 with 0 < δ µ(x) βT 2 0 (4.10) for all x ∈ Ω. Therefore, a very interesting further problem would be to construct precise examples of the weight function µ adapted to particular cases of (non-convex) interfaces such that the choice of β > 0 is optimal.

We apply the computations developed in the previous part of the work to each one of the subdomains Ω 1 and Ω 2 , with the main coefficient given by a 1 and a 2 respectively, and then we add up the resulting terms. Therefore, from (4.3) we can write

L 1 (w), L 2 (w) L 2 (Ω×(-T,T )) = A Ω 1 + A Ω 2 + Y Ω 1 + Y Ω 2 + B ∂Ω 1 + B ∂Ω 2 . (4.11) 
Here, the terms gathered in A Ω 1 + A Ω 2 are integrals over Ω × (-T, T ), denoted again by Q, and can be treated as usual, e.g. [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF] or [START_REF] Baudouin | Lipschitz stability in an inverse problem for the wave equation[END_REF].

In the following result we state the norm we obtain from the minimization of this interior integrals.

Proposition 4.2. If ρ ∈ C 3 (Ω), µ is defined by (2.4) and ε is given by Proposition 2.2, then, for each pair a 1 , a 2 > 0 satisfying

a 1 a 2 ∈ (1, 1 + ε),
there exist δ, λ 0 , s 0 > 0 such that

A = A Ω 1 + A Ω 2 δ sλ Q |w t | 2 + a|∇w| 2 ϕ dxdt + s 3 λ 3 Q |w| 2 ϕ 3 dxdt
for all s s 0 , λ λ 0 .

Proof. We denote by A j , j = 1, . . . , 8 the eight integrals coming from the L 2 product of L 1 (w) and L 2 (w). Hence, from (4.9) we get that there exist δ 1 , δ 2 > 0 such that

A 1 + A 2 = 2sλ Q |w t | 2 φ tt ϕdxdt -γsλ Q |w t | 2 L a (φ)ϕdxdt = sλ Q |w t | 2 (-4β -γ (φ tt -a∆φ)) ϕdxdt = sλ Q |w t | 2 (-4β + γ (2β + a∆µ)) ϕdxdt δ 1 sλ Q |w t | 2 ϕdxdt and A 4 + A 5 = 2sλ Q a 2 D 2 (φ)(∇w, ∇w)ϕdxdt + γsλ Q a|∇w| 2 L a (φ)ϕdxdt sλ Q a|∇w| 2 [4m 0 -γ(2β + a∆µ)] ϕdxdt δ 2 sλ Q aϕ|∇w| 2 dxdt.
Also, we have

A 3 = 2sλ 2 Q |w t | 2 |φ t | 2 -2w t φ t a∇w • ∇φ + a 2 |∇φ • ∇w| 2 ϕdxdt = 2sλ 2 Q (w t φ t -a∇w • ∇φ) 2 ϕdxdt 0.
Concerning the remaining interior terms, recalling that F a (φ) = |φ t | 2 -a|∇φ| 2 ,we obtain

8 j=6 A j = 2s 3 λ 4 Q |w| 2 ϕ 3 F a (φ) 2 dxdt + 2s 3 λ 3 Q |w| 2 ϕ 3 |φ t | 2 φ tt + a 2 D 2 (φ)(∇φ, ∇φ) dxdt + γs 3 λ 3 Q |w| 2 ϕ 3 L a (φ)F a (φ)dxdt = s 3 λ 3 Q |w| 2 ϕ 3 2λF a (φ) 2 -4β|φ t | 2 + 2a 2 D 2 (µ)(∇µ, ∇µ) + γL a (φ)F a (φ) dxdt = s 3 λ 3 Q |w| 2 ϕ 3 2λF a (φ) 2 + (γL a (φ) -4β) F a (φ) + 2a 2 D 2 (µ)(∇µ, ∇µ) -4βa|∇µ| 2 dxdt.
Therefore, denoting b = γL a (φ) -4β L ∞ , using (2.5) and recalling that (4.8) implies β < m 0 , where m 0 is defined by (4.7), we deduce that there exists d 0 > 0 such that

8 j=6 A j s 3 λ 3 Q |w| 2 ϕ 3 2λF a (φ) 2 -b|F a (φ)| + d 0 dxdt. (4.12) 
Denoting g λ (x) = 2λx 2 -b|x| + d 0 for x ∈ R, it is not difficult to see that there exists δ 3 > 0 and λ 0 > 0 such that min x∈R g λ (x) δ 3 > 0 (4.13)

for each λ λ 0 . From (4.12) and (4.13), it is deduced that

8 j=6 A j s 3 λ 3 δ 3 Q |w| 2 ϕ 3 dxdt
for all λ λ 0 , and the Proposition is proved.

On the other hand, in order to continue dealing with the terms listed in (4.11), concerning the negligible terms, directly from (4.6) we have

|Y Ω 1 | + |Y Ω 2 | M sλ 3 Q ϕ 3 |w| 2 dxdt. (4.14)
Finally, regarding the boundary terms coming from Ω 1 and Ω 2 , we recall that ∂Ω 1 ∪ ∂Ω 2 = ∂Ω ∪ Γ * and ∂Ω 1 ∩ ∂Ω 2 = Γ * . Hence we can write

B ∂Ω 1 + B ∂Ω 2 = B ∂Ω + [B Γ * ], (4.15) 
so that ϕ and w = e sϕ u satisfy them as well since u ∈ X. Therefore, on Σ * , one has ϕ 1 = ϕ 2 , w 1 = w 2 , but also w 1t = w 2t and φ 1t = φ 2t , and similarly for any other time-derivative, like w tt or φ tt . This allows to write simply ϕ or w. Moreover, if we denote by τ the unitary tangential vector of Γ * , there is no ambiguity in the notation

∂φ ∂τ := ∂φ 2 ∂τ = ∂φ 1 ∂τ = ∇φ 1 • τ on Σ * . (4.17)
Hence, at the interface we have ∇φ j = ∂φ j ∂n j n j + ∂φ ∂τ τ and

|∇φ j | 2 = ∂φ j ∂n j 2 + ∂φ ∂τ 2 , for j = 1, 2. (4.18)
Within the framework of the previous notation, we begin by proving a useful identity for the traces of any pair of functions satisfying the transmission conditions on the interface. If f and g satisfy (1.5) we have, on the interface Γ * : In order to prove Proposition 4.4, we now split the calculation of the boundary terms in two separate steps, one devoted to the negligible terms and one to the dominant positive traces at the interface that can absorb the others.

a 2 ∇f 2 • ∇g 2 -a 1 ∇f 1 • ∇g 1 = a 2 ∂f
Step 2 -Negligible boundary bounded terms.

It is not difficult to prove that the first six terms

[B k ] = B k (Ω 1 , Γ * ) + B k (Ω 2 , Γ * ) for k = 1, . . . , 6 
can be bounded in the following way. We claim that there exists M > 0 such that

6 k=1 |[B k ]| M Σ * s 2 λ 3 |w| 2 + λ ∂w 1 ∂n 1 2 ϕ dσdt. (4.20)
We detail the computations needed to prove (4.20), using the transmission conditions satisfied by the functions φ and w and Young's inequality.

• B 1 (Ω i , Γ * ) = -sλ Σ a|w t | 2 ∂φ ∂n ϕ dσdt, and using the above introductive comments, we have

[B 1 ] := B 1 (Ω 1 , Γ * ) + B 1 (Ω 2 , Γ * ) = -sλ Σ * |w t | 2 a 1 ∂φ 1 ∂n 1 + a 2 ∂φ 2 ∂n 2 ϕ dσdt = 0. • B 2 (Ω i , Γ * ) = -(γ -1)sλ
Σ aL a (φ)w ∂w ∂n ϕ dσdt, and using the transmission conditions on w and φ tt , and L a (φ) = φ tt -a∆φ, we get,

[B 2 ] := B 2 (Ω 1 , Γ * ) + B 2 (Ω 2 , Γ * ) = -(γ -1)sλ Σ * w L a 1 (φ 1 )a 1 ∂w 1 ∂n 1 + L a 2 (φ 2 )a 2 ∂w 2 ∂n 2 ϕ dσdt = -(γ -1)sλ Σ * wa 1 ∂w 1 ∂n 1 [L a 1 (φ 1 ) -L a 2 (φ 2 )] ϕ dσdt = -(γ -1)sλ Σ * wa 1 ∂w 1 ∂n 1 [a 2 ∆φ 2 -a 1 ∆φ 1 ] ϕ dσdt and then [B 2 ] M s 2 λ Σ * |w| 2 ϕ dσdt + M λ Σ * ∂w 1 ∂n 1 2 ϕ dσdt. • B 3 (Ω i , Γ * ) = (γ -1) 2 sλ 2 Σ
a|w| 2 ∂φ ∂n L a (φ)ϕ dσdt, and for the same reasons, we have 

[B 3 ] := B 3 (Ω 1 , Γ * ) + B 3 (Ω 2 , Γ * ) = (γ -1) 2 sλ 2 Σ * |w| 2 a 1 ∂φ 1 ∂n 1 L a 1 (φ 1 ) + a 2 ∂φ 2 ∂n 2 L a 2 (φ 2 ) ϕ dσdt = a 1 (1 -γ) 2 sλ 2 Σ * |w| 2 (a 1 ∆φ 1 -a 2 ∆φ 2 ) ∂φ 1 ∂n 1 ϕ dσdt and then [B 3 ] M sλ 2 Σ * |w| 2 ϕ dσdt. • B 4 (Ω i , Γ * ) = (γ -1) 2 
] := B 5 (Ω 1 , Γ * ) + B 5 (Ω 2 , Γ * ) = sλ 2 Σ * w |φ t | 2 a 1 ∂w 1 ∂n 1 + a 2 ∂w 2 ∂n 2 -a 1 ∂w 1 ∂n 1 a 1 |∇φ 1 | 2 + a 2 ∂w 2 ∂n 2 a 2 |∇φ 2 | 2 ϕ dσdt = -sλ 2 Σ * wa 1 ∂w 1 ∂n 1 a 1 |∇φ 1 | 2 -a 2 |∇φ 2 | 2 ϕ dσdt and then [B 5 ] M s 2 λ 3 Σ * |w| 2 ϕ dσdt + M λ Σ * ∂w 1 ∂n 1 2 ϕ dσdt. • B 6 (Ω i , Γ * ) = - sλ 2 2 Σ a|w| 2 ∂(ϕF a (φ))
∂n dσdt, so that the regularity of φ allows to write

[B 6 ] = |B 6 (Ω 1 , Γ * ) + B 6 (Ω 2 , Γ * )| M sλ 3 Σ * |w| 2 ϕ dσdt.
Therefore, gathering all these estimates, (4.20) is obtained.

Step 3 -Boundary dominant terms.

We now aim at proving that the remaining terms can provide positive traces on the boundary, allowing to absorb the right hand side of (4.20) by means of taking the parameter s large enough. More precisely, we claim that there exists δ > 0 such that 

[B 7 ] + [B 8 ] + [B 9 ] δ Σ * s 3 λ 3 ϕ 3 |w| 2 + sλϕ ∂w 1 ∂n 1 2 dσdt. ( 4 
] := B 7 (Ω 1 , Γ * ) + B 7 (Ω 2 , Γ * ) = 2sλ Σ * a 1 ∂w 1 ∂n 1 (φ t w t -a 1 ∇φ 1 • ∇w 1 ) ϕ dσdt + 2sλ Σ * a 2 ∂w 2 ∂n 2 (φ t w t -a 2 ∇φ 2 • ∇w 2 ) ϕ dσdt = -2sλ Σ * a 1 ∂w 1 ∂n 1 a 1 ∇φ 1 • ∇w 1 + a 2 ∂w 2 ∂n 2 a 2 ∇φ 2 • ∇w 2 ϕ dσdt = 2sλ Σ * a 1 ∂w 1 ∂n 1 (a 2 ∇φ 2 • ∇w 2 -a 1 ∇φ 1 • ∇w 1 ) ϕ dσdt, and 
which, recalling that a 2 < a 1 , is a more general hypothesis than (4.25). However, in this work we are not able to take advantage of (4.29) since we are taking a 1 , a 2 satisfying (1.11) where ε depends on ρ and the geometry of the interface (via the ortoghonal projection, see Proposition 2.2).

It would be very interesting to set a more precise geometrical construction of weight functions taking advantage of (4.29), in order to obtain more general and more precise results.

Concluding the proof

The proof of Theorem 1.3 is a direct consequence of the previous results of the article. Indeed, given ρ satisfying hypotheses (1.8), (1.9) and (1.10), we define µ by (2.4) and then φ and ϕ by (2.12) and (2.13) respectively. We take ε > 0 given by Proposition 2.2, and then we assume that a 1 , a 2 satisfy (1.11). We develop the decomposition (4.2) in each subdomain Ω 1 and Ω 2 , obtaining (4.11). From Propositions 4.2 and 4.4 and Lemma 4.3, we obtain that there exists M such that As usual, taking u = e -sϕ w we obtain the Carleman inequality (1.12), and Theorem 1.3 is proved.

L 1 (w) 2 L 2 (Q) + L 2 (w) 2 L 2 (Q) + sλ Q |w t | 2 + a|∇w| 2 ϕ dxdt + s 3 λ 3 Q |w| 2 ϕ 3 dxdt M L(w) 2 L 2 (Q) + M sλ

Figure 1 :

 1 Figure 1: The thin continuous lines represent the level curves of the convex function ρ. Hypothesis (1.10) means that the unitary normal vectors of the interface Γ * are close to the corresponding normal vectors of those curves.

Figure 2 :

 2 Figure 2: The orthogonal projection is well-defined in U , the tubular neighborhood (denoted in gray) of the interface Γ * .

Figure 3 :

 3 Figure 3: An example of flat interface, where ξ = 3. Here is used ρ(x, y) = |(x, y) -(5, -3)| 2 . Level curves of the function µ given by (2.3) are represented by thin dotted lines. We recall that the observation zone Γ + (represented by the continuous line) is contained in ∂Ω 2 .

Figure 4 :

 4 Figure 4: If the interface Γ * is given by the dotted black line, we can take ρ as the square of the Minkowski functional of the domain bounded by the thin blue curve.

Figure 5 :

 5 Figure 5: If the interface Γ * is given by the dotted black line, we can take ρ as the square of the Minkowski functional of the domain bounded by the thin blue curve approximating Γ * , centered at x 0 or x 1 . Then both weight functions can be combined in order to obtain the Carleman inequality. See Subsection 3.1
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  ] := B 8 (Ω 1 , Γ * ) + B 8 (Ω 2 , Γ * ) = sλ |∇w 2 | 2 -a 1 |∇w 1 | 2 ϕ dσdt.Thus, from (4.[START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]) with f = g = w, we get[B 8 ] = -sλ(a 1 -a 2 ) ] + [B 8 ] = sλ(a 1 -a 2 )a 1This estimate allow us to bound by below the non-positive term in the right-hand side of (4.24). , from (4.24) and (4.26) we deduce that ∃δ 1 > 0 such that[B 7 ] + [B 8 ] = sλ(a 1 -a 2 )a 1For the last term, we proceed as follows:• B 9 (Ω i , Γ * ) = s 3 λ 3 Σ * F a (φ)a ∂φ ∂n |w| 2 ϕ 3 dσdt, so that [B 9 ] := B 9 (Ω 1 , Γ * ) + B 9 (Ω 2 , Γ * ) = s 3 λ 3 Σ * |φ t | 2 -a 1 |∇φ 1 | 2 a 1 ∂φ 1 ∂n 1 |w| 2 ϕ 3 dσdt + Σ * |φ t | 2 -a 2 |∇φ 2 | 2 a 2 |∇φ 2 | 2 -a 1 |∇φ 1 | 2 ϕ 3 dσdt.Using (4.19) for f = g = φ and (4.25), we havea 2 |∇φ 2 | 2 -a 1 |∇φ 1 | 2 = (a 1 -a 2 )and therefore, there exists a δ 2 > 0 such that[B 9 ] s 3 λ 3 a 1 (a 1 -a 2 ) 3 |w| 2 dσdt. (4.28) From (4.27) and (4.28) we obtain (4.21). Finally, from (4.20) and (4.21) we deduce that there exists s 0 such that [B Γ * ] 0, ∀ s s 0 , which concludes the proof of Proposition 4.4. Remark 4.5. In the proof of Proposition 4.4 we used (4.25), which is implied by (1.10) (see Proposition 2.5). But, actually, it is enough to assume inequality

	In the same way,
	Σ * ϕ dσdt, so that a 1 ∂w 1 ∂n 1 a 1 a 2 [B 8 Σ * • B 8 (Ω i , Γ * ) = sλ Σ * a 2 |∇w| 2 ∂φ ∂n a 2 1 |∇w 1 | 2 ∂φ 1 ∂φ 1 ∂n 1 ∂n 1 = -sλ Σ * a 1 ∂φ 1 ∂n 1 a 2 Σ * a 1 ∂φ 1 ∂n 1 a 1 a 2 ∂w 1 ∂w 1 ∂n 1 ϕ dσdt + sλ -∂φ ∂τ ∂τ ∂w ∂n 1 2 -∂w ∂τ 2 Therefore, from (4.22) and (4.23) we have [B 7 Σ * a 1 a 2 ∂φ 1 ∂n 1 ∂w 1 ∂n 1 2 + ∂φ 1 ∂n 1 ∂w ∂τ 2 -2 ∂w 1 ∂n 1 Moreover, from hypothesis (2.9) on µ, we directly have ∂φ ∂τ ∂φ 1 ∂n 1 on Σ * . Indeed, we have 2 ∂w 1 ∂n 1 ∂φ ∂τ ∂w ∂τ 2 ∂φ 1 ∂n 1 ∂w 1 ∂n 1 ∂w ∂τ ∂φ 1 ∂n 1 ∂w 1 ∂n 1 2 + ∂φ 1 ∂n 1 Thus, taking into account that 1 < a 1 a 2 Σ * a 1 a 2 -1 ∂φ 1 ∂n 1 ∂w 1 ∂n 1 2 ϕ dσdt δ 1 sλ = -s 3 λ 3 Σ * |w| 2 a 1 |∇φ 1 | 2 a 1 ∂φ 1 ∂n 1 + a 2 |∇φ 2 | 2 a 2 ∂φ 2 ∂n 2 ϕ 3 dσdt = s 3 λ 3 Σ * |w| 2 a 1 ∂φ 1 ∂n 1 a 2 ∂φ 1 ∂n 1 2 -∂φ ∂τ 2 (a 1 -a 2 ) Σ * ϕ dσdt. a 2 2 |∇w 2 | 2 ∂φ 2 ∂n 2 ϕ dσdt. ∂φ ∂τ ∂w ∂τ ϕ dσdt. (4.24) (4.22) ϕ dσdt (4.23) (4.25) ∂w ∂τ 2 . (4.26) Σ * ∂w 1 ∂n 1 2 ϕ dσdt. (4.27) ∂φ 2 ∂n 2 |w| 2 ϕ 3 dσdt ∂φ 1 ∂n 1 2 a 1 a 2 -1 , a 1 a 2 -1 Σ * |w| 2 ∂φ 1 ∂n 1 ∂φ 1 ∂n 1 2 ϕ 3 dσdt δ 2 s 3 λ 3 Σ * a 2 a 1 ∂φ ∂τ < a 1 a 2 ∂φ 1 ∂n 1 on Σ

then, using (4.19) with f = w and g = φ, we get

[B 7 ] = 2sλ(a 1 -a 2 ) ϕ * ,

where B ∂Ω denotes the sum of the integrals from (4.5) supported in ∂Ω, and by [B Γ * ] we mean the sum of the corresponding integrals supported by the interface Γ * , coming from the integration by parts on both domains Ω 1 and Ω 2 , i.e.

Thanks to the Dirichlet homogeneous boundary condition of the equation, we have ∇w = ∂w ∂n n on ∂Ω and then we can deal with the terms at the boundary ∂Ω as usual, obtaining the observation term stated in the following result.

Lemma 4.3. There exist positive constants M, s 0 , λ 0 such that

for any s s 0 and λ λ 0 , where

Finally, dealing with the terms at the interface will be crucial in this work. The rest of this section is devoted to prove that, under the hypothesis we are assuming, we actually have [B Γ * ] 0 if the parameter s is large enough. See Proposition 4.4 below.

Carleman terms at the interface Γ * between Ω 1 and Ω 2

Recall that the exterior unitary normal vectors of Ω 1 and Ω 2 satisfy n 2 = -n 1 on the interface Γ * . Using the notation presented in (4.5), we get the following result. Proposition 4.4. Assuming the hypotheses of Theorem 1.3, a 1 , a 2 satisfying a 2 < a 1 and taking µ and φ defined by (2.4) and (2.12) respectively, there exist s 0 > 0 such that

for all s s 0 .

Proof.

Step 1 -Preliminaries about properties at the interface Γ * . By construction of µ and φ, using ρ that satisfies the assumptions of Theorem 1.3, the hypotheses of propositions 2.1 and 2.2 are verified. Hence, the function µ (and therefore φ) satisfy their conclusions. These properties, together with inequality (2.9) stated in Remark 2.5 will be key ingredients of this proof. We recall that, for any function f defined in Ω we denote f j := f | Ω j for j = 1, 2.

Indeed, from Propositions 2.1 we get that φ satisfies the transmission conditions (1.5) at the interface Σ * = Γ * × (-T, T ), meaning φ 1 = φ 2 and a 1 ∂φ 1 ∂n 1 + a 2 ∂φ 2 ∂n 2 = 0 on Σ * ,