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Carleman estimates for the wave equation in heterogeneous media

with non-convex interface.

Lucie Baudouin∗ Pamela Godoy† Alberto Mercado‡

April 28, 2021

Abstract

A wave equation whose main coefficient is discontinuous models the evolution of waves
amplitude in a media composed of at least two different materials, in which the propagation
speed is different. In our mathematical setting, the spatial domain where the partial differential
equation evolves is an open bounded subset of R2 and the wave speed is assumed to be constant
in each one of two sub-domains, separated by a smooth and possibly non-convex interface. This
article is concerned with the construction of Carleman weights for this wave operator, allowing
generalizations of previous results to the case of an interface that is not necessarily the boundary
of a convex set. Indeed, using the orthogonal projection onto this interface, we define convex
functions satisfying the transmission conditions imposed by the equation, such that, under usual
hypothesis on the sign of the jump of the wave speed, can be used as Carleman weights.

Keywords: Wave equation. Carleman estimates. Transmission system.

1 Introduction

In the last two decades, controllability and inverse problems for partial differential equations have
been extensively studied using Carleman estimates. The books [5], [13] and [21] allow an overview
of this tool and its application in those fields. More recently, equations in heterogeneous media
have gained a lot of attention in the literature. In particular, we mention the works [19], [18], [9]
concerning elliptic equations, and [10], [20], [17], [12], dealing with parabolic equations.

In the present work, we are interested in systems of transmission wave equations. More precisely,
let us consider here the system given by

∂2
t u(x, t)− div(a(x)∇u(x, t)) = 0, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x), x ∈ Ω,

(1.1)
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where T > 0, Ω ⊂ R2 is an open set with a Lipschitz boundary ∂Ω, and the coefficient a is piecewise
constant and given by

a(x) =

{
a1, x ∈ Ω1,

a2, x ∈ Ω2.
(1.2)

Here, a1, a2 are positive constants and Ω1, Ω2 define a partition of Ω, in the sense that they are
non-empty open sets with Lipschitz boundaries and such that

Ω1 ∩ Ω2 = ∅ and Ω = Int(Ω1 ∪ Ω2). (1.3)

The interface between Ω1 and Ω2 is denoted Γ∗ and given by

Γ∗ = Ω1 ∩ Ω2 = ∂Ω1 ∩ ∂Ω2. (1.4)

Remark 1.1. A particular example of a partition is given by the case of embedded domains: Ω1 ⊂ Ω
and Ω2 = Ω \ Ω1. In this case we have Γ∗ = ∂Ω1.

The objective of this work is to prove a Carleman inequality for equation (1.1) under suitable
geometric hypothesis.

1.1 Context of the problem

In the seminal book [22], one of the setting that is studied concerning the wave equation is the
case of embedded domains and a main coefficient a(x) of the wave operator which is constant in
each one of the subdomains. Using the multiplier method, the author proves the controllability
of the system, assuming that the interior domain is star-shaped and the value of a at the exte-
rior domain is smaller than the interior one. Moreover, references [6], [7], [23] even proved that
if the monotonicity of the jump of the coefficient across the interface is inverted, then there exist
solutions whose energy is arbitrarily concentrated in a neighborhood of the interface, allowing to
deduce a lack of controllability. But on the other hand, it seems possible to aim at dealing with
less restrictions on the shape of the interface (which is the boundary of the interior domain here).

Up to our knowledge, [4] is the first work where a global Carleman inequality for a wave
equation with a jump at an interface is obtained. In this article, the case of embedded domains is
studied, under hypotheses of monotonicity of velocities and strict convexity of the inner domain.
The Carleman inequalities obtained are the main tool for the study of the Lipschitz stability of an
inverse problem, the one of recovering the potential (a zero-order coefficient term) in the equation
by means of an observation given by the trace of the normal derivative of the solution on some
subset of the external boundary. Those Carleman estimates were also used in [24] in order to
obtain Hölder stability of the related main-coefficient inverse problem. An analogous topic for
the Schrödinger equation is investigated in [3], where the construction of the weight function is
generalized for convex inner domains in Rn.

We also want to mention the recent work [14], where the case of an embedded strictly convex
domain is considered. In that article, micro-local analysis techniques are used to obtain sufficient
conditions for the observation zone, given by a proper subset of the boundary, in order to get
observability.
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The main objective of the present work is to generalize the Carleman estimate obtained in [4],
taking into account the gap between the inner domain being ‘strictly convex’ and ‘star-shaped’.
Actually, we will prove a Carleman estimate for a setting where the interface of discontinuity of
the main coefficient is not necessarily the boundary of a convex domain, but rather the boundary
of a domain that can be seen as a perturbation of a convex set. The main step is the construction
of the weight function, performed using the properties of the orthogonal projection. From there,
using standard techniques, one can deduce properties of controllability and stability for coefficient
inverse problems (see [2] for example). Nevertheless, we expect that the method of construction
of the Carleman weight performed here could be useful in other studies of wave propagation in
discontinuous media.

1.2 Notations and main results

Throughout the paper we will denote Q = Ω× (−T, T ), Σ = ∂Ω× (−T, T ) and Σ∗ = Γ∗× (−T, T ).
Also, for each j = 1, 2, we denote by nj the unitary exterior normal vector of Ωj , we set Qj =

Ωj × (−T, T ), uj = u1Qj for u ∈ L2(Ω) and we define the normal derivative by
∂uj
∂nj

= ∇uj · nj .

Taking into account (1.3), (1.4) and the fact that the boundaries of Ω1 and Ω2 are Lipschitz,
we directly have that equation (1.1) is equivalent to the system

∂2
t u1 − a1∆u1 = 0, in Q1,

∂2
t u2 − a2∆u2 = 0, in Q2,

u = 0, on Σ,

u(·, 0) = u0, ∂tu(·, 0) = u1, in Ω,

coupled with the transmission conditionsu1 = u2, on Σ∗,

a1
∂u1

∂n1
+ a2

∂u2

∂n2
= 0, on Σ∗.

(1.5)

This work relies strongly on the construction of a function µ = µ(x) satisfying the transmission
conditions (1.5) and such that it can be used as the spatial part of a Carleman weight function (see
Section 2 below). Assuming that such a function µ is given, in a quite usual way we define

φ(x, t) = µ(x)− βt2 +M, (x, t) ∈ Ω× R, (1.6)

and, for any λ > 0, we set
ϕ(x, t) = eλφ(x,t), (x, t) ∈ Ω× R. (1.7)

Remark 1.2. One may already know that a Carleman estimate can be described as a weighted
energy estimate. It is, as already mentioned, a specific tool accurately built to prove the stability of
an inverse problem or an observability estimate for a controllability goal, situations that are both
defined for a given observation term. We would like to highlight the fact that the domain of this
observation is intrinsically linked with the weight function used to design the Carleman estimate.
Therefore one should bear in mind that our approach aims at building weight functions that makes
interface terms vanishing in the process of the proof, allowing the observations to be performed only
at the exterior boundary of the domain.
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The following Carleman estimates for equation (1.1) are the main result of this work.

Theorem 1.3. Let Ω be a bounded domain with a partition Ω1, Ω2 and a C3 interface Γ∗. Suppose
that there exists a function ρ ∈ C3(Ω) satisfying

∇ρ 6= 0 in Ω, (1.8)

ρ is strictly convex in Ω, (1.9)

and
|θ(∇ρ(x), n1(x))| < π/4, ∀x ∈ Γ∗, (1.10)

where θ(∇ρ(x), n1(x)) denotes the angle between ∇ρ(x) and n1(x).
Then there exists ε > 0 such that, for every pair a1, a2 satisfying

1 6
a1

a2
< 1 + ε, (1.11)

there exist C, so, λ0 > 0 and a convex function µ = µ(x), such that, for ϕ defined as in (1.7), we
have

sλ

∫∫
Q

(
|ut|2 + a|∇u|2

)
ϕe2sϕ dxdt+ s3λ3

∫∫
Q
|u|2ϕ3e2sϕ dxdt

6 C

∫∫
Q
|∂2
t u− div(a(x)∇u)|2e2sϕdxdt+ sλC

∫∫
Σ+

a2

∣∣∣∣∂u∂n
∣∣∣∣2 ϕe2sϕdσdt (1.12)

for any u ∈ X,λ > λ0, s > s0, where Σ+ :=

{
x ∈ ∂Ω | ∂µ

∂n
(x) > 0

}
× (−T, T ) and

X =
{
u ∈ H1

0 (Q) | uj ∈ H2(Qj) for j = 1, 2, u satisfies (1.5), ∂tu(±T, ·) = 0
}
.

Remark 1.4. The function µ will be constructed modifying ρ in order to impose the transmission
conditions (1.5) (see (2.3) and (2.4)). Hypothesis (1.10) is a generalization of the particular case
of Γ∗ being part of a curve {x ∈ R2 : ρ(x) = c} which is the boundary of a strictly convex domain
including Ω1, that is precisely the hypothesis considered in [4]. Indeed, in that case we would have
n1 collinear with ∇ρ on Γ∗ and then (1.10) is trivially satisfied. Hypothesis (1.10) can be seen as
the requirement of Γ∗ being a perturbation of the boundary of a convex set. See Figure 1.
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Figure 1: The thin continuous lines represent the level curves of the convex function ρ. Hypothesis (1.10)
means that the unitary normal vectors of the interface Γ∗ are close to the corresponding normal vectors of
those curves.

In order to conclude this introductory section, we highlight that the contribution of this article
is a Carleman estimate for the wave equation that has the noteworthy quality of holding under
extended assumptions where the main coefficient is constant by pieces across a possibly non-convex
interface. Up to our knowledge, this result is completely new, and paves the way for the usual ap-
plications of Carleman estimates in controllability results (e.g. [2]) and stability issues for inverse
problems (e.g. [4], [5]).

The rest of the paper is organized as follows: In Section 2 we perform the geometric construc-
tion of the spatial part of the weight function, modifying a function which is smooth through the
boundary, in order to satisfy the transmission conditions. Section 3 is devoted to present some
examples of weight functions allowing estimates for domains with non-convex or flat interfaces.
Finally, we prove the Carleman estimate in Section 4.

2 Construction of weight functions

We will denote, here and throughout the paper, the ratio between the two wave speeds as

ξ =
a1

a2
. (2.1)

The key of the construction of an appropriate weight functional for the Carleman estimate is
the careful choice of its spatial dependance. Let us assume that a function ρ ∈ C2(Ω) satisfies (1.8)
and (1.9). Those are the main properties needed for ρ in order to be the spatial part of a Carleman
weight for the wave equation (1.1) with a = 1, and they are related to the usual pseudoconvexity
condition (see Section 4.2 of [5]). A typical example is given by ρ(x) = |x−x0|2 for some x0 ∈ R2\Ω
(see [16], [1]), but other choices of convex functions are suitable.

The key point of this constructive argument, in order to deal with the jump of the main
coefficient of the equation, is the following. We will modify the function ρ in order to fulfill the
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transmission conditions (1.5). Indeed, we leave ρ unchanged in Ω1, and we redefine it in the
subdomain Ω2 in such a way that the obtained function satisfies (1.8), (1.9) and (1.5). We will
denote by µ the function constructed this way.

Finally, the function defined by (1.6)-(1.7) will be used as a Carleman weight in the entire
domain Ω for equation (1.1).

2.1 Definition of µ = µ(x)

In order to define µ, we will use the properties of the orthogonal projection P onto Ω1, and µ will
be defined using the parameter ξ ∈ (1, 1 + ε). We recall that the projection P (x) of x ∈ R2 in Ω1

is defined by being the only point P (x) ∈ Ω1 satisfying

|x− P (x)| = min{|x− y| : y ∈ Ω1}. (2.2)

It is natural to consider two cases.
Case 1: Ω1 is convex.

Then the closed set Ω1 is also convex, and therefore P is well defined in all R2. We set, for each
x ∈ Ω,

µ(x) =

{
ρ(x), if x ∈ Ω1,

ξρ(x) + (1− ξ)ρ(P (x)), if x ∈ Ω2 \ Ω1.
(2.3)

Case 2: General case: Ω1 is not necessarily convex.
Even if Ω1 is not convex, given that the interface Γ∗ is regular, there exists a neighborhood U of
Γ∗ in R2 (called the tubular neighborhood, see for instance [15]) such that

P : U ∩ Ω2 −→ Ω1

is well defined. Hence, given an open set V such that Γ∗ ⊂ V ⊂ V ⊂ U , we take a cut-off function
η ∈ C∞0 (U) such that η = 1 in V . We define, for each x ∈ Ω,

µ(x) =


ρ(x), if x ∈ Ω1,

ξρ(x) + (1− ξ)η(x)ρ(P (x)), if x ∈ U \ Ω1,

ξρ(x), if x ∈ Ω2 \ U.
(2.4)

2.2 Properties of the function µ

We will prove the properties satisfied by µ which will be used in the proof of the Carleman estimate.
In this work, the non-convex case is the most interesting, so that we will consider µ defined by
(2.4). However, we recall also that the definition (2.3) will be used in Subsection 3.2 in order to
construct a weight function corresponding to a flat interface, which is also a case not covered by
previous results in the literature.

The following proposition proves that the function µ constructed here satisfies the transmission
conditions, that are local properties near the interface Γ∗.

Proposition 2.1. If ρ ∈ C1(Ω), then the function µ defined by (2.4) is well-defined, regular in
each one of the sets Ω1 and Ω2 and it satisfies the transmission conditions (1.5) on Γ∗.
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Figure 2: The orthogonal projection is well-defined in U , the tubular neighborhood (denoted in gray) of
the interface Γ∗.

Proof. It is known that P is regular in the tubular neighborhood U (see [11] for projections on
convex sets, [8] for the general case). For each x ∈ Γ∗ = Ω1 ∩ Ω2 ⊂ U , we have P (x) = x and
η(x) = 1. Hence

µ2(x) = ρ(x) = µ1(x).

On the other hand, for each x ∈ Γ∗, P is constant in the direction of n(x), the unitary normal
vector of Γ∗ at P (x). Then

∇
(
ρ(P (x))

)
· n(x) = 0, ∀x ∈ Γ∗.

As η = 1 in a neighborhood of Γ∗, we can conclude that

∂µ2

∂n
= ∇ [ξρ+ (1− ξ)ηρ(P (·))] · n = ξ∇ρ · n = ξ

∂µ1

∂n
on Γ∗.

The role of the cut-off function η corresponds to the fact that the orthogonal projection in Ω1

is not well defined in all R2 \ Ω1. We will handle its effect in the estimates of the weight function
by regarding the term (1− ξ)η(x)ρ(P (x)) in (2.4) as a perturbation of ξρ. In order to do this, we
will assume that 1− ξ is small enough. This is showed in the next result.

Proposition 2.2. Suppose that ρ ∈ C2(Ω) satisfies (1.8) and (1.9). Then there exists ε > 0 such
that, if |ξ − 1| < ε, then the function µ defined by (2.4) satisfies the following properties:

• There exists δ > 0 such that µ is strictly positive and

|∇µ| > δ > 0 in Ω1 ∪ Ω2, (2.5)

• There exists c > 0 such that the hessian matrix of µ satisfies

D2µ(ζ, ζ) > c|ζ|2, in Ω1 ∪ Ω2, ∀ζ ∈ R2 \ {0}. (2.6)
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Proof. From hypotheses (1.9) and (1.8) on ρ and the definition (2.4), properties (2.5) and (2.6) are
fulfilled by µ = µ1 in Ω1. On the other hand, we can see µ2 as a perturbation of the function ξρ.
Indeed, in U ∩ Ω2 we have

∇µ2(x) = ξ∇ρ(x) + (1− ξ)∇(ηρ(P (x)))

and
D2µ2(x) = ξD2ρ(x) + (1− ξ)D2(ηρ(P (x))).

Then, taking into account the hypothesis on ρ, we get that ∇µ2 6= 0 and D2µ2 is positive definite
if |1− ξ| is small enough.

Remark 2.3. The definition (2.3) comes naturally, at least locally near the interface, from the
transmission conditions (1.5). Indeed, given ρ regular across the interface, and µ1 = ρ already
defined in Ω1, it is not difficult to see that µ1, µ2 satisfy (1.5) if and only if

µ2(x) = ρ(P (x)) + ξ∇ρ(P (x)) · (x− P (x)) + g(x), x ∈ Ω2, (2.7)

where g is some regular function in Ω2 satisfying

g =
∂g

∂n1
= 0 on Γ∗. (2.8)

Our construction in (2.3) corresponds to (2.7) with

g(x) = ξ [ρ(x)− ρ(P (x))−∇ρ(P (x)) · (x− P (x))] .

Using other functions g satisfying (2.8) would allow us to obtain more precise estimates. In par-
ticular, a construction where the orthogonal projection P (x) is only used for x near the interface
would be useful in order to avoid the use of the cut-off function η in (2.4) and then to consider
more general geometries.

Remark 2.4. In the particular case where the interface Γ∗ is contained in the boundary of a strictly
convex set U containing Ω1, then we can take ρ as the square of the Minkowski functional (also
called gauge function) of U , and then ρ(P (x)) = 1 for any x ∈ Ω2. In that case µ2 is just a
multiple of ρ plus a constant. This is precisely the case of the weight function considered in [4] (see
Subsection 3.1 below). The construction of a more general weight function developed here allows
us to deal with two cases not covered in [4]: the case of a flat interface (for any a2 < a1, see
Subsection 3.2) and also the case of non-convex interface (provided a2 is not too far away from a1,
see Theorem 2.4 above and Subsection 3.3).

In the following we explicitly state some inequalities which will be very useful for estimate the
traces at the interface in the proof of the Carleman inequality.

Proposition 2.5. Hypotheses (1.8) and (1.10) imply that µ1, which is equal to ρ on Ω1, satisfies∣∣∣∣∂µ1

∂τ

∣∣∣∣ < ∂µ1

∂n1
on Γ∗, (2.9)

and
∂µ1

∂n1
> δ > 0 on Γ∗. (2.10)

for some δ > 0, where τ = τ(x) stands for the unitary tangent vector on Γ∗ at each point x ∈ Γ∗

and
∂µ1

∂τ
:= ∇µ1 · τ is the tangential derivative.
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Proof. First recall that µ1 = ρ in Ω1. Directly from properties of scalar product, we have that
(1.10) is equivalent to

∂µ1

∂n1
= cos(θ)|∇µ1| >

1√
2
|∇µ1| on Γ∗, (2.11)

where θ = θ(∇ρ(x), n1(x)) denotes the angle between ∇ρ(x) and n1(x).

On the other hand, at each point of Γ∗, the orthogonal decomposition ∇µ1 =
∂µ1

∂τ
τ +

∂µ1

∂n1
n1

brings, using (2.11), ∣∣∣∣∂µ1

∂n1

∣∣∣∣2 +

∣∣∣∣∂µ1

∂τ

∣∣∣∣2 = |∇µ1|2 < 2

∣∣∣∣∂µ1

∂n1

∣∣∣∣2 on Γ∗.

Taking into account that
∂µ1

∂n1
is non-negative, we obtain (2.9).

Finally, from (1.8), (2.11) and the regularity of ρ, we obtain (2.10).

Remark 2.6. Inequality (2.9) will play a crucial role in the proof that, at the computation of the
Carleman estimate for the whole domain, the sum of the resulting trace terms at the interface is
non-negative (see Proposition 4.4 and also Remark 4.5). We recall that this inequality, which in
fact is equivalent to (1.10), can be regarded as a generalization of the case where ρ is constant on
the interface Γ∗.

Finally, given the function µ defined in (2.4), the weight function we will use for the Carleman
estimate is given, as usual, by

φ(x, t) = µ(x)− βt2 +M, (x, t) ∈ Ω× R, (2.12)

where β > 0 will be fixed later (see (4.8)) and M > 0 is such that φ > 0. Finally, for each λ > 0,
we set

ϕ = eλφ. (2.13)

3 Examples of interfaces

We give here explicit examples of weight functions allowing the general constructions stated in (2.4)
and (2.3) corresponding to various media interfaces that can be covered by our approach.

3.1 Convex set

Here we consider the particular case of the interface Γ∗ being part of the boundary of a strictly (or
strongly) convex set. This case is essentially covered by previous results in the literature (see [4]),
but it is included here in the sake of completeness.

We assume that there exists an open strictly convex set C ⊂ R2 such that Ω1 = Ω∩C, and we
take x0 ∈ C. With a translation argument we can assume that x0 = 0. Then, we take p as the
Minkowsky functional (also called the gauge function) of the strictly convex set C, which is defined
for each x ∈ R2, by

p(x) = inf{t > 0 | x ∈ tC}. (3.1)

We recall that tC = {tx | x ∈ C}. Finally, we set

ρ = p2.
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By construction, Γ∗ is contained in the level curve {ρ = 1}, and then (1.10) is trivially satisfied.
Indeed, the weight function defined in (2.3) is equivalent to the function used in [4], where it is
proved that ρ is smooth and properties (1.8) and (1.9) are satisfied outside a neighborhood of x0.
Therefore, if we take x0 ∈ C \ Ω we can guarantee that those properties are valid in Ω.

In the case Ω1 ⊂ Ω and C := Ω1 then we cannot take such x0, but instead we take two different
points x1, x2 ∈ Ω1 and then we use the corresponding functions ρ1 and ρ2. Therefore, each function
ρk satisfies (1.8) and (1.9) in Ω \ Bε(xk) for k = 1, 2 with ε > 0. Taking ε small enough, we can
combine the resulting estimates from both weights functions, as is performed in [4], in order to
obtain an estimate in the whole domain (see Subsection 2.3.5 of [4]).

3.2 Flat interface

In the particular case where the interface Γ∗ is given by a segment of a straight line, we can explicitly
define a weight function. We recall that this case does not fulfill the hypothesis of [4], where the
only admissible interface is the boundary of a strictly convex set.

In this example the points of the domain Ω ⊂ R2 are denoted by an ordered pair (x, y) of real
numbers. Let us assume that Γ∗ is contained in the set {y = b}, meaning that Ω1 is convex (and
not strictly convex). We choose the typical function

ρ(x, y) = |(x, y)− (x0, y0)|2,

so that the function µ defined by (2.3) is given by

µ(x, y) =

{
(x− x0)2 + (y − y0)2, if y < b,

(x− x0)2 + ξ(y − y0)2 + (1− ξ)(b− y0)2, if y > b.
(3.2)

It is not difficult to obtain the following result.

Proposition 3.1. Given an open and bounded set Ω ⊂ R2 with Lipschitz boundary, an interface
Γ∗ given by a straight segment and ξ > 1, there exists (x0, y0) ∈ R2 such that function µ defined
in (3.2) satisfies hypothesis (1.10) and also the conclusions of Propositions 2.1 and 2.2, with no
restrictions on the value of ε > 0.

Figure 3 shows an example of a flat interface given by a straight segment, ξ = 3, corresponding
to ρ(x, y) = |(x, y)− (5,−3)|2.

3.3 Perturbation of a convex set

This is the most important example considered in this article, since it allows the case of non-convex
geometries. We will use again the Minkowski functional introduced in Subsection 3.1. Suppose
that Γ∗ can be approximated by the boundaries of some strictly convex sets in the following sense:
there exists a strictly convex domain C (without loss of generality, we can assume that C contains
the origin), such that, for each x ∈ Γ∗, if t > 0 is the only positive number such that x ∈ t∂C, then

θ(nC(x), n1(x)) < π/4, (3.3)

where θ(nC(x), n1(x)) is the angle between the unit normal vectors exteriors to tC = {tz : z ∈ C}
and Ω1 at the point x. Then, we take the Minkowsky functional p defined by C (see (3.1)), and
ρ = p2.
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Figure 3: An example of flat interface, where ξ = 3. Here is used ρ(x, y) = |(x, y)− (5,−3)|2. Level curves
of the function µ given by (2.3) are represented by thin dotted lines. We recall that the observation zone Γ+

(represented by the continuous line) is contained in ∂Ω2.

Since each level curve of ρ is given by the boundary of tC for some t > 0, we have that
hypothesis (1.10) is satisfied. Similarly to the previous cases, hypotheses (1.8) and (1.9) are satisfied
in Ω \Bε(x0) for any ε > 0 (see Figure 4).

Also, if we cannot take x0 ∈ C \Ω, we can combine the weight functions defined by two points
x1, x2 ∈ Ω, as was explained also in the subsection 3.1 (see Figure 5).

4 Proof of the Carleman inequality

This section is devoted to the proof of Theorem 1.3 and is divided into three parts. The first one
presents the usual setting and computations concerning a Carleman estimate for a wave operator in
a generic domain without boundary conditions, taking into account all the traces at the boundary
resulting from the integration by parts. Then, we derive the previous computations in the specific
situation studied in this work. The terms at the interior and at the boundary of the whole domain
are treated in a classical way, and we carefully study the resulting terms at the interface. Finally,
we gather all the informations and conclude the proof.

4.1 Carleman inequality with traces at the boundary

We denote the wave operator La := ∂2
t − a∆, and we define

Fa(z) := |zt|2 − a |∇z|2 . (4.1)

As usual for the proof of Carleman estimates, we perform the following changes of variables

11



Figure 4: If the interface Γ∗ is given by the dotted black line, we can take ρ as the square of the Minkowski
functional of the domain bounded by the thin blue curve.

Figure 5: If the interface Γ∗ is given by the dotted black line, we can take ρ as the square of the Minkowski
functional of the domain bounded by the thin blue curve approximating Γ∗, centered at x0 or x1. Then both
weight functions can be combined in order to obtain the Carleman inequality. See Subsection 3.1

parametrized by s > 0 and λ > 0 :

ϕ = eλφ, w = esϕu, L(w) = esϕLa(e
−sϕw),
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and we write

L(w) = L1(w) + L2(w) +R(w), (4.2)

where, for some γ ∈ (0, 1) which we will fix later (see (4.9)),

L1(w) = wtt − a∆w + s2λ2ϕ2Fa(φ)w,

L2(w) = (γ − 1)sλϕLa(φ)w − sλ2ϕFa(φ)w − 2sλϕ(φtwt − a∇φ · ∇w),

R(w) = −γsλϕLa(φ)w.

We perform the following computations in a generic set Q = U × (−T, T ) without assuming any
boundary condition for w on the boundary Σ = ∂U × (−T, T ), and for a constant. Later, we will
apply the obtained results to each one of the subdomains Ω1 and Ω2 instead of U .
We set

〈L1(w),L2(w)〉L2(Q) =

3∑
i,j=1

Ii,j ,

where Ii,j denotes the product of the i-th term in L1(w) with the j-th term in L2(w). Standard
computations and integrations by parts allow to obtain (see e.g. [4]):

I1,1 = −sλ(γ − 1)

∫∫
Q
La(φ)|wt|2ϕdxdt+

sλ2(γ − 1)

2

∫∫
Q
|w|2(φtt + λ|φt|2)La(φ)ϕdxdt,

I1,2 = sλ2

∫∫
Q
|wt|2Fa(φ)ϕdxdt− sλ2

∫∫
Q
|w|2|φtt|2ϕdxdt−

5sλ3

2

∫∫
Q
|w|2φtt|φt|2ϕdxdt

+
sλ3

2
a

∫∫
Q
|w|2φtt|∇φ|2ϕdxdt−

sλ4

2

∫∫
Q
|w|2|φt|2Fa(φ)ϕdxdt,

I1,3 = sλ

∫∫
Q
|wt|2(φtt + λ|φt|2)ϕdxdt− 2sλ2a

∫∫
Q
wtφt∇w · ∇φϕdxdt

+sλa

∫∫
Q
|wt|2(∆φ+ λ|∇φ|2)ϕdxdt− sλ

∫∫
Σ
a|wt|2

∂φ

∂n
ϕdσdt,

I2,1 = −sλ(γ − 1)

∫∫
Σ
aLa(φ)w

∂w

∂n
ϕdσdt+ sλ(γ − 1)a

∫∫
Q
|∇w|2La(φ)ϕdxdt

−sλ2γ − 1

2
a

∫∫
Q
|w|2La(φ)(λ|∇φ|2 + ∆φ)ϕdxdt− sλγ − 1

2
a

∫∫
Q
|w|2∆(La(φ))ϕdxdt

−sλ2(γ − 1)a

∫∫
Q
|w|2(∇φ · ∇La(φ))ϕdxdt+ sλ

γ − 1

2

∫∫
Σ
a|w|2∇La(φ) · nϕdσdt

+sλ2γ − 1

2

∫∫
Σ
a|w|2La(φ)

∂φ

∂n
ϕdσdt,
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I2,2 = sλ2

∫∫
Σ
aFa(φ)w

∂w

∂n
ϕdσdt− sλ2

2

∫∫
Σ
a|w|2∇(ϕFa(φ)) · ndσdt

+
sλ3

2
a

∫∫
Q
|w|2Fa(φ)(∆φ+ λ|∇φ|2)ϕdxdt− 2sλ3a2

∫∫
Q
|w|2D2(φ)(∇φ,∇φ)ϕdxdt

+
sλ2

2
a

∫∫
Q
|w|2∆(Fa(φ))ϕdxdt− sλ2a

∫∫
Q
|∇w|2Fa(φ)ϕdxdt,

I2,3 = sλa

∫∫
Q
|∇w|2La(φ)ϕdxdt+ sλ2a

∫∫
Q
|∇w|2Fa(φ)ϕdxdt+ 2sλ2a2

∫∫
Q
|∇φ · ∇w|2ϕdxdt

−2sλ2a

∫∫
Q
φtwt∇w · ∇φϕdxdt+ 2sλa2

∫∫
Q
D2(φ)(∇w,∇w)ϕdxdt

+sλ

∫∫
Σ
a2|∇w|2∂φ

∂n
ϕdσdt+ 2sλ

∫∫
Σ
a(φtwt − a∇φ · ∇w)

∂w

∂n
ϕdσdt,

I3,1 = s3λ3(γ − 1)

∫∫
Q
|w|2La(φ)Fa(φ)ϕ3 dxdt,

I3,2 = −s3λ4

∫∫
Q
|w|2Fa(φ)2ϕ3 dxdt,

and

I3,3 = s3λ3

∫∫
Q
|w|2Fa(φ)La(φ)ϕ3 dxdt+ 2s3λ3

∫∫
Q
|w|2(|φt|2φtt + a2D2(φ)(∇φ,∇φ))ϕ3 dxdt

+3s3λ4

∫∫
Q
|w|2Fa(φ)2ϕ3 dxdt+ s3λ3

∫∫
Σ
a|w|2Fa(φ)

∂φ

∂n
ϕ3 dσdt.

With all the previous computations, recalling Q = U × (−T, T ) and Σ = ∂U × (−T, T ) we write

〈L1(w),L2(w)〉L2(Q) = AU + YU +B∂U , (4.3)

where AU gathers the so-called ‘dominating’ internal terms

AU = 2sλ

∫∫
Q
|wt|2φttϕdxdt− γsλ

∫∫
Q
|wt|2La(φ)ϕdxdt

+ 2sλ2

∫∫
Q

(
|wt|2|φt|2 − 2wtφta∇w · ∇φ+ a2|∇φ · ∇w|2

)
ϕdxdt

+ 2sλa2

∫∫
Q
D2(φ)(∇w,∇w)ϕdxdt

+ γsλa

∫∫
Q
|∇w|2La(φ)ϕdxdt+ 2s3λ4

∫∫
Q
|w|2Fa(φ)2ϕ3 dxdt

+ 2s3λ3

∫∫
Q
|w|2(|φt|2φtt + a2D2(φ)(∇φ,∇φ))ϕ3 dxdt

+ γs3λ3

∫∫
Q
|w|2La(φ)Fa(φ)ϕ3 dxdt,

(4.4)
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B∂U is the sum of all the boundary terms

B∂U =

9∑
i=1

Bi(U, ∂U)

with Σ = ∂U × (−T, T ) and

B1(U, ∂U) = −sλ
∫∫

Σ
a|wt|2

∂φ

∂n
ϕdσdt,

B2(U, ∂U) = −(γ − 1)sλ

∫∫
Σ
aLa(φ)w

∂w

∂n
ϕdσdt,

B3(U, ∂U) =
(γ − 1)

2
sλ2

∫∫
Σ
a|w|2∂φ

∂n
La(φ)ϕdσdt,

B4(U, ∂U) =
(γ − 1)

2
sλ

∫∫
Σ
a|w|2∂La(φ)

∂n
ϕdσdt,

B5(U, ∂U) = sλ2

∫∫
Σ
aw

∂w

∂n
Fa(φ)ϕdσdt,

B6(U, ∂U) = −sλ
2

2

∫∫
Σ
a|w|2∂(ϕFa(φ))

∂n
dσdt,

B7(U, ∂U) = 2sλ

∫∫
Σ
a
∂w

∂n
(φtwt − a∇φ∇w)ϕdσdt,

B8(U, ∂U) = sλ

∫∫
Σ
a2|∇w|2∂φ

∂n
ϕdσdt,

B9(U, ∂U) = s3λ3

∫∫
Σ
aFa(φ)

∂φ

∂n
|w|2ϕ3 dσdt,

(4.5)

and YU is the sum of the remaining interior terms. In particular, since λ < Mϕ = Meλφ, we have
that

|YU | 6Msλ3

∫∫
Q
ϕ3|w|2dxdt. (4.6)

4.2 Carleman inequality for the transmission system

Assuming the hypothesis of Theorem 1.3, we will fix the constants of the Carleman weight. From
hypothesis (2.6) we have that

m0 :=
1

2
inf{a(x)D2µ(x)(ζ, ζ) : x ∈ Ω1 ∪ Ω2, ζ ∈ R2, |ζ| = 1} > 0. (4.7)

Also, the parameter β of the weight function can be chosen such that it satisfies

0 < β < m0
inf{a(x)∆µ(x) : x ∈ Ω1 ∪ Ω2}+ 2β

sup{a(x)∆µ(x) : x ∈ Ω1 ∪ Ω2}+ 2β
. (4.8)

Indeed, the expression at the right hand side of (4.8) is a continuous function on β and it takes a
positive value at β = 0; therefore (4.8) is fulfilled if β is small enough. Hence, from (4.8) it is clear
that we can chose γ such that

sup
Ω1∪Ω2

4β

a∆µ+ 2β
< γ < inf

Ω1∪Ω2

4m0

a∆µ+ 2β
. (4.9)
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Remark 4.1. We mention that, the precise value of β from (4.8) is usually important in the
applications of Carleman estimate. For instance, in order to apply the Bukgheim-Klibanov method,
it would be necessary to take additional hypothesis: typically, we have to take T > T0 with

0 < δ 6 µ(x) 6 βT 2
0 (4.10)

for all x ∈ Ω. Therefore, a very interesting further problem would be to construct precise examples
of the weight function µ adapted to particular cases of (non-convex) interfaces such that the choice
of β > 0 is optimal.

We apply the computations developed in the previous part of the work to each one of the
subdomains Ω1 and Ω2, with the main coefficient given by a1 and a2 respectively, and then we add
up the resulting terms. Therefore, from (4.3) we can write

〈L1(w),L2(w)〉L2(Ω×(−T,T )) = AΩ1 +AΩ2 + YΩ1 + YΩ2 +B∂Ω1 +B∂Ω2 . (4.11)

Here, the terms gathered in AΩ1 + AΩ2 are integrals over Ω × (−T, T ), denoted again by Q, and
can be treated as usual, e.g. [4] or [1].

In the following result we state the norm we obtain from the minimization of this interior
integrals.

Proposition 4.2. If ρ ∈ C3(Ω), µ is defined by (2.4) and ε is given by Proposition 2.2, then, for
each pair a1, a2 > 0 satisfying

a1

a2
∈ (1, 1 + ε),

there exist δ, λ0, s0 > 0 such that

A = AΩ1 +AΩ2 > δ

[
sλ

∫∫
Q

(
|wt|2 + a|∇w|2

)
ϕdxdt+ s3λ3

∫∫
Q
|w|2ϕ3 dxdt

]
for all s > s0, λ > λ0.

Proof. We denote by Aj , j = 1, . . . , 8 the eight integrals coming from the L2 product of L1(w) and
L2(w). Hence, from (4.9) we get that there exist δ1, δ2 > 0 such that

A1 +A2 = 2sλ

∫∫
Q
|wt|2φttϕdxdt− γsλ

∫∫
Q
|wt|2La(φ)ϕdxdt

= sλ

∫∫
Q
|wt|2 (−4β − γ (φtt − a∆φ))ϕdxdt = sλ

∫∫
Q
|wt|2 (−4β + γ (2β + a∆µ))ϕdxdt

> δ1sλ

∫∫
Q
|wt|2ϕdxdt

and

A4 +A5 = 2sλ

∫∫
Q
a2D2(φ)(∇w,∇w)ϕdxdt+ γsλ

∫∫
Q
a|∇w|2La(φ)ϕdxdt

> sλ

∫∫
Q
a|∇w|2 [4m0 − γ(2β + a∆µ)]ϕdxdt

> δ2sλ

∫∫
Q
aϕ|∇w|2dxdt.
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Also, we have

A3 = 2sλ2

∫∫
Q

(
|wt|2|φt|2 − 2wtφta∇w · ∇φ+ a2|∇φ · ∇w|2

)
ϕdxdt

= 2sλ2

∫∫
Q

(wtφt − a∇w · ∇φ)2 ϕdxdt > 0.

Concerning the remaining interior terms, recalling that Fa(φ) = |φt|2 − a|∇φ|2,we obtain

8∑
j=6

Aj = 2s3λ4

∫∫
Q
|w|2ϕ3Fa(φ)2dxdt+ 2s3λ3

∫∫
Q
|w|2ϕ3

(
|φt|2φtt + a2D2(φ)(∇φ,∇φ)

)
dxdt

+ γs3λ3

∫∫
Q
|w|2ϕ3La(φ)Fa(φ)dxdt

= s3λ3

∫∫
Q
|w|2ϕ3

[
2λFa(φ)2 − 4β|φt|2 + 2a2D2(µ)(∇µ,∇µ) + γLa(φ)Fa(φ)

]
dxdt

= s3λ3

∫∫
Q
|w|2ϕ3

[
2λFa(φ)2 + (γLa(φ)− 4β)Fa(φ) + 2a2D2(µ)(∇µ,∇µ)− 4βa|∇µ|2

]
dxdt.

Therefore, denoting b = ‖γLa(φ) − 4β‖L∞ , using (2.5) and recalling that (4.8) implies β < m0,
where m0 is defined by (4.7), we deduce that there exists d0 > 0 such that

8∑
j=6

Aj > s3λ3

∫∫
Q
|w|2ϕ3

[
2λFa(φ)2 − b|Fa(φ)|+ d0

]
dxdt. (4.12)

Denoting gλ(x) = 2λx2 − b|x| + d0 for x ∈ R, it is not difficult to see that there exists δ3 > 0
and λ0 > 0 such that

min
x∈R

gλ(x) > δ3 > 0 (4.13)

for each λ > λ0. From (4.12) and (4.13), it is deduced that

8∑
j=6

Aj > s3λ3δ3

∫∫
Q
|w|2ϕ3dxdt

for all λ > λ0, and the Proposition is proved.

On the other hand, in order to continue dealing with the terms listed in (4.11), concerning the
negligible terms, directly from (4.6) we have

|YΩ1 |+ |YΩ2 | 6Msλ3

∫∫
Q
ϕ3|w|2dxdt. (4.14)

Finally, regarding the boundary terms coming from Ω1 and Ω2, we recall that ∂Ω1 ∪ ∂Ω2 =
∂Ω ∪ Γ∗ and ∂Ω1 ∩ ∂Ω2 = Γ∗. Hence we can write

B∂Ω1 +B∂Ω2 = B∂Ω + [BΓ∗ ], (4.15)
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where B∂Ω denotes the sum of the integrals from (4.5) supported in ∂Ω, and by [BΓ∗ ] we mean the
sum of the corresponding integrals supported by the interface Γ∗, coming from the integration by
parts on both domains Ω1 and Ω2, i.e.

[BΓ∗ ] =

9∑
i=1

(
Bi(Ω1,Γ∗) +Bi(Ω2,Γ∗)

)
.

Thanks to the Dirichlet homogeneous boundary condition of the equation, we have

∇w =
∂w

∂n
n on ∂Ω

and then we can deal with the terms at the boundary ∂Ω as usual, obtaining the observation term
stated in the following result.

Lemma 4.3. There exist positive constants M, s0, λ0 such that

B∂Ω =

9∑
i=1

Bi(Ω, ∂Ω) > −Msλ

∫∫
Σ+

ϕ

∣∣∣∣a∂w∂n
∣∣∣∣2 dσdt.

for any s > s0 and λ > λ0, where Σ+ :=

{
x ∈ ∂Ω ,

∂φ

∂n
(x) > 0

}
.

Finally, dealing with the terms at the interface will be crucial in this work. The rest of this
section is devoted to prove that, under the hypothesis we are assuming, we actually have [BΓ∗ ] > 0
if the parameter s is large enough. See Proposition 4.4 below.

4.3 Carleman terms at the interface Γ∗ between Ω1 and Ω2

Recall that the exterior unitary normal vectors of Ω1 and Ω2 satisfy n2 = −n1 on the interface Γ∗.
Using the notation presented in (4.5), we get the following result.

Proposition 4.4. Assuming the hypotheses of Theorem 1.3, a1, a2 satisfying a2 < a1 and taking
µ and φ defined by (2.4) and (2.12) respectively, there exist s0 > 0 such that

[BΓ∗ ] :=
9∑
i=1

(
Bi (Ω1,Γ∗) +Bi (Ω2,Γ∗)

)
> 0 (4.16)

for all s > s0.

Proof. Step 1 - Preliminaries about properties at the interface Γ∗.
By construction of µ and φ, using ρ that satisfies the assumptions of Theorem 1.3, the hypotheses

of propositions 2.1 and 2.2 are verified. Hence, the function µ (and therefore φ) satisfy their
conclusions. These properties, together with inequality (2.9) stated in Remark 2.5 will be key
ingredients of this proof. We recall that, for any function f defined in Ω we denote fj := f |Ωj for
j = 1, 2.

Indeed, from Propositions 2.1 we get that φ satisfies the transmission conditions (1.5) at the
interface Σ∗ = Γ∗ × (−T, T ), meaning

φ1 = φ2 and a1
∂φ1

∂n1
+ a2

∂φ2

∂n2
= 0 on Σ∗,
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so that ϕ and w = esϕu satisfy them as well since u ∈ X. Therefore, on Σ∗, one has ϕ1 = ϕ2,
w1 = w2, but also w1t = w2t and φ1t = φ2t, and similarly for any other time-derivative, like wtt or
φtt. This allows to write simply ϕ or w. Moreover, if we denote by τ the unitary tangential vector
of Γ∗, there is no ambiguity in the notation

∂φ

∂τ
:=

∂φ2

∂τ
=
∂φ1

∂τ
= ∇φ1 · τ on Σ∗. (4.17)

Hence, at the interface we have ∇φj =
∂φj
∂nj

nj +
∂φ

∂τ
τ and

|∇φj |2 =

∣∣∣∣∂φj∂nj

∣∣∣∣2 +

∣∣∣∣∂φ∂τ
∣∣∣∣2 , for j = 1, 2. (4.18)

Within the framework of the previous notation, we begin by proving a useful identity for the
traces of any pair of functions satisfying the transmission conditions on the interface. If f and g
satisfy (1.5) we have, on the interface Γ∗:

a2∇f2 · ∇g2 − a1∇f1 · ∇g1 = a2

(
∂f2

∂n2

∂g2

∂n2
+
∂f

∂τ

∂g

∂τ

)
− a1

(
∂f1

∂n1

∂g1

∂n1
+
∂f

∂τ

∂g

∂τ

)
=

1

a2

(
a2
∂f2

∂n2
a2
∂g2

∂n2

)
+ a2

∂f

∂τ

∂g

∂τ
− 1

a1

(
a1
∂f1

∂n1
a1
∂g1

∂n1

)
− a1

∂f

∂τ

∂g

∂τ

= a2
1

∂f1

∂n1

∂g1

∂n1

(
1

a2
− 1

a1

)
+ (a2 − a1)

∂f

∂τ

∂g

∂τ
,

and then we conclude that

a2∇f2 · ∇g2 − a1∇f1 · ∇g1 = (a1 − a2)

(
a1

a2

∂f1

∂n1

∂g1

∂n1
− ∂f

∂τ

∂g

∂τ

)
on Γ∗. (4.19)

Identity (4.19), which will be applied to functions φ and w, is an essential ingredient of the proof
of the estimate of [BΓ∗ ].

In order to prove Proposition 4.4, we now split the calculation of the boundary terms in two
separate steps, one devoted to the negligible terms and one to the dominant positive traces at the
interface that can absorb the others.

Step 2 - Negligible boundary bounded terms.
It is not difficult to prove that the first six terms

[Bk] = Bk(Ω1,Γ∗) +Bk(Ω2,Γ∗) for k = 1, . . . , 6

can be bounded in the following way. We claim that there exists M > 0 such that

6∑
k=1

|[Bk]| 6M

∫∫
Σ∗

(
s2λ3|w|2 + λ

∣∣∣∣∂w1

∂n1

∣∣∣∣2
)
ϕdσdt. (4.20)

We detail the computations needed to prove (4.20), using the transmission conditions satisfied by
the functions φ and w and Young’s inequality.
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• B1(Ωi,Γ∗) = −sλ
∫∫

Σ
a|wt|2

∂φ

∂n
ϕdσdt, and using the above introductive comments, we have

[B1] := B1(Ω1,Γ∗) +B1(Ω2,Γ∗) = −sλ
∫∫

Σ∗

|wt|2
(
a1
∂φ1

∂n1
+ a2

∂φ2

∂n2

)
ϕdσdt = 0.

• B2(Ωi,Γ∗) = −(γ − 1)sλ

∫∫
Σ
aLa(φ)w

∂w

∂n
ϕdσdt, and using the transmission conditions on w

and φtt, and La(φ) = φtt − a∆φ, we get,

[B2] := B2(Ω1,Γ∗) +B2(Ω2,Γ∗) = −(γ − 1)sλ

∫∫
Σ∗

w

[
La1(φ1)a1

∂w1

∂n1
+ La2(φ2)a2

∂w2

∂n2

]
ϕdσdt

=− (γ − 1)sλ

∫∫
Σ∗

wa1
∂w1

∂n1
[La1(φ1)− La2(φ2)]ϕdσdt

=− (γ − 1)sλ

∫∫
Σ∗

wa1
∂w1

∂n1
[a2∆φ2 − a1∆φ1]ϕdσdt

and then

∣∣[B2]
∣∣ 6 Ms2λ

∫∫
Σ∗

|w|2ϕdσdt+Mλ

∫∫
Σ∗

∣∣∣∣∂w1

∂n1

∣∣∣∣2 ϕdσdt.
• B3(Ωi,Γ∗) =

(γ − 1)

2
sλ2

∫∫
Σ
a|w|2∂φ

∂n
La(φ)ϕdσdt, and for the same reasons, we have

[B3] := B3(Ω1,Γ∗) +B3(Ω2,Γ∗) =
(γ − 1)

2
sλ2

∫∫
Σ∗

|w|2
[
a1
∂φ1

∂n1
La1(φ1) + a2

∂φ2

∂n2
La2(φ2)

]
ϕdσdt

= a1
(1− γ)

2
sλ2

∫∫
Σ∗

|w|2 (a1∆φ1 − a2∆φ2)
∂φ1

∂n1
ϕdσdt

and then ∣∣[B3]
∣∣ 6 Msλ2

∫∫
Σ∗

|w|2ϕdσdt.

• B4(Ωi,Γ∗) =
(γ − 1)

2
sλ

∫∫
Σ
a|w|2∂La(φ)

∂n
ϕdσdt, so that the regularity of φ assumed in The-

orem 1.3 allows to write

[B4] :=B4(Ω1,Γ∗) +B4(Ω2,Γ∗) =
(γ − 1)

2
sλ

∫∫
Σ∗

|w|2
(
a1
∂La1(φ1)

∂n1
+ a2

∂La2(φ2)

∂n2

)
ϕdσdt

and then ∣∣[B4]
∣∣ 6 Msλ

∫∫
Σ∗

|w|2ϕdσdt.
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• B5(Ωi,Γ∗) = sλ2

∫∫
Σ
aw

∂w

∂n
Fa(φ)ϕdσdt, and recalling that Fa(φ) = |φt|2− a|∇φ|2, using the

transmission conditions and Young’s inequality, we get

[B5] := B5(Ω1,Γ∗) +B5(Ω2,Γ∗)

= sλ2

∫∫
Σ∗

w

(
|φt|2

[
a1
∂w1

∂n1
+ a2

∂w2

∂n2

]
−
[
a1
∂w1

∂n1
a1|∇φ1|2 + a2

∂w2

∂n2
a2|∇φ2|2

])
ϕdσdt

= −sλ2

∫∫
Σ∗

wa1
∂w1

∂n1

(
a1|∇φ1|2 − a2|∇φ2|2

)
ϕdσdt

and then ∣∣[B5]
∣∣ 6 Ms2λ3

∫∫
Σ∗

|w|2ϕdσdt+Mλ

∫∫
Σ∗

∣∣∣∣∂w1

∂n1

∣∣∣∣2 ϕdσdt.
• B6(Ωi,Γ∗) = −sλ

2

2

∫∫
Σ
a|w|2∂(ϕFa(φ))

∂n
dσdt, so that the regularity of φ allows to write

∣∣[B6]
∣∣ = |B6(Ω1,Γ∗) +B6(Ω2,Γ∗)| 6 Msλ3

∫∫
Σ∗

|w|2ϕdσdt.

Therefore, gathering all these estimates, (4.20) is obtained.

Step 3 - Boundary dominant terms.
We now aim at proving that the remaining terms can provide positive traces on the boundary,

allowing to absorb the right hand side of (4.20) by means of taking the parameter s large enough.
More precisely, we claim that there exists δ > 0 such that

[B7] + [B8] + [B9] > δ

∫∫
Σ∗

(
s3λ3ϕ3|w|2 + sλϕ

∣∣∣∣∂w1

∂n1

∣∣∣∣2
)
dσdt. (4.21)

In order to prove (4.21), we carefully analyze the result of adding the contribution of each term. We
begin by showing that [B7] + [B8] provide a positive expression of the normal derivative. Indeed,
recalling that

• B7(Ωi,Γ∗) = 2sλ

∫∫
Σ∗

a
∂w

∂n
(φtwt − a∇φ · ∇w)ϕdσdt,

we have, using the transmission conditions,

[B7] := B7(Ω1,Γ∗) +B7(Ω2,Γ∗)

= 2sλ

∫∫
Σ∗

a1
∂w1

∂n1
(φtwt − a1∇φ1 · ∇w1)ϕdσdt+ 2sλ

∫∫
Σ∗

a2
∂w2

∂n2
(φtwt − a2∇φ2 · ∇w2)ϕdσdt

= −2sλ

∫∫
Σ∗

(
a1
∂w1

∂n1
a1∇φ1 · ∇w1 + a2

∂w2

∂n2
a2∇φ2 · ∇w2

)
ϕdσdt

= 2sλ

∫∫
Σ∗

a1
∂w1

∂n1
(a2∇φ2 · ∇w2 − a1∇φ1 · ∇w1)ϕdσdt,

and then, using (4.19) with f = w and g = φ, we get

[B7] = 2sλ(a1 − a2)

∫∫
Σ∗

a1
∂w1

∂n1

(
a1

a2

∂φ1

∂n1

∂w1

∂n1
− ∂φ

∂τ

∂w

∂τ

)
ϕdσdt. (4.22)
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In the same way,

• B8(Ωi,Γ∗) = sλ

∫∫
Σ∗

a2|∇w|2∂φ
∂n
ϕdσdt, so that

[B8] := B8(Ω1,Γ∗) +B8(Ω2,Γ∗) = sλ

∫∫
Σ∗

a2
1|∇w1|2

∂φ1

∂n1
ϕdσdt+ sλ

∫∫
Σ∗

a2
2|∇w2|2

∂φ2

∂n2
ϕdσdt

= −sλ
∫∫

Σ∗

a1
∂φ1

∂n1

(
a2|∇w2|2 − a1|∇w1|2

)
ϕdσdt.

Thus, from (4.19) with f = g = w, we get

[B8] = −sλ(a1 − a2)

∫∫
Σ∗

a1
∂φ1

∂n1

(
a1

a2

∣∣∣∣∂w1

∂n1

∣∣∣∣2 − ∣∣∣∣∂w∂τ
∣∣∣∣2
)
ϕdσdt. (4.23)

Therefore, from (4.22) and (4.23) we have

[B7] + [B8] = sλ(a1 − a2)a1

∫∫
Σ∗

(
a1

a2

∂φ1

∂n1

∣∣∣∣∂w1

∂n1

∣∣∣∣2 +
∂φ1

∂n1

∣∣∣∣∂w∂τ
∣∣∣∣2 − 2

∂w1

∂n1

∂φ

∂τ

∂w

∂τ

)
ϕdσdt. (4.24)

Moreover, from hypothesis (2.9) on µ, we directly have∣∣∣∣∂φ∂τ
∣∣∣∣ 6 ∂φ1

∂n1
on Σ∗. (4.25)

This estimate allow us to bound by below the non-positive term in the right-hand side of (4.24).
Indeed, we have

2

∣∣∣∣∂w1

∂n1

∂φ

∂τ

∂w

∂τ

∣∣∣∣ 6 2
∂φ1

∂n1

∣∣∣∣∂w1

∂n1

∂w

∂τ

∣∣∣∣ 6
(
∂φ1

∂n1

∣∣∣∣∂w1

∂n1

∣∣∣∣2 +
∂φ1

∂n1

∣∣∣∣∂w∂τ
∣∣∣∣2
)
. (4.26)

Thus, taking into account that 1 <
a1

a2
, from (4.24) and (4.26) we deduce that ∃δ1 > 0 such that

[B7] + [B8] = sλ(a1 − a2)a1

∫∫
Σ∗

(
a1

a2
− 1

)
∂φ1

∂n1

∣∣∣∣∂w1

∂n1

∣∣∣∣2 ϕdσdt > δ1sλ

∫∫
Σ∗

∣∣∣∣∂w1

∂n1

∣∣∣∣2 ϕdσdt. (4.27)

For the last term, we proceed as follows:

• B9(Ωi,Γ∗) = s3λ3

∫∫
Σ∗

Fa(φ)a
∂φ

∂n
|w|2ϕ3 dσdt, so that

[B9] := B9(Ω1,Γ∗) +B9(Ω2,Γ∗)

= s3λ3

(∫∫
Σ∗

(
|φt|2 − a1 |∇φ1|2

)
a1
∂φ1

∂n1
|w|2ϕ3dσdt+

∫∫
Σ∗

(
|φt|2 − a2 |∇φ2|2

)
a2
∂φ2

∂n2
|w|2ϕ3dσdt

)
= −s3λ3

∫∫
Σ∗

|w|2
[
a1 |∇φ1|2 a1

∂φ1

∂n1
+ a2 |∇φ2|2 a2

∂φ2

∂n2

]
ϕ3 dσdt

= s3λ3

∫∫
Σ∗

|w|2a1
∂φ1

∂n1

(
a2 |∇φ2|2 − a1 |∇φ1|2

)
ϕ3 dσdt.
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Using (4.19) for f = g = φ and (4.25), we have

a2 |∇φ2|2 − a1 |∇φ1|2 = (a1 − a2)

(
a1

a2

∣∣∣∣∂φ1

∂n1

∣∣∣∣2 − ∣∣∣∣∂φ∂τ
∣∣∣∣2
)

> (a1 − a2)

∣∣∣∣∂φ1

∂n1

∣∣∣∣2(a1

a2
− 1

)
,

and therefore, there exists a δ2 > 0 such that

[B9] > s3λ3a1(a1 − a2)

(
a1

a2
− 1

)∫∫
Σ∗

|w|2∂φ1

∂n1

∣∣∣∣∂φ1

∂n1

∣∣∣∣2 ϕ3 dσdt > δ2s
3λ3

∫∫
Σ∗

ϕ3|w|2dσdt. (4.28)

From (4.27) and (4.28) we obtain (4.21).
Finally, from (4.20) and (4.21) we deduce that there exists s0 such that

[BΓ∗ ] > 0, ∀ s > s0,

which concludes the proof of Proposition 4.4.

Remark 4.5. In the proof of Proposition 4.4 we used (4.25), which is implied by (1.10) (see
Proposition 2.5). But, actually, it is enough to assume inequality∣∣∣∣∂φ∂τ

∣∣∣∣ <√a1

a2

∂φ1

∂n1
on Σ∗, (4.29)

which, recalling that a2 < a1, is a more general hypothesis than (4.25). However, in this work we
are not able to take advantage of (4.29) since we are taking a1, a2 satisfying (1.11) where ε depends
on ρ and the geometry of the interface (via the ortoghonal projection, see Proposition 2.2).

It would be very interesting to set a more precise geometrical construction of weight functions
taking advantage of (4.29), in order to obtain more general and more precise results.

4.4 Concluding the proof

The proof of Theorem 1.3 is a direct consequence of the previous results of the article. Indeed,
given ρ satisfying hypotheses (1.8), (1.9) and (1.10), we define µ by (2.4) and then φ and ϕ by
(2.12) and (2.13) respectively. We take ε > 0 given by Proposition 2.2, and then we assume that
a1, a2 satisfy (1.11). We develop the decomposition (4.2) in each subdomain Ω1 and Ω2, obtaining
(4.11). From Propositions 4.2 and 4.4 and Lemma 4.3, we obtain that there exists M such that

‖L1(w)‖2L2(Q) + ‖L2(w)‖2L2(Q) + sλ

∫∫
Q

(
|wt|2 + a|∇w|2

)
ϕdxdt+ s3λ3

∫∫
Q
|w|2ϕ3 dxdt

6M‖L(w)‖2L2(Q) +Msλ

∫∫
Σ+

ϕ

∣∣∣∣a∂w∂n
∣∣∣∣2 dσdt. (4.30)

As usual, taking u = e−sϕw we obtain the Carleman inequality (1.12), and Theorem 1.3 is proved.
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