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Summary
Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important

cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44)

originating from a hybridization event of the two diploid species C. canephora and C. euge-

nioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic

variability and are an important source of genes to broaden the narrow Arabica genetic base.

Here, we describe the development, evaluation and use of a single-nucleotide polymorphism

(SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from

C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes.

In particular, this array contains 227 markers associated to 149 genes and traits of agronomic

importance. Among these, 7065 SNPs (~82.3%) were scorable and evenly distributed over the

genome with a mean distance of 54.4 Kb between markers. With this array, we improved the

Robusta high-density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found

segregating in the Arabica mapping progeny. A panel of C. canephora accessions was

successfully discriminated and over 70% of the SNP markers were transferable across the three

species. Furthermore, the canephora-derived subgenome of C. arabica was shown to be more

closely related to C. canephora accessions from northern Uganda than to other current

populations. These validated SNP markers and high-density genetic maps will be useful to

molecular genetics and for innovative approaches in coffee breeding.

Introduction

The Coffea genus (Rubiaceae family) is a large genus that

currently comprises 125 accepted species (http://www.thepla

ntlist.org/1.1/browse/A/Rubiaceae/Coffea/). Despite the large

number of species in the genus, only two are economically

important and cultivated on a large scale: Coffea canephora

Pierre ex Froehner (commonly known as Robusta) and Coffea

arabica L. (Arabica). Both species occur in the inter-tropical region

of Africa with C. arabica being mainly restricted to Ethiopia and

C. canephora native to West and Equatorial Africa (Davis et al.,

2006).

Coffea arabica is an allotetraploid (amphidiploid; CaCaEaEa,

2n = 4x = 44 chromosomes) resulting from a natural hybridiza-

tion event estimated to have taken place 0.665 million years ago

at the most, between the ancestors of present-day C. canephora

(Ca subgenome donor) and Coffea eugenioides S. Moore (Ea

subgenome donor) (each with 2n = 2x = 22) (Yu et al., 2011).

The relatively recent origin and the self-fertilization of C. arabica

certainly contributed to its relatively low genetic diversity com-

pared to diploid Coffea species (Lashermes et al., 2000). Coffea

arabica was probably introduced to Arabia (now Yemen) from its

Ethiopian origin during the 14th century (Chevalier, 1929) and

has been cultivated there for at least five centuries. The human

1418 ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

Plant Biotechnology Journal (2019) 17, pp. 1418–1430 doi: 10.1111/pbi.13066

https://orcid.org/0000-0002-1099-2846
https://orcid.org/0000-0002-1099-2846
https://orcid.org/0000-0002-1099-2846
mailto:
http://www.theplantlist.org/1.1/browse/A/Rubiaceae/Coffea/
http://www.theplantlist.org/1.1/browse/A/Rubiaceae/Coffea/
http://creativecommons.org/licenses/by/4.0/


dispersal of Arabica coffee from Yemen to the rest of the world

started in the early 18th century and occurred mainly via two

genetic lineages: Typica and Bourbon. These lineages gave rise to

most of the current commercial Arabica cultivars grown world-

wide (Anthony et al., 2002) and as such this explains the low

genetic diversity among the cultivated forms. The lack of genetic

diversity in Arabica breeding lines has been recognized as a

significant limitation of the varietal tolerance towards biotic and

abiotic stresses (Anthony et al., 2002).

The closely related wild species (Crop Wild Relatives: CWR)

of C. arabica harbour a much greater level of genetic variabil-

ity. They belong to the secondary gene pool of C. arabica such

as its progenitor species C. canephora (Gomez et al., 2009).

They also represent an important source of gene variants to

broaden the cultivated C. arabica genetic base. These wild

genetic resources might help in developing novel Arabica

cultivars with higher resilience to the ongoing changes in

climatic conditions.

The development of new genomic tools can help us explore,

more deeply and more precisely, the genomic diversity at intra-

and inter-specific levels. Two examples of high-throughput

platforms include next-generation sequencing (NGS) (Davey

et al., 2011) and the development of DNA microarrays (Gupta

et al., 2008). Compared to a whole-genome sequencing method-

ology, an SNP array approach provides time-effective, low-cost

and more straightforward genotyping technology for germplasm

screening (You et al., 2018; Yu et al., 2014).

With its relatively small, diploid, sequenced and annotated

genome, Coffea canephora is highly compliant with genomic-

based breeding approaches using Genome Wide Association

Studies (GWAS). Thanks to the rapid development of genomic

resources and the publication of the reference genome (Denoeud

et al., 2014), third-generation markers based on single-nucleo-

tide polymorphisms (SNPs) have gradually been identified and

assayed in Coffea, particularly in C. arabica (Sant’Ana et al.,

2018; Tran et al., 2018).

However, high-throughput genotyping assays are still needed

in order to rapidly characterize the coffee genetic diversity and

to evaluate the introgression of different CWRs in a cost-

effective way. These assays would ultimately ensure more

efficient and time-effective breeding programmes. To conduct

such programmes, measures must be taken to construct high-

density genetic maps. Such maps have already been initiated

for C. canephora (Denoeud et al., 2014; Lefebvre-Pautigny

et al., 2010; Leroy et al., 2011), and C. arabica (Moncada

et al., 2016; Pearl et al., 2004). Some of these maps were also

used to identify QTLs for agronomic and quality-related traits in

C. canephora (Leroy et al., 2011; M�erot-L’Antho€ene et al.,

2014) and C. arabica (Moncada et al., 2016). However, the

use of SNP markers to generate denser maps has been poorly

exploited so far.

Here, we are reporting on the development of the Coffee8.5K

SNPs array that contains 8580 unique and informative SNPs,

covering the whole Coffea canephora genome. The genome-

wide distribution and accurate identification (coding vs. non-

coding regions) of the SNPs allowed to generate a high-quality

array. This high-density SNP array has greatly improved the high-

density genetic maps of C. canephora. This array also provides a

valuable resource for genetic diversity analyses and for the

investigation of genetic relatedness between Coffea arabica

CWRs.

Results

The whole-genome coffee SNP array, Coffee8.5K, was primarily

designed to provide an efficient screening of the wild genetic

germplasm resources in Coffea, with two considerations: SNPs

had to (i) provide an adequate representation of the genome

diversity based on genotyped mapping populations and diverse

germplasm collections and (ii) additionally harbour sufficient

allelic variations at the level of the functional genes that control

important breeding traits. We define the ‘Discovery Panel’ as the

set of samples used to design the Coffee8.5K array; the ‘Diversity

Panel’ is the set of samples used to validate the array and perform

subsequent genetic analyses; the ‘Mapping Populations’ are the

Robusta and Arabica mapping progenies used to construct

linkage maps.

Filtering and SNP statistics

SNP selection and array design

Analysing resequencing data generated from both C. arabica

(five genotypes) and C. canephora (twelve genotypes) mapped

against the C. canephora reference genome (Denoeud et al.,

2014) led to the selection of 9827 high-quality SNPs.

The selection of SNPs was based on three main criteria: (i) SNPs

from the C. arabica Discovery Panel were chosen to be associated

with the intra-subgenome polymorphism and had to be polymor-

phic between the two parent species of the Arabica mapping

population, (ii) SNPs selected from the C. canephora Discovery

Panel had to be found in at least two genotypes in order to avoid

rare and individual-specific alleles; (iii) both genic and intergenic

SNPs, in equivalent numbers, were selected with a minimum

distance of 40 kb between SNPs, to provide an accurate represen-

tation of the genome without redundancy. The final SNP set also

included informative markers associated with 149 genes related to

traits of agronomic or organoleptic importance (Table S1).

In the end, our Coffee8.5K array comprised 8580 SNPs that

met Illumina-quality criteria during the manufacturing process

and were finally successfully synthesized (Table S3), representing

an 87.3% effective conversion rate. For initial data extraction and

filtering, SNPs with low GenTrain (<0.6) and GenCall (<0.2) scores
were considered as missing data prior to genotype calling. Then, a

series of quality control steps was performed to ensure the

accuracy of the genotype-calling process. For a given genotype,

the CallRate (i.e. the percentage of scorable SNPs) ranged from

81.7% to 97.7% in the different Mapping and Diversity Panels

screened, with an average call of 92.3% in the total 262

investigated samples (Table 1). Genotyping was consistent over

the two replicates of the four parents (C. canephora BP409,

Q121, and C. arabica Ar8 and Ar36B) and also between the two

SNPs duplicated on the SNP array: the signal and genotyping

qualities were efficient and reproducible. Moreover, 42 of the 50

SNPs previously targeted by KASPar assays were successfully

synthetized on the Coffee8.5K and used for validation purposes.

These 42 SNP-generated genotypes were 100% concordant with

those obtained from the KASPar assay, thereby validating the

presence of these SNPs in the coffee genome as well as the SNP

detection process itself.

SNP genomic position and distance between SNPs

Linkage disequilibrium (LD) occurs when alleles at two or more

loci appear together in the same individual more often than
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would be expected by chance. Two SNPs that are in strong LD

provide redundant genotyping information. The requisite knowl-

edge of the LD in the C. canephora genome was evaluated over

the whole-genome resequencing dataset of the C. canephora

Discovery Panel (12 genomes). The linkage disequilibrium

declined rapidly across all accessions to half its maximum value

at a distance of 8.1 kb (Figure S1). Since this C. canephora

discovery panel included genotypes from different genetic

groups, thereby maximizing the sequence diversity, the LD

decayed rapidly. It was particularly higher than when the LD

decay was calculated within a single-genetic group:

17.5 � 2.7 kb on average over the major genetic groups (min–
max: 14.7–21.9 kb) (data not shown). When filtering SNPs with a

distance of over 40 kb (Figure 1), we captured the largest

proportion of genetic variation. This is due to the fact that the

lower the LD between the SNPs is, the more independent

information they will represent.

In addition, we assessed the quality of coverage by studying the

physical distribution of selected Coffee8.5K SNPs along the

pseudo-chromosomes of the C. canephora reference genome

(Denoeud et al., 2014). As shown in Figure 2, the SNPs were

widely and evenly distributed along the 11 pseudo-chromosomes

of the genome, no matter which Discovery Panel was used to

design them, namely C. canephora or C. arabica. The average

density was 18.8 SNPs per megabase with a mean distance of

54.4 kb between the SNPs (excluding the pseudo-chromosome 0

made of unanchored sequences).

Lastly, the published annotation of the C. canephora reference

genome (Denoeud et al., 2014; Dereeper et al., 2015) was also

used to classify the SNPs of the Coffee8.5K array with respect to

their position in the genome. A total of 5152 (60%) and 3428

(40%) SNPs were located in non-coding and coding regions

respectively (Table 1). A total of 227 SNPs were located in 149

selected genes of interest (Table S1).

Table 1 (a) Utilization and efficiency of the Coffee8.5K array. Evaluation of the Coffee8.5K array for application in the three Coffea species

(C. canephora, C. arabica and C. eugenioides), genetic diversity assessment in the C. canephora panel and (b) genetic mapping in the segregating

populations of C. canephora and C. arabica

(a)

SNP source

Genomic

region

Synthesized

loci

C. canephora (N = 27)* C. arabica (N = 16)* C. eugenioides (N = 6)

Scorable

(%†)

Polymorphic

(%‡)

Scorable

(%)

Polymorphic in

Dihaploid

Et39 (Ca/Ea) Polymorphic (%) Scorable (%)

Polymorphic

(%)

C. arabica 3050 1978 (64.9%) 465 (23.5%) 1790 (58.7%) 383 (21.4%) 705 (39.4%) 1441 (47.2%) 110 (7.6%)

Coding 208 168 48 154 66 46 138 16

Non-coding 2842 1810 417 1636 317 659 1303 94

C. canephora 5530 5087 (92.0%) 4977 (97.8%) 5034 (91.0%) 1270 (25.2%) 19 (0.4%) 4742 (85.8%) 145 (3.1%)

Coding 3220 3046 3000 3028 801 14 2912 95

Non-coding 2310 2041 1977 2006 469 5 1830 50

Total 8580 7065 (82.3%) 5442 (77%) 6824 (79.5%) 1653 (24.2%) 724 (10.6%) 6183 (72.1%) 255 (4.1%)

Coding 3428 3214 3048 3182 867 60 3050 111

Non-coding 5152 3851 2394 3642 786 664 3133 144

(b)

SNP source Genomic region Synthesized loci

Segregating in

C. canephora Mapping

progeny* (N = 93)

C. arabica Mapping

progeny* (N = 138)

C. arabica 3050 158 (5.2%) 900 (29.5%)

Coding 208 14 69

Non-coding 2842 144 831

C. canephora 5530 1149 (20.8%) 45 (0.8%)

Coding 3220 651 25

Non-coding 2310 498 20

Total 8580 1307 (15.2%) 945 (11%)

Coding 3428 665 94

Non-coding 5152 642 851

(a) *See Table S2; †The percentage of scorable/used loci to successfully synthesized loci; ‡The percentage of polymorphic loci to scorable loci in the species.

(b) *See Table S2.

Bold values represent cumulative values of coding + non-coding statistics.
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Coffee8.5K evaluation and usefulness

Construction of genetic maps

High-density Robusta genetic map. The Robusta mapping

population was derived from an F1 cross between BP409

(Congolese hybrid) and Q121 (Conilon-type derived accession)

comprising 93 individuals. After the removal of low-quality SNPs

from the 8580 scorable SNPs, 1307 (15.2%) SNPs were

polymorphic between the two parents (BP409 and Q121) and

their segregation scored in the Robusta mapping population

(Table 2). The majority of these SNPs (80%, 1149) were derived

from the C. canephora Discovery Panel (Table S2) and 50.9%

(665 SNPs) were located in coding regions including 46 SNPs in

candidate genes (Table S1). All these polymorphic SNPs were

successfully added to the existing markers of the framework

linkage map (Denoeud et al., 2014), leading to almost double

(+43%) the total number of markers on the Robusta map

(Table 2). These SNPs were distributed on the 11 linkage groups

coded from A to K (Figure 2) and separated by a mean distance

of 0.99 cM. However, 76.2% of these markers were clustered

(i.e. mapped in groups of markers displaying no recombination)

and so finally the polymorphic SNPs were mapped on 620 unique

positions separated by a mean distance of 2.1 cM. The clustering

of the SNPs could be explained by the small size of the mapping

population (93 individuals). Significant segregation distortions (P

value < 0.01) were observed on 11.4% of the SNPs mapped. The

majority (69%) of the strong segregation distortions (P

value < 0.001) were grouped in two regions located on the LG

C (22 SNPs) and LG H (27 SNPs). The final high-density Robusta

genetic map consisted of 3039 loci distributed over 11 linkage

groups covering 1370 cM, with a mean distance between

markers of 2.2 cM (Table 2). Ninety-eight percent of the gaps

between two adjacent loci were smaller than 2 cM with the

largest being 8.9 cM at the distal end of LG B (Figure 2).

Segregation in Arabica mapping progeny. The Arabica F2
segregation population (138 individuals) was derived from a cross

between two wild Ethiopian Arabicas: Ar8 and Ar36B. We

successfully identified 945 polymorphic SNPs between the two

parents (Ar8 and Ar36B) (Table 1). As expected, the very large

majority (95.2%) of these SNPs were derived from the C. arabica

Discovery Panel, since they had been selected to discriminate the

two wild Ethiopian parents. Based on the C. canephora reference

genome, these SNPs were evenly distributed along the 11

pseudo-chromosomes and 41% of them were located on the

pseudo-chromosome 0 (of unanchored sequences). Only 1.3% of

the 945 SNPs selected for genetic mapping presented significant

segregation distortion (P value < 0.01) in the progeny. Conse-

quently, this pool of 945 new SNPs markers provides a promising

tool for constructing our Arabica genetic map.

23 590 929 
SNPs

12 accessions
C. canephora

315 153
Non Arabica

895

All CG SNPs

259 SNPs
60% of genes covered

314 258

All non CG SNPs

123 423

Coding SNPs

3395 SNPs

190 835

Non-coding SNPs

2634 SNPs

5 accessions
C. arabica

8 208 891

Set1
Ar8 / Ar36B /Et39 

2000 SNPs

10 063 130 

Set2
Mundo Novo / Bourbon / Et39

1489 SNPs

GATK

Perl

R

Allelic representa�vity

QUAL>400 & BIALLELIC

Distance > 60 kb

GATK

Perl

bedtools

Allelic representa�vity

QUAL>60 & BIALLELIC

At most 2 SNP/gene
(the most distant pair)

bedtools bedtools

bedtools bedtools

bedtools

GATKpreQUAL>40
Python61–61 bp region

GATK

Perl

R

No Et39 polymorphic SNP

QUAL>1000 & BIALLELIC

Distance > 40 kb

Python61–61 bp region 61–61 bp region

GATK

Perl

R

Different from Set1
No Et39 polymorphic SNP

QUAL>1000 & BIALLELIC

Distance > 40 kb

Python

GATK

Perl

R

Allelic representa�vity

QUAL>400 & BIALLELIC

Distance > 60 kb

(a) (b)

Variant source
(discovery panels)

Design Illumina
Validated

%

C. arabica (n = 5) 3489 3050 87.5
C. canephora (n = 12)

Genes of interest 259 227 87.6
Coding regions 3395 2962 87.2
Non-coding regions 2634 2299 87.3

SNP for KASPar assay 50 42 88
Total 9827 8580 87.3

(c)

Figure 1 Design and development workflow of the Coffee8.5K array. SNPs markers were identified, filtered and validated from (a) the C. arabica or (b)

the C. canephora Discovery panels. (c) Summary of variant source origin of the Coffee8.5k SNPs. Filters criteria are mentioned together with related tools

and programming languages (in blue).
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Among the 1307 and 945 SNPs segregating in the Robusta and

Arabicamapping populations, respectively, only 46 SNPs (2%)were

common and would thus be used for co-linearity analyses. The

mapped SNP markers of the Coffee8.5K SNP array are available in

the newly implemented MoccaDB v 2.0 database (Figure S2). This

database allows access and visualization of the SNP information,

including flanking sequences and possible alleles aswell as locations

onboth theC. canephoragenomeandon theRobusta linkagemap.

Array polymorphism and its application across Coffea species

The 8580 SNP markers on the Coffee8.5K were evaluated for

their transferability and genotyping capacity in three Coffea

species—C. canephora, C. arabica and C. eugenioides Diversity

Panels—(Table 1a). Across these three species, 7065 (82.3%)

markers successfully genotyped C. canephora, 6824 (79.5%)

C. arabica and 6183 (72.1%) C. eugenioides. As expected, we

observed a slow decline in the call rate as a function of divergence

from the species of the Discovery Panel together with a decrease

in polymorphic SNPs. However, the cross-species application of

our array, and particularly the transferability of C. canephora-

discovered SNPs to C. eugenioides, was shown to be efficient,

with a success rate of 85.8% (4742 of the SNPs derived from the

C. canephora Discovery Panel, Table 1).

The percentage of polymorphic SNPs was much higher for

C. canephora compared to the C. arabica (77% vs. 10.6%). A

lower diversity within the allotetraploid, self-compatible, and

recent C. arabica species was expected. Because of its alloploidy,

homeologous SNPs, that is polymorphism between the two

subgenomes Ca/Ea, were estimated based on the heterozygous

SNPs scored in the dihaploid Et39 (Figure 4b) and represented

24.2% of the scored markers. After filtering for these homeolo-

gous markers, we estimated the allelic SNPs (polymorphic positions

occurring within a single-subgenome among individuals) on the 16

tretraploid individuals of the Diversity Panel, which accounted for

10.6% of polymorphic SNPs.
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Figure 2 Genetic and genomic distribution of the Coffee8.5K array SNPs. (a) Genome distribution of the 8580 single-nucleotide polymorphisms (SNPs)

synthesized for the array along the 11 pseudo-chromosomes and the virtual pseudo-chromosome 0 of unanchored sequences. For each pseudo-

chromosome, we determined: the number of SNPs markers according to their source (C. arabica, Ara or C. canephora, Can), the mean distance between

markers and their density related to the estimated size of the pseudo-chromosome. (b) C. canephora high-density genetic map of BP409xQ121 progeny,

with 11 linkage groups. SNP markers (1307) obtained from the Coffee8.5K array are indicated in red.

Table 2 Number of SNP markers added to the Robusta genetic map

and coverage in cM of each linkage group in the Robusta linkage

maps. The Robusta genetic map based on a F1 cross between BP409

(Congolese hybrid) and Q121 (Conilon-type-derived accession)

comprising 93 individuals. The previous high-density genetic map has

been published by Denoeud et al. (2014) with various types of

markers (e.g. SSR, RADseq, RFLP)

LG

Total

Number

of markers

Number

of SNPs %*

Coverage

(cM)

Mean distance

between

markers (cM)

A 287 104 36 112 2.6

B 528 220 42 238 2.2

C 194 76 39 129 1.5

D 266 125 47 109 2.4

E 257 125 49 105 2.4

F 341 149 44 155 2.2

G 284 119 42 105 2.7

H 223 108 48 128 1.7

I 158 61 39 90 1.8

J 263 111 42 104 2.5

K 238 109 46 95 2.5

TOTAL 3039 1307 43 1370 2.2

*The ratio of SNPs from Coffee8.5K array to total number of loci mapped.
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The C. arabica neighbour-joining tree (Figure S3) confirmed

the high genetic relatedness of both wild and cultivated individ-

uals, even though the SNP markers were informative enough to

discriminate the individuals and this, with high bootstrap levels.

While both C. canephora and C. eugenioides are outcrossing

species, their polymorphism discrepancy (77% vs. 4.1%) is probably

due to differences in global genetic diversities of these two species,

which present a very different geographical extension (very large for

C. canephora vs. reduced for C. eugenioides). Even if differences in

the sampling size (n = 24 vs. n = 6)may be evoked to explain such a

difference, Diversity Panels were chosen on purpose to represent a

maximum of the known species diversity.

As a large proportion of the SNPs on the array are Robusta-

derived, filtered to maximize the within C. canephora diversity,

this may induce an ascertainment bias when other species, such

as C. eugenioides, are concerned.

Characterization of C. canephora genetic groups

The capacity of Coffee8.5K to generate genotyping data and to

estimate the genetic relatedness among the genotypes was

evaluated on the C. canephora Diversity Panel (Table S2). Some

accessions from this panel had been previously genotyped using

19 microsatellite markers either by (Gomez et al., 2009); (P�egard

et al., 2014) or Nestl�e R&D Tours (unpublished). Thus, from these

studies, a priori classification into the diversity groups was

determined (Tables S2 and S4). Additional individuals from

Angola and the Democratic Republic of the Congo, with

unknown genetic identity, have also been included in this study

(Table S2).

Genotyping of this Diversity Panel with the Coffee8.5K SNP

array resulted in the generation of 4095 polymorphic SNPs

without missing data. The population structure and relatedness

among accessions was examined using population clustering with

sNMF. The genetic structure analysis identified the most likely

number of genetic clusters as K = 3 (Cluster-AG, Cluster-CD and

Cluster-BEOR) (Figure 3b). At higher levels of K, new groups

emerged revealing a finer subdivision, and at K = 8 the accessions

were partitioned into eight well-differentiated groups (A, G, B, C,

D, E, O and R), corresponding to different geographic origins

(Figure 3a). Among these eight groups, six were confirming the a

priori classification into the groups A, B, C, D, E and O, whereas

two new groups, never previously described, were identified: G

(Angola) and R (southern DRC). Three individuals showed mixed

ancestry: AG-Q121, BE-110, OE-KL.1.2, and ER-BP409.

These results were further supported by the neighbour-joining

tree, which distinguished the six known and the two new groups

with high bootstrap supports of 100% (Figure 3c). The admixed

individuals presented intermediate positions between their
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Figure 3 The population structure of the Coffea canephora diversity panel (27 accessions). Note that the same colour code is used in all graphs (a) Global

distribution of the genetic groups across the C. canephora distribution range. Map data from US Dept of State Geographer ©2018 Google Image Landsat/

Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO. (b) Population structure analysis using sNMF with three or eight numbers of clusters (K). Each colour
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ancestral genetic groups. In particular, AG-Q121 (a hybrid

between Groups A and G) and ER-BP409 (a hybrid between

Groups R and E), the two parents of the Robusta mapping

progeny, are separated by a maximum genetic distance (at the

opposite sides of the tree).

Arabica’s closest current relatives

To identify the putative ancestral Coffea source populations of each

C. arabica subgenome, we assigned the C. arabica haplotypes to

current sampled individuals of the two progenitor species

C. canephora and C. eugenioides. However, because of standard

deviation overlaps, the assignation of the Arabica Ea subgenome to

sampled C. eugenioides individuals could not discriminate a specific

individual or an origin (Kenya or Uganda) (Figure 4d). On the

contrary, since C. canephora populations and individuals were well

discriminated by our Coffee8.5K array, the C. arabica genotypes

were differentially assigned to the different genetic groups. In fact,

theCa subgenomewasmore closely related to individuals belonging

to Group O (Uganda) or B (Northern DRC) and in particular to an

individual of the Zoka forest (Diversity Group O, Northern Uganda)

(Figure 4c). Group O encompasses individuals from the Eastern

edgeof theC. canephoradistribution; thepopulation fromtheZoka

Forest (NorthernUganda) is geographically the closest to the current

distribution of C. arabica (Figure 4a).

Discussion

Coffee8.5K was designed and developed to assist in mapping

C. canephora and C. arabica and also in assessing the diversity of

C. arabica, C. canephora and other C. arabica-related species

(CWRs). The genotypes of the Discovery Panels were chosen to

represent a range of common C. arabica and C. canephora types.

Fair representation of the genome

The genome size of C. canephora is reported to be about 710

Mbp (Noirot et al., 2003), with pseudo-chromosome size ranging

from 22.3 Mb (chr9) to 54.5 Mb (chr2) (Denoeud et al., 2014).

The Coffee8.5K array developed in this study provides complete

genome coverage and a fair pseudo-chromosome representation,

with an average density of 18.8 SNPs/Mb and a mean distance

between SNPs of 54.4 kb. This density is comparable to other

developed SNP arrays in hexaploid wheat (Rimbert et al., 2018)
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Figure 4 Coffea arabica and its progenitor

species. (a) Range distribution of the three related

species. Dotted lines represent their schematic

distribution limit, whereas names with colour

labels correspond to sampled sites (C. canephora

in blue, C. eugenioides in gold, and C. arabica in

red), Map data ©2018 Google, ORION-ME; (b)

Origin of the genomes of the allotetraploid species

Coffea arabica and of the Dihaploid Et39; (c, d)

Haploid Identity-by-state distances (IBS) distances

between C. arabica and accessions of the

C. canephora with colour code as in Figure 3; and

(c) C. eugenioides species. The average IBS

distances and their standard deviations were

calculated over the 17 C. arabica individuals.
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(for which the SNP density was one marker every 52 kb on the A-

genome, one every 53 kb on the B-genome and one every 92 kb

on the D-genome), oil palm (Kwong et al., 2016) (one SNP per

11 kb), groundnut (Pandey et al., 2017) (1 SNP per 36 kb in A

subgenome and 1 SNP per 48 kb in B subgenome) and rice (Yu

et al., 2014) (12 SNPs per 1 Mb).

Because SNPs located within genic regions have a greater

potential to affect gene function and are usually more effective in

targeting genes, 40% (3428) of the effective SNPs were selected

to be located in genic regions in the Coffee8.5K array.

Towards high-density linkage maps

The mapping of 1307 (15.2%) of the Coffee8.5K SNPs on the

C. canephoramap (BP409 X Q121) demonstrates the usefulness of

the Coffee8.5K for developing high-density genetic maps for this

species. Combined with previously developed markers (Denoeud

et al., 2014;M�erot-L’Antho€ene et al., 2014),weobtained a reliable

and accurate final map of 3039 markers, including 665 SNPs in

coding regions, with only a low fraction of distorted markers. The

total map length was 1370 cMwith an average distance of 2.2 cM

between markers. The length of each linkage group ranged from

238 cM for LG B to 90 cM for LG I. Themap obtained in this study is

to date the densest map of C. canephora and provides access to

hundreds of gene-based markers.

On the contrary, the generation of a high-density Arabica map is

still severely hampered by its allotetraploid nature and the narrow

genetic diversity among C. arabica accessions. Despite this situa-

tion, some mapping efforts have been previously undertaken with

AFLP markers (Pearl et al., 2004) or more recently with both SSR

and SNP markers (Moncada et al., 2016). For instance, Moncada

et al. (2016), after screening 5785 SSRmarkers, could only find 338

(5.8%) polymorphic markers in the F2 offspring from a cross

between C. arabica var. Caturra and a wild C. arabica accession

fromEthiopia. Themain difficulty in designing a SNP array useful for

C. arabicamapping has been detecting co-dominant SNP markers

which were polymorphic within each Arabica subgenome. The

parental accessions we selected for our mapping population were

two distant wild C. arabica accessions, Ar8 and Ar36B, collected in

Ethiopia (Guillaumet and Hall�e, 1978). By comparing these

genotypes, one Bourbon cultivar and a Mundo Novo cultivar (a

Bourbon X Typica hybrid) to the Et39 (a spontaneous C. arabica

dihaploid (Berthaud, 1976; Guillaumet and Hall�e, 1978)), our

filtering strategy aimed to select within subgenomes polymorphic

SNP markers. This approach was especially efficient since it yielded

more than 29% (900) of Arabica-derived SNPs segregating in the

mapping progeny and finished with a total of 945 genome-wide

co-dominant SNP markers.

The high-density Robusta genetic map generated from this

study will not only be useful in ordering future genetic maps such

as the one for Arabica, but also in providing a higher marker

density than the previous one (M�erot-L’Antho€ene et al., 2014). It

will aid in selecting appropriate markers for various molecular

breeding applications and in tracking introgression within each

linkage group. Markers with even spacing along the genome

would be beneficial for generalized use or for identifying marker

associations with previously unstudied traits.

Moreover, because our SNP markers are both well-distributed

on the genome and genetically mapped, an additional application

of the Coffee8.5K array would be to assist or to validate the

genome sequence assembly of both C. canephora and C. arabica

(de Kochko, 2018) by further comparing the genetic position with

the physical position.

Better access to crop wild relative diversity

The Coffee8.5K SNP array was evaluated for its efficiency in

studying genetic diversity and genetic relatedness in the Diversity

Panel. This set includes representative individuals of the three

related species C. canephora, C. eugenioides and C. arabica.

Genotyping data was generated successfully for all three

species of the panel with 7065 (82.3%), 6824 (79.5%) and 6183

(72.1%) high-quality SNP markers in C. canephora, C. arabica

and C. eugenioides respectively. This high level of transferability

across these species is similar to that previously observed for

microsatellite markers (Poncet et al., 2004, 2006, 2007). C. eu-

genioides and C. canephora belong to different Coffea clades

(Davis et al., 2011; Hamon et al., 2017): the East–Central Africa
(EC-Afr) clade and the West and Central Africa (W/C-Afr) clade

respectively (Davis et al., 2011). The good transferability of SNP

markers discovered from C. canephora to the more distantly

related species C. eugenioides (85.8%), suggests that a high

percentage of loci represented on our Coffee8.5K array would

also be transferable to other species of the Coffea genus, at least

from EC-Afr and W/C-Afr clades, and represent a substantial

improvement in the identification potential of the genetic

diversity available within the genetic resources of the Coffea wild

species.

A high proportion of the tested SNPs (77%) were polymorphic

in the C. canephora Diversity set. They were also shown to be

very efficient for diversity analyses by their application: they

allowed to assign each C. canephora individual to its a priori

genetic group—as previously defined by the SSR markers—as

well as to discriminate between closely related accessions and to

estimate admixture levels. Thanks to these markers, two addi-

tional, well-differentiated genetic groups have been identified

and characterized, one from Angola (group G) and the other

from DRC (group R). This yielded a whole updated genetic

structure of C. canephora within eight well-differentiated and

geographically localized groups (see Figure 3 and Table S4).

For C. arabica, from the 6824 scored SNPs, 24.2% (1653)

turned out to differentiate Ca and Ea subgenomes in the dihaploid

Et39, corresponding to fixed heterozygosity, whereas an esti-

mated 10.6% (724) SNPs represented the within subgenomes

allelic polymorphism varying across the C. arabica species. Fixed

heterozygosity has been suggested to act as a buffer against the

reduced population-level diversity that resulted from the genetic

bottleneck associated with polyploid speciation as well as to

facilitate the transition to inbreeding (Soltis and Soltis, 2009). The

genetic bottleneck undergone by C. arabica has been probably

severe as suggested by its low within species differentiation, and

might have arisen from a single-polyploidization event (see

below).

For theC. eugenioidesDiversity set, although sharingmore than

90% of the called SNP markers with the C. canephora set, the

polymorphism rate was 19 times lower than for C. canephora,

certainly due to the lower global genetic diversity of that species. A

reduced number of tested C. eugenioides individuals can also be

evoked, but our sampling covers the available accessions of the

species in worldwide collections (Berthaud et al., 1980). Further-

more, additional analyseswouldbe challenging sincefield sampling

in the species distribution range has been proven to be difficult.

The Coffee8.5K array has been shown to be especially efficient

in fingerprinting individuals within C. canephora, C. eugenioides

and C. arabica species and its use by researchers or breeders on

larger datasets should provide an opportunity to gain deeper
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insights into the genetic relatedness among the genotypes and

also into the genetic architecture of these important crop wild

relative germplasm resources.

The closest current relatives of Arabica

Coffea arabica allotetraploidy resulted from recent natural

hybridization between the ancestors of present-day C. canephora

(Ca genome donor) and C. eugenioides (Ea genome donor)

(Lashermes et al., 1999) and is probably the result of a single

event (Lashermes et al., 2014). Coffea arabica displays disomic

inheritance with bivalent pairing of homologous chromosomes

(Krug and Mendes, 1940), which is in accordance with our

present observations in mapping experiments of usual disomic

patterns of marker inheritance.

Yu et al. (2011) provided evidence of recent C. arabica

speciation no more than 0.665 million years ago, but also low

divergence between the two constitutive subgenomes of C. ara-

bica (Ca and Ea) and those of its progenitor species, demonstrat-

ing that the nuclear genomes have remained essentially unaltered

since the formation of the hybrid.

Using the 17 C. arabica accessions, we took advantage of

the fact that they exhibited close genetic relationships in order

to apply a haploid-genotype-based assignation procedure to

discover its closest current relatives in our sampling. Using our

Coffee8.5K genotyping, we could not preferentially associate

the Ea subgenome to any of the sampled individuals (Fig-

ure 4d).

On the contrary, we were able to preferentially assign the Ca

subgenome to C. canephora of the O (Ugandan) Diversity group

(Figure 3) and the shortest distance was observed with a North

Ugandan C. canephora individual from the Zoka Forest. Geo-

graphically, this forest contains the closest C. canephora popu-

lation to the current C. arabica distribution (Figure 4a–c).
At the present time, C. arabica is mainly found in the

southwestern highlands of Ethiopia (Figure 4a), with some

occurrence on the Boma plateau in southeastern South Sudan

(Thomas, 1942), and on Mount Imantong in Sudan and Mount

Marsabit in northern Kenya (Berthaud and Charrier, 1988).

C. arabica is the main Coffea species that occurs in those regions

and is geographically isolated from all diploid coffee species in the

genus, which includes its two progenitor species C. canephora

and C. eugenioides. Moreover, C. arabica also differs from

C. canephora in terms of current environmental requirement

and predicted niche distribution (Gomez et al., 2016). Thus,

precise localization in Africa of the cradle of C. arabica, based on

the present distribution of its two progenitor species appears

difficult.

Two non-exclusive scenarios could be suggested for the

origin and geographical isolation of C. arabica. (i) Upon

hybridization, C. arabica could have followed one of the typical

patterns of the polyploid distribution with peripheral expansion

outside the range of the distribution of its diploid parental

species. Indeed, it has been suggested that plants with double

genomes—auto- or allo-polyploids—have the potential to

develop phenotypic novelties, increase their adaptability and

obtain higher fitness features that would render them more

tolerant towards changing conditions than their diploid coun-

terparts (Amborella Genome et al., 2013). This was particularly

well illustrated with the survival and proliferation of polyploid

plant lineages during the Cretaceous–Tertiary mass extinction

event (Fawcett et al., 2009). Following the hypothesis that

hybridization may favour establishment in novel habitats (Pillon

et al., 2009; Rieseberg et al., 2007), C. arabica could have

migrated northwards—away from the overlapping distribution

range of C. canephora and C. eugenioides—towards its current

distribution range with specific environmental requirement

(Gomez et al., 2016). Its original population is genetically

related to the current Zoka population, which thus represents

the southernmost remnant of the original distribution. (ii)

Meanwhile, considering that the constitution and the extent of

tropical forests have varied considerably during the late

Quaternary period (Mumbi et al., 2008), past C. canephora

and C. eugenioides distributions may have been more wide-

spread in higher latitudes and could have overlapped with the

current C. arabica distribution in habitats that were suitable for

all three species. In fact, C. canephora was probably able to

find suitable habitats in Ethiopia in the recent past (mid-

Holocene, ~6000 years before present, R. Tournebize, data not

shown). The climatic changes could have reduced the diploid

distributions to their current locations. As a consequence, the

birthplace of C. arabica could possibly be not only in Ethiopia

but also in the entire region (South Sudan, Uganda, North

Kenya) followed either by migration to present-day Ethiopia or

by survival in that region alone.

Due either to past habitat shift in Eastern Africa or to the

colonization of new peripheral geographical areas, the presence

of C. arabica in different environments and a reduction in diploid

competitors would have increased the divergence of initially con-

specific populations and eventually would have given rise to the

C. arabica speciation. C. arabica’s self-fertility would have further

contributed to its genetic isolation.

Conclusion

The availability of our Coffee8.5K to the Coffee community

provides an opportunity to generate high-throughput genotyping

data on different types of genetic and breeding populations for

accelerating genetic diversity, high-resolution trait mapping and

breeding applications. It will help in identifying the allelic diversity

present in the wild relatives of the two cultivated species, offering

a clue to the transferability of beneficial alleles to C. canephora

and/or to C. arabica.

Thanks to our stringent selection of genome-wide distributed

and informative SNPs, our array is an efficient tool for finger-

printing. As an application, detecting admixtures up to individual

levels has allowed us to assign the Arabica Ca subgenome to its

closest present-day C. canephora relatives. Our array is definitely

a powerful tool for quality control and traceability of all merchant

coffees.

Materials and methods

Plant material

Accessions used to design the Coffee8.5K array (12 C. canephora

and 5 C. arabica) were chosen to obtain an array for optimized

use in mapping and genetic diversity analyses in coffee trees

(Table S2).

SNP calling was generated from two Discovery Panels. The

C. arabica Discovery Panel included five genotypes whose

genome sequences were kindly provided by the Arabica Coffee

Genome Consortium (ACGC): the parents of the Arabica map-

ping population (Ar8 and Ar36B), two cultivated varieties (Mundo

Novo and Bourbon) and Et39, which is a spontaneous C. arabica

dihaploid, that is with only one set of chromosomes from each
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subgenome (see Figure 4b). The C. canephora Discovery Panel in-

cluded 12 genotypes of C. canephora belonging to the six

genetic groups (P�egard et al., 2014).

Coffee8.5K array SNP segregation was monitored in the

Robusta BP409 X Q121 and the Arabica Ar8 X Ar36B mapping

populations (Mapping Panels, Table S2).

To evaluate the transferability and genotyping performance of

the Coffee8.5K array, we genotyped a Diversity Panel of six

C. eugenioides, the C. arabica dihaploid Et39, 16 wild and

cultivated C. arabica and 27 C. canephora accessions representa-

tive of theC. canephora diversity groups as previously definedwith

SSRmarkers (Gomez et al., 2009; P�egardet al., 2014) (Table S2), as

well as uncharacterized individuals from Angola and DRC.

SNP selection and array design

SNP selection and array characterization

We performed SNP calling and SNP selection thanks to the

genome resequencing of the five accessions of C. arabica kindly

provided by the Arabica Coffee Genome Consortium, ACGC (de

Kochko, 2018) and of 12 C. canephora accessions (this study).

SNP calling was performed by mapping the resequencing reads to

the reference genome (Denoeud et al., 2014) using the NGS

workflow manager TOGGLe (http://toggle.southgreen.fr, (Monat

et al., 2015; Tranchant-Dubreuil et al., 2018)).

All identified SNPs were filtered using custom Perl scripts to

select bi-allelic SNPs of high-quality (QUAL > 40) and SNP

positions with suitable flanking sequences (60 bp on both sides

with no variation). Accessions used for SNP discovery and SNP

selection criteria were chosen to design an array for optimized use

in mapping and genetic diversity analyses in coffee trees.

SNPs from C. arabica

Screening for C. arabica SNPs was conducted on the Arabica

Discovery Panel. Set 1, represented by the two wild Ethiopian

parents of the Arabica mapping population, Ar8 and Ar36B,

together with the dihaploid Et39. We identified 8 208 891 raw

SNPs (Set 1, Figure 1), whereas Set 2, represented by Mundo

Novo, Bourbon and Et39 sequences generated 10 063 130 raw

SNPs (Set 2, Figure 1). Since any SNP scored as heterozygous in

Et39 represents polymorphism between the two subgenomes

(Figure 4b), to minimize these polymorphisms and to maximize

the proportion of true-allelic SNPs within the subgenome, the

following filters were applied to both sets: (i) we removed the

polymorphic SNPs in Et39; (ii) we selected SNPs that were

homozygous for different alleles in at least two different

C. arabica accessions; (iii) we considered SNPs spaced with a

minimum distance of 40 kb.

SNPs from C. canephora

The Discovery Panel of 12 C. canephora genotypes was used for

SNP discovery. To build a reliable and balanced genotyping array,

accessions belonging to the six genetic groups (P�egard et al.,

2014) were selected.

The analysis of the sequencing data yielded a total of

23 590 929 raw SNPs. The following sets were defined when

choosing SNPs for microarray design (Figure 1): (i) a set of SNPs

were selected on 149 candidate genes with functions related to

cup quality (Privat et al., 2008), secondary metabolism (Denoeud

et al., 2014; Lepelley et al., 2007, 2012) and drought tolerance

as characterized and defined by their gene models on the

reference genome (Denoeud et al., 2014) (Table S1); (ii) two sets

of SNPs of equivalent size selected either on coding or non-coding

regions.

To minimize the impact of SNP ascertainment bias on down-

stream analyses, only SNPs found in at least two genotypes within

the surveyed genotypes were chosen (allelic representation).

Genotyping assay

DNA extraction

Total DNA was extracted from adult leaves using DNeasy Plant

Maxi Kit (Qiagen, Hilden, Germany) following the manufacturer’s

instructions. Final DNA concentration was determined with the

Quant-iTTM PicoGreen� dsDNA Assay Kit (Molecular Probes,

Eugene, OR, USA) using the LightCycler� 480 (Roche Diagnostics,

Rotkreuz, Switzerland). The DNA quality control was performed

according to the Agilent Genomic DNA ScreenTape assay with

the Agilent 2200 TapeStation system. Templates were diluted or

concentrated to obtain a concentration of 50 ng/lL as required

by Illumina for the amplification step.

KASParTM genotyping

The KASParTM Genotyping System from LGC Genomics� is a

competitive allele-specific dual FRET-based assay for SNP geno-

typing (Cuppen, 2007). Among the 9824 SNPs selected for the

SNP array design, a subset of 50 single-nucleotide polymorphism

sequences (Figure 1c) distributed across the genome were

submitted to LGC Genomics for a KASPar assay design based

on the SNP locus-flanking sequence. The genotyping was

conducted at LGC Genomics following their own protocol and

the genotype calling was conducted with SNPviewer (LGC

Genomics, Hoddesdon, UK).

SNP synthesis and calling

The 9827 selected SNPs were submitted to the Illumina Assay

Design Tool for design score calculation (www.illumina.com) and

8580 of them were successfully synthesized by Illumina manu-

facturing processes. The SNP genotyping assay was performed on

an Illumina� Infinium HD iSelect Custom Genotyping Array

according to the standard Illumina’s protocol, using 200 ng of

genomic DNA per sample. The extension and staining steps were

operated on a Tecan Evo-150 liquid-handling robot. Fluorescence

intensities were read with Illumina� iScan Control software and

allele calling was carried out using the Genome Studio v2.0

software (Illumina Inc., San Diego, CA, USA). All data were

visually inspected and manually re-scored if any errors were

evident in the calling of the SNP clusters by the default algorithm.

Reproducibility error rates were calculated between the control

sample and SNP replicates.

SNP array applications

To evaluate the performance of the Coffee8.5K array, we

genotyped theC. canephora andC. arabicamapping populations,

a set of six C. eugenioides, 17 C. arabica individuals including the

dihaploid Et39 and a Diversity Panel of 27 C. canephora individuals

representative of the species diversity groups, previously geno-

typed with microsatellite markers with known genetic group

assignation (Gomez et al., 2009; P�egard et al., 2014), as well as

uncharacterized individuals from Angola and DRC.

Mapping population and linkage analysis

Two mapping populations were used, one Robusta progeny

based on a F1 cross between BP409 (Congolese hybrid) and Q121
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(Conilon-type derived accession) comprising 93 individuals and an

Arabica F2 segregation population (138 individuals) originating

from a cross between two wild Ethiopian Arabica: Ar8 and Ar36B

(see Mapping Panels, Table S2).

The Robusta (BP409xQ121) genetic linkage map was built

using JoinMap�4.1 software (Van Ooijen, 2011) with the

regression mapping algorithm and the grouping and recombina-

tion settings as described in M�erot-L’Antho€ene et al. (2014). The

Kosambi mapping function was used to convert recombination

frequencies into map distance and the linkage maps were drawn

using MapChart 2.3 (Plant Research International, Wageningen,

Netherlands).

To facilitate the access and use of genome-wide SNPs for

geneticists and breeders, we implemented the MoccaDB v 2.0

database initially published in Plechakova et al. (2009) with new

modules to include information and search tools related to SNPs.

The query results can be visualized as text format in tables

displayed on interfaces, the maps can be viewed and compared

as graphics using the C-Map (http://gmod.org/wiki/CMap) and in

a genome browser (Figure S2).

Linkage disequilibrium

Linkage disequilibrium analysis was performed using the whole-

genome resequencing set of C. canephora Discovery

Panel (n = 12). The linkage disequilibrium decay curve was

calculated as r2, the squared value of the correlation coefficient

of the allelic states of two given polymorphic loci, against biallelic

SNPs with MAF > 0.10 and with <10% missing genotypes

(excluding the virtual pseudo-chromosome 0 of unanchored

sequences) using the PopLDdecay software (Xu et al., 2012).

Transferability to related species (C. arabica, C. eugenioides
and C. canephora) and diversity analyses

Diversity analyses were performed to confirm the resolution

capacity of this array system between accessions on each of the

Diversity Panels (Table S2). The number of usable SNP markers for

each of the three species was scored in relation to the number of

total scorable loci, whereas the level of polymorphic markers was

calculated for each species in relation to their number of usable

markers. Since Et39 is a dihaploid with only one set of

chromosomes from each subgenome, any SNP scored as

heterozygous in Et39 represents polymorphism between the

two subgenomes (Figure 4b). To optimize the estimation of

within subgenomes polymorphism, the proportion of polymor-

phic SNPs within the set of 16 C. arabica was thus calculated

after removing the heterozygous SNPs or SNPs with missing

genotypes in Et39 (Table 1).

Population structure within the C. canephora subset was

analysed using an unsupervised clustering algorithm, sNMF

(Frichot et al., 2014) using the 27 C. canephora accessions

representative of the species diversity including the parents of

the Robusta mapping population. The most likely number of

genetic clusters (K) was determined as the one minimizing the

cross-entropy criterion, for K ranging between 1 and 10 (with 20

estimation runs per K).

Two neighbour-joining dendrograms were constructed based

on the Euclidean distances between genotypes, one for the three

species together (4095 polymorphic markers without missing

data) and the other one for the C. arabica individuals (595 intra-

specific polymorphic markers without missing data). The stability

of each node was evaluated using 100 bootstraps by blocks of

100 SNPs (R package ape) (Popescu et al., 2012).

Assignation of the arabica subgenomes

Coffea arabica contains two diploid genomes Ca and Ea that

originated from two different wild diploid ancestor species,

C. canephora and C. eugenioides (Lashermes et al., 1999). The

similarity of the canephora-derived subgenome Ca to current

C. canephora genotypes and eugenioides-derived subgenome Ea

to current C. eugenioides accessions was evaluated based on the

representative Diversity Panels of both species. Based on 4258

shared SNPs without missing data, Identity-by-state (IBS) dis-

tances were computed between each of the 17 C. arabica

accessions with each individual without admixture of the two

related species. We used haploid genotype downscaling to

mitigate the impact of the polymorphic SNPs in C. arabica that

cannot be precisely assigned to one or the other related species.

Haploid genotypes were randomly drawn for each SNP and each

accession over 200 runs. The IBS distances were averaged over all

runs for each C. arabica accession. The average IBS distances and

their standard deviations were then calculated over all 17

C. arabica accessions.

Acknowledgements

This project was partially supported by the Agropolis Foundation

under References ID 1002-009 and ID 1402-003 through the «
Investissements d’avenir » program (Labex Agro:ANR-10-LABX-

0001-01), in the framework of I-SITE MUSE (ANR-16-IDEX-0006).

The authors are grateful to the Arabica Coffee Genome Consor-

tium (ACGC) for providing C. arabica sequencing data.

Conflicts of interest

The authors declare no conflicts of interest.

References

Amborella Genome, P., Albert, V.A., Barbazuk, W.B., dePamphilis, C.W., Der,

J.P., Leebens-Mack, J., Ma, H. et al. (2013) The Amborella genome and the

evolution of flowering plants. Science, 342, 1241089.

Anthony, F., Combes, M.C., Astorga, C., Bertrand, B., Graziosi, G. and

Lashermes, P. (2002) The origin of cultivated Coffea arabica L. varieties

revealed by AFLP and SSR markers. Theor. Appl. Genet. 104, 894–900.

Berthaud, J. (1976) Etude cytog�en�etique d’un haplo€ıde de Coffea arabica L.

Caf�e, Cacao, Th�e, XX, 91–96.

Berthaud, J. and Charrier, A. (1988) Genetic resources of Coffea. In Coffee. Vol

4 : Agronomy (Clarke, R.J. and Macrae, R. eds), pp. 1–42. Londres: Elsevier

Applied Science.

Berthaud, J., Guillaumet, J.-L., Le Pierres, D. and Lourd, M. (1980) Rapport

de prospection des caf�eiers du Kenya. Caf�e, Cacao, Th�e, XXIV, 101–

112.

Chevalier, A. (1929) Les caf�eiers du globe. I. G�en�eralit�es sur les caf�eiers. In

Encyclopédie Biologique, p. 196, Paris, France: Lechevalier P.

Cuppen, E. (2007) Genotyping by allele-specific amplification (KASPar). CSH

Protoc. 2007, pdb.prot4841.

Davey, J.W., Hohenlohe, P.A., Etter, P.D., Boone, J.Q., Catchen, J.M. and

Blaxter, M.L. (2011) Genome-wide genetic marker discovery and genotyping

using next-generation sequencing. Nat. Rev. Genet. 12, 499–510.

Davis, A.P., Govaerts, R., Bridson, D.M. and Stoffelen, P. (2006) An annotated

taxonomic conspectus of the genus Coffea (Rubiaceae). Bot. J. Linn. Soc. 152,

465–512.

Davis, A.P., Tosh, J., Ruch, N. and Fay, M.F. (2011) Growing coffee: Psilanthus

(Rubiaceae) subsumed on the basis of molecular and morphological data;

implications for the size, morphology, distribution and evolutionary history of

Coffea. Bot. J. Linn. Soc. 167, 357–377.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1418–1430

Virginie Merot-L’anthoene et al.1428

http://gmod.org/wiki/CMap


Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella,

M., Zheng, C. et al. (2014) The coffee genome provides insight into the

convergent evolution of Caffeine biosynthesis. Science, 345, 1181–1184.

Dereeper, A., Bocs, S., Rouard, M., Guignon, V., Ravel, S., Tranchant-Dubreuil,

C., Poncet, V. et al. (2015) The coffee genome hub: a resource for coffee

genomes. Nucleic Acids Res. 43, 1028–1035.

Fawcett, J.A., Maere, S. and Van de Peer, Y. (2009) Plants with double genomes

might have had a better chance to survive the Cretaceous-Tertiary extinction

event. Proc. Natl Acad. Sci. USA, 106, 5737–5742.

Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. and Franc�ois, O. (2014) Fast
and efficient estimation of individual ancestry coefficients. Genetics, 196,

973–983.

Gomez, C., Dussert, S., Hamon, P., Hamon, S., de Kochko, A. and Poncet, V.

(2009) Current genetic differentiation of Coffea canephora Pierre ex A.

Froehn in the Guineo-Congolian African zone: cumulative impact of ancient

climatic changes and recent human activities. BMC Evol. Biol. 9, 167.

Gomez, C., Despinoy, M., Hamon, S., Hamon, P., Salmon, D., Akaffou, D.S.,

Legnate, H. et al. (2016) Shift in precipitation regime promotes interspecific

hybridization of introduced Coffea species. Ecol. Evol. 6, 3240–3255.

Guillaumet, J.-L. and Hall�e, F. (1978) Echantillonnage du mat�eriel Coffea arabica

r�ecolt�e en Ethiopie. Bulletin IFCC, 14, 13–18.

Gupta, P.K., Rustgi, S. and Mir, R.R. (2008) Array-based high-throughput DNA

markers for crop improvement. Heredity, 101, 5–18.

Hamon, P., Grover, C.E., Davis, A.P., Rakotomalala, J.J., Raharimalala, N.E.,

Albert, V.A., Sreenath, H.L. et al. (2017) Genotyping-by-sequencing

provides the first well-resolved phylogeny for coffee (Coffea) and

insights into the evolution of caffeine content in its species: GBS coffee

phylogeny and the evolution of caffeine content. Mol. Phylogenet. Evol.

109, 351–361.

de Kochko, A. and ACGC (2018) Deciphering the Allotetraploid Genome of

Coffea arabica L. In Plant and Animal Genome Conference XXVI (Januray 13-

17, 2018). San Diego, CA, USA.

Krug, C.A. and Mendes, A.J.T. (1940) Cytological observations in Coffea. IV. J.

Genet 39, 189–203.

Kwong, Q.B., Teh, C.K., Ong, A.L., Heng, H.Y., Lee, H.L., Mohamed, M., Low,

J.Z. et al. (2016) Development and validation of a high-density SNP

genotyping array for African oil palm. Mol. Plant, 9, 1132–1141.

Lashermes, P., Combes, M.C., Robert, J., Trouslot, P., D’Hont, A., Anthony, F.

and Charrier, A. (1999) Molecular characterisation and origin of the Coffea

arabica L. genome. Mol. Gen. Genet. 261, 259–266.

Lashermes, P., Andrzejewski, S., Bertrand, B., Combes, M.C., Dussert, S.,

Graziosi, G., Trouslot, P. et al. (2000) Molecular analysis of

introgressive breeding in coffee (Coffea arabica L.). Theor. Appl.

Genet. 100, 139–146.

Lashermes, P., Combes, M.C., Hueber, Y., Severac, D. and Dereeper, A. (2014)

Genome rearrangements derived from homoeologous recombination

following allopolyploidy speciation in coffee. Plant J. 78, 674–685.

Lefebvre-Pautigny, F., Wu, F.N., Philippot, M., Rigoreau, M., Priyono, P., Zouine,

M., Frasse, P. et al. (2010) High resolution synteny maps allowing direct

comparisons between the coffee and tomato genomes. Tree Genet.

Genomes, 6, 565–577.

Lepelley, M., Cheminade, G., Tremillon, N., Simkin, A., Caillet, V. and

McCarthy, J. (2007) Chlorogenic acid synthesis in coffee: an analysis of

CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and

CCoAOMT1 genes during grain development in C. canephora. Plant Sci. 172,

978–996.

Lepelley, M., Mahesh, V., McCarthy, J., Rigoreau, M., Crouzillat, D.,

Chabrillange, N., de Kochko, A. et al. (2012) Characterization, high-

resolution mapping and differential expression of three homologous PAL

genes in Coffea canephora Pierre (Rubiaceae). Planta, 236, 313–326.

Leroy, T., De Bellis, F., Legnate, H., Kananura, E., Gonzales, G., Pereira, L.F.,

Andrade, A.C. et al. (2011) Improving the quality of African robustas: QTLs

for yield- and quality-related traits in Coffea canephora. Tree Genet.

Genomes, 7, 781–798.

M�erot-L’Antho€ene, V., Mangin, B., Lefebvre-Pautigny, F., Jasson, S., Rigoreau,

M., Husson, J., Lambot, C. et al. (2014) Comparison of three QTL detection

models on biochemical, sensory and yield characters in Coffea canephora.

Tree Genet. Genomes, 10, 1541–1553.

Monat, C., Tranchant-Dubreuil, C., Kougbeadjo, A., Farcy, C., Ortega-Abboud,

E., Amanzougarene, S., Ravel, S. et al. (2015) TOGGLE: toolbox for generic

NGS analyses. BMC Bioinformatics, 16, 374.

Moncada, M.D., Tovar, E., Montoya, J.C., Gonzalez, A., Spindel, J. and

McCouch, S. (2016) A genetic linkage map of coffee (Coffea arabica L.) and

QTL for yield, plant height, and bean size. Tree Genet. Genomes, 12, 5.

Mumbi, C.T., Marchant, R., Hooghiemstra, H. and Wooller, M.J. (2008) Late

Quaternary vegetation reconstruction from the Eastern Arc Mountains,

Tanzania. Quatern. Res. 69, 326–341.

Noirot, M., Poncet, V., Barre, P., Hamon, P., Hamon, S. and de Kochko, A.

(2003) Genome size variations in diploid African Coffea species. Ann. Bot. 92,

709–714.

Pandey, M.K., Agarwal, G., Kale, S.M., Clevenger, J., Nayak, S.N., Sriswathi, M.,

Chitikineni, A. et al. (2017) Development and evaluation of a high density

genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics

and breeding in groundnut. Sci. Rep. 7, 40577.

Pearl, H.M., Nagai, C., Moore, P.H., Steiger, D.L., Osgood, R.V. and Ming, R.

(2004) Construction of a genetic map for Arabica coffee. Theor. Appl. Genet.

108, 829–835.

P�egard, M., deKochko, A., Merot-L’anthoene, V., Tranchant, C., Rigoreau,

M., Bellanger, L., Legnate, H. et al. (2014) Genetic diversity of Coffea

canephora and selection of genotypes potentially resilient to climatic

changes. In 25th International Conference on Coffee Science Sept. 8-13.

Armenia (Colombia)

Pillon, Y., Munzinger, J., Amir, H., Hopkins, H.C. and Chase, M.W. (2009)

Reticulate evolution on a mosaic of soils: diversification of the New

Caledonian endemic genus Codia (Cunoniaceae). Mol. Ecol. 18, 2263–

2275.

Plechakova, O., Tranchant-Dubreuil, C., Benedet, F., Couderc, M., Tinaut, A.,

Viader, V., De Block, P. et al. (2009) MoccaDB - an integrative database for

functional, comparative and diversity studies in the Rubiaceae family. BMC

Plant Biol. 9, 123.

Poncet, V., Hamon, P., Minier, J., Carasco-Lacombe, C., Hamon, S. and Noirot,

M. (2004) SSR cross-amplification and variation within coffee trees (Coffea

spp.). Genome, 47, 1071–1081.

Poncet, V., Rondeau, M., Tranchant, C., Cayrel, A., Hamon, S., de Kochko, A.

and Hamon, P. (2006) SSR mining in coffee tree EST databases: potential use

of EST-SSRs as markers for the Coffea genus. Mol. Genet. Genomics, 276,

436–449.

Poncet, V., Dufour, M., Hamon, P., Hamon, S., de Kochko, A. and Leroy, T.

(2007) Development of genomic microsatellite markers in Coffea

canephora and their transferability to other coffee species. Genome, 50,

1156–1161.

Popescu, A.A., Huber, K.T. and Paradis, E. (2012) ape 3.0: New tools for

distance-based phylogenetics and evolutionary analysis in R. Bioinformatics,

28, 1536–1537.

Privat, I., Foucrier, S., Prins, A., Epalle, T., Eychenne, M., Kandalaft, L., Caillet, V.

et al. (2008) Differential regulation of grain sucrose accumulation and

metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta)

revealed through gene expression and enzyme activity analysis. New Phytol.

178, 781–797.

Rieseberg, L.H., Kim, S.-C., Randell, R.A., Whitney, K.D., Gross, B.L., Lexer, C.

and Clay, K. (2007) Hybridization and the colonization of novel habitats by

annual sunflowers. Genetica, 129, 149–165.

Rimbert, H., Darrier, B., Navarro, J., Kitt, J., Choulet, F., Leveugle, M., Duarte, J.

et al., International Wheat Genome Sequencing, C., Le Gouis, J., on behalf

The BreedWheat, C., Davassi, A., Balfourier, F., Le Paslier, M.C., Berard, A.,

Brunel, D., Feuillet, C., Poncet, C., Sourdille, P., Paux, E. (2018) High

throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE, 13,

e0186329.

Sant’Ana, G.C., Pereira, L.F.P., Pot, D., Ivamoto, S.T., Domingues, D.S., Ferreira,

R.V., Pagiatto, N.F. et al. (2018) Genome-wide association study reveals

candidate genes influencing lipids and diterpenes contents in Coffea arabica

L. Sci. Rep., 8, 465.

Soltis, P.S. and Soltis, D.E. (2009) The role of hybridization in plant speciation.

Annu. Rev. Plant Biol. 60, 561–588.

Thomas, A.S. (1942) The wild arabica coffee of the Boma Plateau, Anglo-

Egyptian Sudan. Empir. J. Exp. Agric. 10, 207–212.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1418–1430

Coffee 8.5K SNP array and its application 1429



Tran, H.T.M., Ramaraj, T., Furtado, A., Lee, L.S. and Henry, R.J. (2018) Use of a

draft genome of coffee (Coffea arabica) to identify SNPs associated with

caffeine content. Plant Biotechnol. J. 16, 1756–1766.

Tranchant-Dubreuil, C., Ravel, S., Monat, C., Sarah, G., Diallo, A., Helou, L.,

Dereeper, A. et al. (2018) TOGGLe, a flexible framework for easily building

complex workflows and performing robust large-scale NGS analyses. bioRxiv

245480.

Van Ooijen, J.W. (2011) Multipoint maximum likelihood mapping in a

full-sib family of an outbreeding species. Genet. Res. (Camb) 93,

343–349.

Xu, X., Liu, X., Ge, S., Jensen, J.D., Hu, F.Y., Li, X., Dong, Y. et al. (2012)

Resequencing 50 accessions of cultivated and wild rice yields markers for

identifying agronomically important genes. Nat. Biotechnol. 30, 105–

U157.

You, Q., Yang, X., Peng, Z., Xu, L. and Wang, J. (2018) Development

and applications of a high throughput genotyping tool for polyploid

crops: single nucleotide polymorphism (SNP) array. Front. Plant Sci. 9,

104.

Yu, Q.Y., Guyot, R., de Kochko, A., Byers, A., Navajas-Perez, R., Langston, B.J.,

Dubreuil-Tranchant, C. et al. (2011) Micro-collinearity and genome evolution

in the vicinity of an ethylene receptor gene of cultivated diploid and

allotetraploid coffee species (Coffea). Plant J. 67, 305–317.

Yu, H., Xie, W., Li, J., Zhou, F. and Zhang, Q. (2014) A whole-genome SNP array

(RICE6K) for genomic breeding in rice. Plant Biotechnol. J. 12, 28–37.

Supporting information

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Figure S1 Linkage disequilibrium

Figure S2 MoccaDB v2 database screenshots

Figure S3 C. arabica neighbour-joining tree

Table S1 List of the Candidate Genes with their corresponding

SNP markers (Locus ID and location of each original SNP is

provided according to Denoeud et al. (2014) (2014) annotation)

Table S2 List of accessions

- List of accessions and their use: Discovery/Diversity/Mapping

panel

- Geographical location of the C. arabica samples used in this

study overlaid on the Guillaumet (1978) map

- Location of analysed C. eugenioides individuals on the

microsatellite neighbour-joining tree

Table S3 SNP information (origin, genome location, sequence,

polymorphism)

Table S4 Summary table of the historical definition ofC. canephora

genetic groups with the references and the marker types in use.

ª 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 17, 1418–1430

Virginie Merot-L’anthoene et al.1430


