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Abstract

The method of characteristics is a powerful tool to solve some nonlinear second order
stochastic PDEs like those satisfied by a consistent dynamic utilities, see [EM13, MM20] . In
this situation the solution V (t, z) is theoretically of the form X̄t

(
V (0, ξ̄t(z))

)
where X̄ and

Ȳ are solutions of a system of two SDEs, ξ̄ is the inverse flow of Ȳ and V (0, .) is the initial
condition. Unfortunately this representation is not explicit except in simple cases where X̄
and Ȳ are solutions of linear equations. The objective of this work is to take advantage of
this representation to establish a numerical scheme approximating the solution V using Euler
approximations XN and ξN of X and ξ. This allows us to avoid a complicated discretizations
in time and space of the SPDE for which it seems really difficult to obtain error estimates.
We place ourselves in the framework of SDEs driven by Lévy noise and we establish at first
a strong convergence result, in Lp-norms, of the compound approximation XN

t (Y N
t (z)) to

the compound variable Xt(Yt(z)), in terms of the approximations of X and Y which are
solutions of two SDEs with jumps. We then apply this result to Utility-SPDEs of HJB type
after inverting monotonic stochastic flows.

1 Introduction

Solving PDEs using the characteristics method is powerful tool in the theory of differential
equations. This method has been extended to the framework of stochastic PDEs in chapter 6 of
Kunita’s book [Kun97] and called the stochastic characteristics method. It consists in studying
the solution U(t, z) of the equation along the path of a process Yt(z). If Y is well chosen, the pro-
cess Xt(z) := U(t, Yt(z)) should satisfy a differential equation of lower order and much simpler to
study. This method works very well since the Y process is such that y 7→ Yt(y) is homeomorphic
flow. In this case, by making a variable change, the solution of our initial problem is written
U(t, z) = Xt(Y

−1
t (z)). Unfortunately, apart from a few special cases, it is complicated, if not im-

possible, to obtain closed formulas for the characteristics X and Y (or its inverse Y −1). Let XN

be an approximation of X and ξN be an approximation of ξ := Y −1 for some convergence param-
eter N → +∞, our aim is to show that the compound approximation XN (ω, ξN (ω)) converges
to X(ω, ξ(ω)). For this we need to answer the following questions: Which scheme to approx-
imate the inverse flow ξ? Under which assumptions does the compound approximation ω 7→
XN (ω, ξN (ω)) converge to the compound map ω 7→ X(ω, ξ(ω)) and in which manner? And

∗strong approximation, Euler scheme, stochastic flow, method of stochastic characteristics, SPDE driven by
Lévy noise, Utility-SPDE, Garsia-Rodemich-Rumsey lemma
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finally, what is the convergence rate and how does it depend on those related to the approxima-
tions XN to X and ξN to ξ?

It is easy to see that our study becomes simple if we make the hypothesis that the pair
(X,XN ) is independent of (ξ, ξN ), by using a conditioning argument. This is not the case in
this work as we will explain later. The study is therefore more complex and the classic arguments
are not necessarily effective.

As the strong convergence rates constitute the corner stone for designing efficient Multi-Level
Monte Carlo methods which significantly speed-up crude Monte Carlo methods by reducing
the variance [Hei01, Gil08] or can remove the simulation bias where the number of levels is
randomized [RG12, GM16], our aim is to study the strong convergence (convergence in Lp-
norms) in this setting.

Fortunately, a first work with E. Gobet [GM18] answers some of these questions in a very
general framework and establish a strong convergence rates for compound maps in complicated
situations where the error analysis was not available so far. Theorem 1 in [GM18] gives a strong
approximation of the compound Ft(Θt(θ)) where the random fields F and Θ are arbitrary
(not a necessarily a semimartingales) and satisfy some space regularities assumptions. The
scope of application of this result is potentially large: the application to utility-SPDE without
jumps is developed in Section 3 of [GM18] and applications to stochastic processes (possibly
non semimartingales) at random times (possibly non stopping times) are considered in [GM16],
where the nice interplay with unbiased simulation scheme of Rhee-Glynn [RG12] is presented.

The starting idea of this work and that of [GM18] comes essentially from a joint works with
N. El Karoui [EM13] and with A. Matoussi [MM20] on the field of stochastic consistent utilities,
introduced under the name of forward utilities by M. Musiela and T. Zariphopoulou [MZ07].
This new concept which generalizes the classic utility functions, models possible changes over the
time of both the individual preferences of an agent and the dynamic of the universe of investment.
This works always leads us to completely non-linear stochastic PDEs. The originality is that we
have succeeded in linking the solutions of these SPDEs with those of two SDEs. We have shown
that the marginal utility is represented as the compound of two SDE’s solutions. This explains
the need to study the composition of the approximations of the two SDEs instead of trying to
directly discretize the SPDEs, which is not an easy task. To be clearer, a dynamic utility of an
investor is a random maps (t, z, ω) 7→ U(t, z, ω) ∈ R, depending on time t and on the wealth
z ∈ R. Assume it is of Itô type driven by a Lévy process, i.e.

dU(t, z) = β(t, z)dt+ γ(t, z) · dWt +

∫
R
H(t, z, e)Ñ(dt, de),

where W is a d-dimensional Brownian motion and Ñ the compensated version of an independent
Lévy random measureN on [0,∞)×R with intensity measure λ(t)dt×ν(de). The triplet (β, γ,H)
denotes the local characteristics of U with values in R × Rd × R. Denote by Uz and Uzz the
first and the second derivative of U with respect to z. Then, the dynamic utility U , associated
to the investor’s portfolio optimization, is consistent if it solves the second-order fully nonlinear
SPDE driven by Lévy noise and of HJB type [MM20] (the drift β is necessarily constrained)

dU(t, z) =
(
− zUz(t, z)rt +

∫
R

(U(t, z) +H(t, z, e))ν(de)−Q(t, z, κ∗)
)
dt

+ γ(t, z)dWt +

∫
R
H(t, z, e)Ñ(dt, de). (1)

Where,

Q(t, z, κ∗) =

∫
R

(U +H)
(
t, z(1 + κ∗(t, z)hS(t, e))

)
ν(de)− 1

2Uzz
‖γRz + Uz(t, z)(ηt − αt)‖2
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+
1

2Uzz(t, z)
‖
∫
R

(Uz +Hz)
(
t, z(1 + κ∗(t, z)hS(t, e))

)
.hS(t, e)ν(de)‖2.

With r and η denote the interest rate and the risk premium of the market. The quantity zκ∗(t, z)
denotes the strategy of the investor and is given by

zκ∗(t, z) = −γ
R
z (t, z) + Uz(t, z)(ηt − αt)

Uzz(t, z)
−

∫
R

(Uz +Hz)
(
t, z(1 + κ∗(t, z)hS(t, e))

)
.hS(t, e)ν(de)

Uzz(t, z)
.

In the continuous case ([EM13, Section 3]), this equation reduces, to

dU(t, z, ω) =

(
−rtzUz +

1

2Uzz
||γz + Uzηt||2

)
(t, z, ω)dt+ γ(t, z, ω) · dWt. (2)

Moreover, see [EM13, Section 4] for equation (2) and [MM20, Theorem 3.8] for equation (1), we
represent the spatial first derivative of the SPDE solution as the compound of the solutions of
two SDEs with explicit coefficients and driven by the same Brownian motion W and the same
Lévy random measure N ; denote them by (Xt(x) : t ≥ 0) and (Yt(y) : t ≥ 0), parameterized by
their initial space conditions x and y at time 0. More precisely, the utility-SPDE (2) admits a
unique concave (with respect to the space variable z) solution with marginal Uz characterized
by composition of stochastic flows:

Uz(t, z, ω) = Xt

(
uz(0, ξt(z, ω)), ω

)
, U(0, z, ω) = u(0, z) (3)

where ξt(z) : denotes the inverse flow of y 7→ Yt(y). This connection between utility-SPDE and
SDEs allows to solve theoretically the problem but the numerical resolution remains an open
issue. In particular we would like, as mentioned above, to avoid a complicate discretization
in time and space of the SPDE (1) and we would like to take advantage of the representation
(3) as compound random maps. Briefly, the question can be formulated as follows: let N be a
number of discretization times (including jump times) and assume that an approximation ξN

converge to ξ as N → +∞ with order αξ, and XN to X with order αX , both convergences being
considered in the Lp sense.

• Does XN
t

(
uz(0, ξ

N
t (z))

)
converges to Xt

(
uz(0, ξt(z)

)
as N → +∞?

• What is the convergence rate, and how it depends on αX and αξ?

Note that, in the case of continuous semimartingale, we have addressed these issues in
[GM18, Theorem 8] where we have shown, using Euler’s schemes to approximate X and ξ, that
XN
t

(
uz(0, ξ

N
t (z))

)
converge with order 1

2 to the first derivative Uz(t, z) of the solution U of (2)
satisfying U(t, z) = u(z). The purpose of this paper is to establish an equivalent result for more
complex family of SPDE’s driven by a Lévy noise and in particular for the utility-SPDE (1).

The paper is organized as follows. In Section 2, we recall a general convergence result [GM18,
Theorem 1] estimating the Lp-error

∥∥FN (ΘN )− F (Θ)
∥∥
Lp

by assuming locally uniform approxi-

mations of FN −F , and local-Hölder continuity on F . In Section 3, we study the error induced
by compound Euler schemes related to SDEs with jumps, through their initial conditions. The
major difficulty is to show that the hypotheses of [GM18, Theorem 1] are satisfied in order to
be able to apply this result to the framework of this paper. Several intermediate results, whose
proofs are long and complex, are necessary to verify all these assumptions and establish our
main result Theorem 5 which show that the convergence rate for the approximation of com-
pound SDEs (strongly dependent because built with the same Brownian motion and the same
Lévy measure) inherits from that of simple Euler scheme for each SDE. In Section 4, we come
back to the application to utility-SPDE (1).
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2 Lp-approximation of compound random maps: recent results

Let (E , |.|) be a separable Banach space and (Ω,F ,P) be a probability space. Let F be a random
field, i.e. a F ⊗ B(Rd)-measurable mapping (ω, x) ∈ (Ω,Rd) 7→ F (ω, x) ∈ E , continuous in x
for a.e. ω and let a Rd-valued F-random variable Θ : Ω 7→ Rd. Denote by FN and ΘN the
approximations of F and Θ, where N → +∞ is a asymptotic parameter.
For p > 0 and for a random variable Z : Ω 7→ E or Rd, we set ‖Z‖Lp = (E |Z|p)1/p and say that

Z ∈ Lp if ‖Z‖Lp < +∞. Despite ‖.‖Lp not being a norm for p < 1, we refer to it as Lp-norm to
simplify the discussion.
Let us now give the assumptions under which a general convergence result for the compound
FN (ΘN ) to F (Θ) has been established in [GM18]. They ensure that all the quantities of interest
to us belong to any Lp, with some locally uniform estimates w.r.t. the space dependence.

(H1) For any p > 0, there exist constants α
(H1)
p ∈ [0,+∞) and C

(H1)
p ∈ [0,+∞) such that∥∥∥∥∥ sup

|x|≤λ
|F (·, x)|

∥∥∥∥∥
Lp

≤ C(H1)
p λα

(H1)
p , ∀λ ≥ 1. (H1)

(H2) There is a κ ∈ (0, 1] such that for any p > 0, there exist constants α
(H2)
p ∈ [0,+∞) and

C
(H2)
p ∈ [0,+∞) such that∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|F (·, y)− F (·, x)|
|y − x|κ

∥∥∥∥∥
Lp

≤ C(H2)
p λα

(H2)
p , ∀λ ≥ 1. (H2)

(H3) For any p > 0, there exist a constant α
(H3)
p ∈ [0,+∞) and a sequence (ε

N,(H3)
p )N≥1 with

ε
N,(H3)
p ∈ [0,+∞) such that∥∥∥∥∥ sup

|x|≤λ
|FN (·, x)− F (·, x)|

∥∥∥∥∥
Lp

≤ εN,(H3)
p λα

(H3)
p , ∀λ ≥ 1,∀N ≥ 1. (H3)

(H4) For any p > 0, there exist a constant C
(H4-a)
p ∈ [0,+∞) and a sequence (ε

N,(H4-b)
p )N≥1

with ε
N,(H4-b)
p ∈ [0,+∞) such that

‖Θ‖Lp ∨
∥∥ΘN

∥∥
Lp
≤ C(H4-a)

p , ∀N ≥ 1, (H4-a)∥∥ΘN −Θ
∥∥
Lp
≤ εN,(H4-b)

p , ∀N ≥ 1. (H4-b)

Under these assumptions, the following Theorem states an error estimate on the approximation
of F (Θ) by FN (ΘN ), as a function of N , through the sequences (εN,(H3)

. )N≥1 and (εN,(H4-b)
. )N≥1.

Theorem 1 (Gobet-Mrad [GM18]). Assume (H1)-(H2)-(H3)-(H4-a)-(H4-b). Then for any
p > 0 and any p2 > p, there is a constant c(4) independent on N such that∥∥FN (ΘN )− F (Θ)

∥∥
Lp
≤ c(4)

(
ε
N,(H3)
2p + [εN,(H4-b)

κp2
]κ
)
, ∀N ≥ 1. (4)

Quite intuitively, the global approximation error inherits the rates from that on F and that
on Θ modified by the local Hölder regularity of x 7→ F (ω, x).
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Remark 2.1. In its original version, this result is given in two variants, the first is the one
recalled here and the second one gives an equivalent conclusion but instead of the λ-polynomial
dependency of the upper bounds in (H1-H2-H3), we consider exponential dependency. This
allow us to analyse the approximation of diffusion process in diffusion time Zt = X|Yt| see
[AZ01] and [GM16] for this and other applications of this second variant.

Remarks and comments This is a very general result but the assumptions necessary to
apply it and especially (H1-H2-H3) are sometimes very complicated to verify. For example, if
x is the time variable, one can verify that (H1-H2-H3) are satisfied by using Doob inequalities
or other martingale estimates. But in other situations this verification can be complex. One
can think of using the Kolmogorov continuity criterion for random fields [Kun97, Theorem 1.4.1
p.31], but it does not yield the quantitative estimates we are looking for. However, there is an
interesting result that gives refinement compared to the Kolmogorov criterion. It is about the
Garsia-Rodemich-Rumsey lemma [GRR70] (see [Nua06, p.353–354]). This lemma allows us to
go from pointwise estimates to locally uniform estimates, by assuming Hölder regularity in Lp.
It has been very useful to us in studying SPDEs in a continuous setting and will undoubtedly
be useful in this work as well. In the literature, this approach has been extensively developed in
[BY82] for studying regularity of local times of continuous martingales w.r.t. the space variable.

The following two results will be used frequently in this paper. The first key result is obtained
from Garsia-Rodemich-Rumsey lemma [GRR70], see the proof of [GM18, Theorem 2].

Theorem 2 (Gobet-Mrad [GM18]). Let p > d. Assume that G is F⊗B(Rd)-measurable mapping
(ω, x) ∈ (Ω,Rd) 7→ G(ω, x) ∈ E, continuous in x for a.e. ω. Assume that G(x) is in Lp for any
x and that there exist constants C(G) ∈ [0,+∞), β(G) ∈ (d/p, 1] and τ (G) ∈ [0,+∞) such that

‖G(x)−G(y)‖Lp ≤ C
(G)|x− y|β(G)

(1 + |x|+ |y|)τ (G)
, ∀(x, y) ∈ Rd × Rd. (5)

Then, for any β ∈ (0, β(G) − d/p), we have∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|G(y)−G(x)|
|y − x|β

∥∥∥∥∥
Lp

≤ c(6)C
(G)λτ

(G)+β(G)−β, ∀λ ≥ 1, (6)

where c(6) is a constant depending only on d, p, β, β(G), τ (G).

A similar result is proved in [RY99, Theorem 2.1, p.26] using the Kolmogorov criterion, with
x and y in a compact set, i.e. with τ (G) = 0; the quoted result is not sufficient for our study.

As a consequence, we obtain the following result that may serve to easily check (H1).

Corollary 1. Let consider the assumptions and notations of Theorem 2. Then we have∥∥∥∥∥ sup
|x|≤λ

|G(x)|

∥∥∥∥∥
Lp

≤ c(7)λ
τ (G)+β(G)

, ∀λ ≥ 1, (7)

where c(7) := ‖G(0)‖Lp + c(6)C
(G) where c(6) is defined in Theorem 2 with β = (β(G) − d/p)/2.

In particular, the constant c(6) depends only on d, p, β(G), τ (G).
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3 Application to compound Euler schemes

3.1 Problem’s setting

In this section, we fix finite time horizon T and we consider a standard filtered probability space
(Ω,F,P) supporting two q-dimensional standard Brownian motions W = (W 1, . . . ,W q) and
B = (B1, . . . , Bq) on [0, T ] and an independent Lévy random measure N on [0,∞) × Rq′ with
deterministic time dependent intensity measure λ(t)dt× ν(de) defined on the probability space
(Ω,F ,F,P). λ is the time intensity of jumps with λ([0, T ]) = [0, λmax] for some λmax ∈]0,∞[
and ν is a positive measure on Rq′ with finite intensity, i.e., ν(Rq′) =

∫
Rq′ ν(de) < ∞. We also

denote by Ñ the compensated version of N :

Ñ(dt, de) = N(dt, de)− ν(de)λ(t)dt.

We are concerned by two Rd-valued stochastic processes X and Y , solutions of the following
stochastic differential equations (SDE for short)

dXt(x) = µ(t,Xt(x))dt+

q∑
i=1

σi(t,Xt(x))dW i
t +

∫
Rq′

h(t,Xt−(y), e)Ñ(dt, de), X0(x) = x, (8)

dYt(y) = b(t, Yt(y))dt+

q∑
i=1

γi(t, Yt(y))dBi
t +

∫
Rq′

g(t, Yt−(y), e)Ñ(dt, de), Y0(y) = y, (9)

where µ, b, σi, γi are deterministic functions from [0, T ] × Rd into Rd and h, g are deterministic
functions from [0, T ]×Rd×Rq′ into Rd×q′ , globally Lipschitz in space to ensure the existence of
a unique strong solution. Depending on the potential applications, we may require that B and
W are the same, or different, or built from each other, possibly in complicate ways. Actually,
observe that we do not assume that the couple (B,W ) forms a higher-dimensional Brownian
motion: this general setting allows flexibility in further applications. As an example for solving
utility-SPDE in Section 4, we need to consider B as the backward Brownian motion of W .
Denote by XN

T (x) (resp. Y N
T (y)) the Euler scheme with time step T/N of XT (x) (resp. YT (y)):

Using previous results, we aim at establishing a new convergence result of the compound scheme
XN
t (Y N

t (y)) to the compound SDE Xt(Yt(y)) as N goes to infinity. More precisely, we prove in
the following, under precise assumptions, see Theorem 5, that∥∥XN

t (Y N
t (y))−Xt(Yt(y))

∥∥
Lp

= O(N−1/2), ∀y ∈ Rd, p > 0. (10)

As explained in the introduction, this approximation issue is actually motivated by the reso-
lution of some SPDEs (with or without jumps) by composition of stochastic flows. Relating
compound SDEs to SPDEs is, in a sense, obvious since it is sufficient to apply an extension
of the Itô-Ventzel’s formula established by B. Øksendal and T. Zhang [OZ07][Theorem 3.1] to
the compound process V (t, y) := Xt(Yt(y)). Under good regularity assumptions on (µ, σ, h),
the quoted result shows that V (t, y) := Xt(Yt(y)) is still a semimartingale, solution of a second
order SPDE, with stochastic coefficients, given by

dV (t, y) =

(
∂yV (t, y) b(t,Yt(y))

∂yYt(y) + 1
2

(
∂2
yV (t, y)− ∂yV (t, y)

∂2
yYt(y)

∂yYt(y)

)
γ2(t,Yt(y))
(∂yYt(y))2

+µ(t, V (t, y)) + ∂yV (t, y)(∂xσ)(t, V (t, y))γ(t,Yt(y))
∂yYt(y)

)
dt

+

(
∂yV (t, y)γ(t,Yt(y))

∂yYt(y) + σ(t, V (t, y))

)
dWt

6



+

∫
R

(
V̄ (t, y, e)− V (t, y)− h(t, V (t, y), e)− ∂yV (t, y)

∂yYt(y)
g(t, Yt(y), e

)
λ(t)ν(de)dt

+

∫
R

(
V̄ (t, y, e)− V (t−, y)

)
Ñ(dt, de).

Where, to simplify we have taken d = q = q′ = 1 and W = B and we have used the fact that
V (t−, z) = Xt−(Yt−(z)) and the notation

V̄ (t, y, e) := Xt−
(
Yt−(y) + g(t, Yt−(y), e)

)
+ h(t, Yt−(y) + g(t, Yt−(y), e)).

V̄ (t, ., e) corresponds to V (t, .) after a jump on (t, e) which is the compound of Xt−(.) +
h(t,Xt−(.), e) corresponding to X after a jump on (t, e) and Yt−(.)+g(t, Yt−(.), e) corresponding
to Y after a jump at the same time for the same mark e.

In the reverse direction, i.e., linking SPDE with SDEs is not obvious but it is possible in
the cases considered by H. Kunita [Kun97, Chapter 6] and utility-SPDEs of [EM13, MM20], see
Section 4 below.

3.2 Preliminary results

In the following we will often need to control in Lp-norms of a d-dimensional semimartingales
Zt = (Z1

t , Z
2
t , . . . , Z

d
t ) solutions of a stochastic differential equation of the following form

Zit = zi +

∫ t

0
bisds+

m∑
j=1

∫ t

0
f i,jdŴ j

s +

∫ t

0

∫
Rq′

gi(s, e)Ñ(dt, de). (11)

where Ŵ be a m-dimensional brownian motion and Z0 = z ∈ Rd. To do, we use the following
result established in [Kun04, Theorem 2.11]

Theorem 3. For any p ≥ 2, there exists a positive constant Cp such that

E
[

sup
0<s≤t

|Zs|p
]
≤ Cp

{
|z|p + E

[( ∫ t

0
|bs|ds

)p]
+ E

[( ∫ t

0
|fs|2ds

) p
2

]
+E
[( ∫ t

0

∫
Rq′
|g(s, e)|2ν(de)ds

) p
2

]
+ E

[ ∫ t

0

∫
Rq′
|g(s, e)|pν(de)ds

]}
.

In this work, the aim is not to improve the simulation methods or to propose a new scheme for
SDEs with jumps or to work in the most general framework possible, see for example [PrTa97],
[BrPl07], [MS08] and [KoTa10] and their references. Here we study the convergence of the
compound of two numerical schemes. Our results show that it is enough to approximate the
solutions of two SDEs to obtain an approximation of the solution of a SPDE. What is interesting
in this work is the convergence result and particularly the rate of convergence which we obtain
for the SPDE from those of the two SDEs. At the same time this avoids us to directly discretize
this class of equations, which requires inevitably to approximate Uz(t, z) and Uzz(t, z), using a
finite differences method for example, which requires the resolution in the full space (or on a
grid in z). This is computationally demanding. In addition, it seems really difficult to obtain
error estimates in that context. To simplify the presentation, we will assume in the following
that ν(Rq′) <∞ which implies, by the Jenssen inequality

E
[( ∫ t

0

∫
Rq′
|g(s, e)|2ν(de)ds

) p
2

]
≤ t

p
2
−1[ν(Rq

′
)]
p
2
−1E

[ ∫ t

0

∫
Rq′
|g(s, e)|pν(de)ds

]
.

So a particular case of this last result is the following Corollary, useful in the sequel.
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Corollary 2. Assume ν(Rq′) <∞, then for any p ≥ 2, there exists a positive constant Cp such
that the solution Z of (11) satisfies

E
[

sup
0<s≤t

|Zs|p
]
≤ Cp

{
|z|p + E

[( ∫ t

0
|bs|ds

)p]
+ E

[( ∫ t

0
|fs|2ds

) p
2

]
+E
[ ∫ t

0

∫
Rq′
|g(s, e)|pν(de)ds

]}
.

To obtain more precise estimates, which are necessary for our study, we need to specify the
regularity assumptions on the SDE’s coefficients.

3.3 Assumptions

For the rest of the paper, the process X plays the role of the random field F in Theorem 1. It
must therefore verify most of the assumptions of this result, namely (H1-H2-H3) and for this,
we state related assumptions on the Rd-valued drift coefficient µ = {µ(t, x); t ∈ [0, T ], x ∈ Rd},
the Rd×q-valued diffusion coefficient σ = {σi(t, x); 1 ≤ i ≤ q, t ∈ [0, T ], x ∈ Rd} and the Rd×q′-
jump coefficient h = {hi(t, x, e); 1 ≤ i ≤ q, t ∈ [0, T ], x ∈ Rd, e ∈ Rq′} which we suppose to be
regular enough in time and space. When we will discuss on approximation of X(Y ), similar
assumptions will be made on the coefficients b and γi of Equation (9) for Y .

(HP1) The coefficients µ, σ and h are Lipschitz continuous with respect to the space variable
x, uniformly in time. More precisely, there exist positive constants CX and CX(e) such
that for any t ∈ [0, T ], x, y ∈ Rd and e ∈ R

|µ(t, x)− µ(t, y)| ≤ CX |x− y|, |µ(t, 0)| ≤ CX ,
|σ(t, x)− σ(t, y)| ≤ CX |x− y|, |σ(t, 0)| ≤ CX ,
|h(t, x, e)− h(t, y, e)| ≤ CX(e)|x− y|, |h(t, 0, e)| ≤ CX(e),

(HP1)

where, the constant CX(e) satisfies
∫
Rq′ [C

X(e)]pν(de) <∞, ∀p ≥ 2.

(HP2) µ, σ and h are continuously differentiable with respect to the space variable x such that
their derivatives ∇xµ := {∇xµ(t, x); t ∈ [0, T ], x ∈ Rd}, ∇xσ = {∇xσi(t, x); 1 ≤ i ≤ q, t ∈
[0, T ], x ∈ Rd} and ∇xh := {∇xh(t, x, e); t ∈ [0, T ], x ∈ Rd, e ∈ Rq′} are δ-Hölder for a
certain exponent δ ∈ (0, 1]. Namely, there exist positive constants CX,∇ and CX,∇(e) such
that for any t ∈ [0, T ], x, y ∈ Rd and e ∈ Rq′

|∇xµ(t, x)−∇xµ(t, y)| ≤ CX,∇|x− y|δ, |∇xµ(t, x)| ≤ CX,∇,
|∇xσ(t, x)−∇xσ(t, y)| ≤ CX,∇|x− y|δ, |∇xσ(t, x)| ≤ CX,∇,
|∇xh(t, x, e)−∇xh(t, y, e)| ≤ CX,∇(e)|x− y|δ, |∇xh(t, x, e)| ≤ CX,∇(e),

(HP2)

with
∫
Rq′ [C

X,∇(e)]pν(de) <∞, ∀p ≥ 2.

(HP3) µ, σ and h are Hölder continuous in time, locally in space, i.e. there exists an exponent
α ∈ (0, 1] and a positive constants CX and CX(e)

( ∫
Rq′ C

X(e)pν(de) <∞, ∀p ≥ 2
)
, such

that for any x ∈ Rd, e ∈ R and s, t ∈ [0, T ]{
|µ(t, x)− µ(s, x)|+ |σ(t, x)− σ(s, x)| ≤ CX(1 + |x|)|t− s|α.
|h(t, x, e)− h(s, x, e)| ≤ CX(e)(1 + |x|)|t− s|α. (HP3)
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(HP4) ∇xµ, ∇xσ and ∇xh are Hölder continuous in time, locally in space, i.e. there exists an
exponent α ∈ (0, 1], such that for any x ∈ Rd, e ∈ R and s, t ∈ [0, T ]{

|∇xµ(t, x)−∇xµ(s, x)|+ |∇xσ(t, x)−∇xσ(s, x)| ≤ CX,∇(1 + |x|)|t− s|α.
|∇xh(t, x, e)−∇xh(s, x, e)| ≤ CX,∇(e)(1 + |x|)|t− s|α. (HP4)

Assumption (HP1) ensures the existence of a strong solution to the SDE(µ, σ, h,W,N) [Kun04,
Theorem 3.1] and plays a crucial role to establish a Lp-estimates. It is also well-known [Kun04,
Theorem 3.2] combined with Kolmogorov-Totoki’s Theorem [Kun04, Theorem 4.1], that the
map (t, x) 7→ Xt(ω, x) has a modification X ′ such that for any x it is càdlàg with respect to t
and for any t it is continuous in x a.s., we shall systematically work with this modification from
now on. Assumption (HP2) is a sufficient condition (see [Kun04, Theorem 3.4]) under which
the above map is C1 in x. Assumptions (HP3) and (HP4) enable us, essentially, to establish
convergence results of the Euler discretization scheme within the paper setting.

3.4 SDE: differentiability, local and uniform estimates

To analyze the approximation of the compound maps X ◦ Y , precise estimates on the maps
x 7→ Xt(ω, x) are needed: Such random fields are also called stochastic flows and are the main
subject of Kunita’s book and papers [Kun97, Kun04, FuKun85], see also [Kun97, Chapter 3 and
4] for framework without jumps. As aforementioned, under (HP1), the map (t, x) 7→ Xt(ω, x)
has a good modification, continuous with respect to the spatial paramter [Kun04, Theorem
3.2], we are working with. The additional space regularity is connected to the regularity
of the coefficients (µ, σ, h) as it is shown in [Kun04, Theorem 3.4]. Indeed, under Assump-
tions (HP1) and (HP2), the strong solution Xt(x) to (8) is continuously differentiable in
space and its derivative denoted by ∇Xt(x) is locally ε-Hölder1 for any ε < δ. Further-
more, it is a semimartingale solution of a linear equation, with bounded stochastic parameters
(∇xµ(t,Xt(x)),∇xσ(t,Xt(x)),∇xh(t,Xt(x), e)) given by

d∇Xt(x) = ∇xµ(t,Xt(x))∇Xt(x)dt+

q∑
i=1

∇xσi(t,Xt(x))∇Xt(x)dW i
t

+

∫
R
∇xh(t,Xt−(x), e)∇Xt−(x)Ñ(dt, de), (12)

∇X0(x) = Id.

We now proceed to Lp-estimates of Xt(x) and its derivative ∇xXt(x). We collect several useful
results, some of them are showed in the literature, in the following Proposition.

Proposition 1. Assume (HP1). For any p > 0, there exist generic constants Cp,(13) and Cp,(14)

such that

‖Xt(x)‖Lp ≤ Cp,(13)(1 + |x|), (13)

‖Xt(x)−Xt(y)‖Lp ≤ Cp,(14)|x− y|, (14)

for any (t, x, y) ∈ [0, T ]×Rd ×Rd. In addition under (HP2), for any p > 0 there exist generic
constants Cp,(15) and Cp,(16) such that

‖∇Xt(x)‖Lp ≤ Cp,(15), (15)

1That is for any compact K of Rd there exists a finite positive random variable C(K) such that for any x, y ∈ K
we have |∇Xt(x, ω)−∇Xt(y, ω)| ≤ C(K,ω)|x− y|ε a.s., see [Kun04, Theorem 3.3] for details .
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‖∇Xt(x)−∇Xt(y)‖Lp ≤ Cp,(16)|x− y|δ (16)

for any (t, x, y) ∈ [0, T ]× Rd × Rd.

Proof. The proofs of inequalities (13) and (14) are given by Theorem 3.2 of Kunita’s paper
[Kun04]. The uniform estimate (15) is also easy to obtain, in view of (12) and owing to the
boundedness of ∇xµ, ∇xσi and ∇xh, we leave the details to the reader.

Let show (16) under (HP2). For simplicity, we provide the proof when d = q = 1, the
general case being similar. Also, we focus on the case p ≥ 2 since we can deduce the result for
p < 2 using the stability of Lp-norm2 combined with the result for p = 2. First, from (12) write

∇Xt(x)−∇Xt(y) =

∫ t

0

(
∇xµ(s,Xs(x))∇Xs(x)−∇xµ(s,Xs(y))∇Xs(y)

)
ds

+

∫ t

0

(
∇xσ(s,Xs(x))∇Xs(x)−∇xσ(s,Xs(y))∇Xs(y)

)
dWs

+

∫ t

0

∫
R

(
∇xh(s,Xs−(x), e)∇Xs−(x)−∇xh(s,Xs−(y), e)∇Xs−(y)

)
Ñ(ds, de).

Take the power p and the expectation, and apply Corollary 2, we get for some constante Cp,

E
[
|∇Xt(x)−∇Xt(y)|p

]
≤ Cp

{
E
[( ∫ t

0
|∇xµ(s,Xs(x))∇Xs(x)−∇xµ(s,Xs(y))∇Xs(y)|ds

)p]
+E
[( ∫ t

0
|∇xσ(s,Xs(x))∇Xs(x)−∇xσ(s,Xs(y))∇Xs(y)|2ds

) p
2

]
+E
[ ∫ t

0

∫
R
|∇xh(s,Xs−(x), e)∇Xs−(x)−∇xh(s,Xs−(y), e)∇Xs−(y)|pν(de)ds

]}
. (17)

Now write,

∇xµ(s,Xs(x))∇Xs(x)−∇xµ(s,Xs(y))∇Xs(y) = ∇xµ(s,Xs(x))
(
∇Xs(x)−∇Xs(y)

)
+

(
∇xµ(s,Xs(s))−∇xµ(s,Xs(y))

)
∇Xs(y).

Then applying twice the Jenssen inequality, one gets

E
[( ∫ t

0
|∇xµ(s,Xs(x))∇Xs(x)−∇xµ(s,Xs(y))∇Xs(y)|ds

)p]
≤ 2p−1tp−1

{∫ t

0
E
[
|∇xµ(s,Xs(x))

(
∇Xs(x)−∇Xs(y)

)
|p
]
ds

+

∫ t

0
E
[
|
(
∇xµ(s,Xs(s))−∇xµ(s,Xs(y))

)
∇Xs(y)|p

]
ds
}
.

Now, take advantage of the Assumptions (HP1) and (HP2), together with the estimates (14)
and (15): it readily follows that

E
[( ∫ t

0
|∇xµ(s,Xs(x))∇Xs(x)−∇xµ(s,Xs(y))∇Xs(y)|ds

)p]
≤ 2p−1T p−1[CX,∇]p

{∫ t

0
E
[
|∇Xs(x)−∇Xs(y)|p

]
ds+ TCp,(15)C

pδ
pδ,(14)|x− y|

pδ
}
. (18)

2It writes ‖Z‖Lp
≤ ‖Z‖Lq

for any 0 < p ≤ q.
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The same reasoning and Assumptions lead us to deduce that

E
[( ∫ t

0
|∇xσ(s,Xs(x))∇Xs(x)−∇xσ(s,Xs(y))∇Xs(y)|2ds

) p
2

]
≤ 2p−1T

p
2
−1[CX,∇]p

{∫ t

0
E
[
|∇Xs(x)−∇Xs(y)|p

]
ds+ TCp,(15)C

pδ
pδ,(14)|x− y|

pδ
}
. (19)

and

E
[ ∫ t

0

∫
R
|∇xh(t,Xt−(x), e)∇Xt−(x)−∇xh(t,Xt−(y), e)∇Xt−(y)|pν(de)ds

]
≤ 2p−1T p−1

( ∫
R[CX,∇(e)]pν(de)

){∫ t

0
E
[
|∇Xs(x)−∇Xs(y)|p

]
ds+ TCp,(15)C

pδ
pδ,(14)|x− y|

pδ
}
.(20)

Injecting (18),(19) and (20) in (17), the quantity ι(t) := E (|∇Xt(x)−∇Xt(y)|p) satisfies
ι(t) ≤ Cp,1(T )

(∫ t

0
ι(s)ds+ Cp,2(T )|x− y|pδ

)
,

Cp,1(T ) := 2p−1CpT
p/2−1

(
[CX,∇]p(1 + T p/2) +

∫
R

[CX,∇(e)]pν(de)
)
,

Cp,2(T ) := TCp,(15)C
pδ
pδ,(14).

The estimate (16) is then a direct consequence of Gronwall’s lemma.

We now combine Theorem 2 , Corollary 1 with Proposition 1 to put the sup over the space
variable inside the expectation in Proposition 1. This is the following assertion, which is a new
result to our knowledge.

Theorem 4. Let Assumption (HP1) holds. For any p > 0 and any β ∈ (0, 1), there exist
generic constants Cp,(21) and Cp,(22) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(21)λ, ∀λ ≥ 1, (21)∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(22)λ
1−β, ∀λ ≥ 1. (22)

If in addition (HP2) is satisfied. For any p > 0 and any β ∈ (0, δ), there exist generic constants
Cp,(23), Cp,(24) and Cp,(25) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|∇Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(23)λ
δ, ∀λ ≥ 1, (23)∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|∇Xt(x)−∇Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(24)λ
δ−β, ∀λ ≥ 1, (24)∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|

∥∥∥∥∥
Lp

≤ Cp,(25)λ
δ, ∀λ ≥ 1. (25)

Observe that the additional smoothness in (HP2) enables us to improve (22) (for β < 1) to
(25) (i.e. β = 1): this improvement will play an important role in the derivation of our main
Theorem 5, with the optimal convergence order β.
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Proof. Let β ∈ (0, 1): We first show (21) and (22) for any p > d/(1 − β) > d. Owing to (14),
we can apply Theorem 2 to G(x) := Xt(x) with β(G) = 1 ∈ (d/p, 1] and τ (G) = 0, to conclude
that (22) holds with the given index β since β < 1 − d/p ⇔ p > d/(1 − β). Moreover the
application of Corollary 1 provides (21). Now we relax the constraint on p: for p ≤ d/(1− β),
set p̄ = 2d/(1− β) for which (22) holds and use the stability property of Lp-norm to write∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤

∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp̄

≤ Cp̄,(22)λ
1−β.

The same arguments apply to prove that (21) holds for any p > 0.
The justification of (23) and (24) follows the same arguments as above, using (16) instead

of (14): then Corollary 1 and Theorem 2 can be applied to G(x) := ∇Xt(x) with β(G) = δ and
τ (G) = 0. We leave the details to the reader.

Last, observe that for any x, y such that |x| ≤ λ and |y| ≤ λ, we have |Xt(x) − Xt(y)| ≤
sup|z|≤λ |∇Xt(z)| |y − x|: thus, (25) readily follows from (23).

Remark 3.1. As a direct consequence of this Theorem: If the coefficients of X satisfy (HP1)
and (HP3), then

1. Assumption (H1) is satisfied with C
(H1)
p := Cp,(21) and α

(H1)
p := 1 in view of Theorem 4.

2. Assumption (H2) is satisfied for any given κ ∈ (0, 1) with C
(H2)
p := Cp,(22) (depending on

κ) and α
(H2)
p := 1− κ.

Before stating our main result, it remains to show Assumptions (H2−H3), but for that we
need first to introduce the Euler schemes and study their local and uniform estimates.

3.5 Compound Euler schemes: Main result

In order to give the Euler scheme, we first expose how to simulate the integral with respect to
the Lévy measure. We follow the presentation of [MS08].

Simulation of the integral with respect to the poisson random measure Consider a
sequence e1, e2, . . . of independent random variables with common exponential distribution with
parameter 1. Define

Λ(t) =

∫ t

0
λ(s)ds, t ∈ [0, T ].

The number of jumps of the random Poisson measure Ñ(dt, de) in an interval [0, t] is determined
as

J(t) = max{
k∑
j=1

ej ≤ Λ(t)},

and the total number of jumps in [0, T ] is denoted by J = J(T ). The jump times of the Poisson
measure can be defined by θ0 = 0,

θk = Λ−1(max{
k∑
j=1

ej}), k ∈ J1, JK,
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and can be computed recursively by

ek =

∫ θk

θk−1

λ(s)ds, k ∈ J1, JK.

Once the jump times are computed, we proceed to sample the marks {Ek}, that, conditionally
on the values of the jumps times, are independent random variables distributed respectively
according to {ν(de)}. The random measure with intensity λ(t)dt×ν(de) can then be constructed
as

N(dt, de) =
J∑
k=1

δ(θk,Ek)(dt, de)

and, consequently, the stochastic integral with respect to the Poisson random measure, i.e. the
last term in the SDE (8), can be computed as

∫ t

0

∫
R
h(s,Xs− , e)N(ds, de) =

J(t)∑
k=1

h(θk, Xθ−k
, Ek), t ∈ [0, T ]. (26)

Euler Scheme Let N ≥ 1 and consider the discretization family {t̄i := i TN , i ∈ J0, NK} of
[0, T ]. Consider also the jump times {θk, k ∈ J1, JK} with corresponding marks {Ek, k ∈ J1, JK}
as explained in [MS08]. Consider the augmented partition given by the union

{tl, l ∈ J0, N + JK} := {t̄i := i
T

N
, i ∈ J0, N̄K} ∪ {θk, k ∈ J1, JK} (27)

• Set XN
0 (x) = x.

• For k = 0, . . . , N + J − 1 and t ∈ (tk, tk+1], set

XN
t−(x) = XN

tk
(x) + µ(tk, X

N
tk

(x))(t− tk) +

q∑
i=1

σi(tk, X
N
tk

(x))(W i
t −W i

tk
)

− (t− tk)λ(tk)

∫
R
h(tk, X

N
tk

(x), e)ν(de).

• When tk+1 = θl, we introduce a correction due to jump discontinuities.

XN
tk+1

(x) = XN
t−k+1

(x) + h(θl, X
N
θ−l

(x), El).

It can be equivalently written for any time t ∈ [0, T ]: Denoting by τt := max{k ∈ J0, N +
JK : tk ≤ t} the last discretization-time before t, we have

XN
t (x) = x+

∫ t

0
µ(τs, X

N
τs (x))ds+

q∑
i=1

∫ t

0
σi(τs, X

N
τs (x))dW i

s

+

∫ t

0

∫
R
h(τs, X

N
τ−s
, e)Ñ(ds, de). (28)

Where the last integral is as in (26). Similarly, assume that b, γ and g fulfill (HP1), so that the
strong solution Y to (9) is well defined, together with its Euler scheme Y N .
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Remark 3.2. Here we consider the Euler scheme for the simple reason that it is the simplest
and the best known scheme to discretize an SDE, see fro example [PrTa97] and [BrPl07]3. As
we can read in Theorem 1, the result is true for any approximation considered for F and Θ, but
we have to expect that the convergence rate of the compound of the approximations changes; the
convergence rate for Euler scheme is different from the one of Milstein. It will be interesting
to study what happens if we consider the last one or other scheme, this will be considered in a
forthcoming work.

The rest of the section is devoted to establish the following main result.

Theorem 5 (Main). Assume that (µ, σ, h) satisfies Assumptions (HP1) and (HP3) (which α-
parameter is denoted by αX) and that (b, γ, g) satisfies Assumptions (HP1) and (HP3) (which
α-parameter is denoted by αY ).

Then the compound Euler scheme XN
. (Y N

. ) converges to X.(Y.) in any Lp-norm, at the order
almost equal to β := min(αX , αY , 1

2) w.r.t. N : For any p > 0 and any ρ > 0, there is a finite
constant Cp,ρ such that for any s, t ∈ [0, T ],∥∥XN

t (Y N
s )−Xt(Ys)

∥∥
Lp
≤ Cp,ρN−β+ρ, ∀N ≥ 1.

Assume additionally that (µ, σ, h) satisfies Assumptions (HP2) and (HP4) with the α-parameter
equal to αX . Then the above estimate holds true with ρ = 0, i.e. XN

. (Y N
. ) converges to X.(Y.)

in any Lp-norm at the optimal order β.

3.6 Proof of Theorem 5

The proof of this result requires several intermediate results, some of them being completely new
(Theorems 4 and 7 and Proposition 3). Since Theorem 4 above implies (H1)-(H2) (see Remark
3.1), we seek to prove that Assumptions (H3)-(H4-a) are also satisfied if that of Theorem 5
hold true.
Throughout this proof, we will make use of different constants that may depend on the integer
p of Lp-norm, on the dimensions d and q, on the time horizon T and on the constants from the
assumptions: These constants will be called generic constant and will be denoted by the same
notation Cp even if their values change from line to line. They will not depend on N .

We denote by CBDG
p the constant of the upper Burkholder’s inequality with Lp-norm, see

Ikeda-Watanabe [IkWa81].

3.6.1 Euler scheme: local and uniform estimates

In order to prove Theorem 5, we partly generalize the previous results about the SDE to its Euler
approximation. Some derivations are more subtle and require details at some places. Recall the
definition of Euler scheme in (28).

First, as for the solution of the SDE(µ, σ), some estimates for its approximation scheme are
needed. This is the analogue of Proposition 1 given in the first statement of the next Proposition.
Second, using the same arguments than for the SDE case (Theorem 4), we can put the sup over
the space variable inside the Lp-norm to derive the second statement of the following result.

Proposition 2. Let (HP1) hold true.

3The paper [BrPl07] is a survey of strong discrete time approximations of jump-diffusion processes described
by SDEs.
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(i) For any p > 0 there exist generic constants Cp,(29) and Cp,(30) such that∥∥XN
t (x)

∥∥
Lp
≤ Cp,(29)(1 + |x|), (29)∥∥XN

t (x)−XN
t (y)

∥∥
Lp
≤ Cp,(30)|x− y|, (30)

for any (t, x, y) ∈ [0, T ]× Rd × Rd.

(ii) The estimates (21) and (22) where we replace X by XN hold true, up to changing the
generic constants.

We omit the proof which is quite standard, see that of Theorem 3.2 of Kunita’s paper
[Kun04]. Let us now show the following estimates on local increments, it will be needed for the
sequel.

Lemma 1. Let Assumption (HP1) holds and let p > 0. Then there exist generic constants
Cp,(31) and Cp,(32) such that, for any x, y ∈ Rd and any t ∈ [0, T ],∥∥∥∥ sup

τt≤u≤t
|XN

u (x)−XN
τu(x)|

∥∥∥∥
Lp

≤ Cp,(31)
(1 + |x|)
N1/2

, (31)∥∥∥∥ sup
τt≤u≤t

|XN
u (x)−XN

u (y)−XN
τu(x) +XN

τu(y)|
∥∥∥∥
Lp

≤ Cp,(32)
|x− y|
N1/2

. (32)

Since maxt∈[0,T ] |t− τt| = T
N , see (27).

Proof. Here again, it is enough to prove the estimates for p ≥ 2, which we assume from now on.
Also we take d = q = q′ = 1 to simplify the exposition. In order to have an accurate estimate, we
do not use Corollary 2 as in the proof of Proposition 1, but Burkholder-Davis-Gundy’s inequality
combined with Jensen’s inequality, and the fact that λ(t) ≤ λmax, ∀t ∈ [0, T ]. We obtain

E
(

sup
τt≤u≤t

|XN
u (x)−XN

τu(x)|p
)
≤ 3p−1

{
(t− τt)p−1

∫ t

τt

E
(
|µ(τs, X

N
τs (x))|p

)
ds

+ (t− τt)p/2−1[CBDG
p ]p

[ ∫ t

τt

E
(
|σ(τs, X

N
τs (x))|p

)
ds

+ λmax

∫ t

τt

∫
R
E
(
|h(τs, Xτ−s

, e)|p
)
dsν(de)

]}
.

According to Assumption (HP1), it follows that for any t ∈ [0, T ] ,{
|µ(t, x)|+ |σ(t, x)| ≤ CX(1 + |x|) (33)

|h(t, x, e)| ≤ CX(e)(1 + |x|) (34)

combined with (29), we deduce

E
(

sup
τt≤u≤t

|XN
u (x)−XN

τu(x)|p
)
≤ 3p−1(CX)p

(
(t− τt)p2p−1(1 + Cpp,(29)(1 + |x|)p)

+ [CBDG
p ]p(t− τt)p/22p−1(1 +

[
Cpp,(29) + λmax

∫
R

[CX(e)]pν(de)
]
(1 + |x|)p)

)
which readily leads to the announced estimate (31).
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Let us now turn to the second inequality: The same arguments combined with Assumption
(HP1) and (30) lead to

E
(

sup
τt≤u≤t

|XN
u (x)−XN

u (y)−XN
τu(x) +XN

τu(y)|p
)

≤ 3p−1
{

(t− τt)p−1

∫ t

τt

E
(
|µ(τs, X

N
τs (x))− µ(τs, X

N
τs (y))|p

)
ds

+ [CBDG
p ]p(t− τt)p/2−1

[ ∫ t

τt

E
(
|σ(τs, X

N
τs (x))− σ(τs, X

N
τs (y))|p

)
ds

+

∫ t

τt

∫
R
E
(
|h(τs, Xτ−s

, e)|p
)
dsν(de)

]}
≤ 2p−1(CX)pCpp,(30)

(
(t− τt)p +

(
[CBDG
p ]p + λmax

∫
R

[CX(e)]pν(de)
)
(t− τt)p/2

)
|x− y|p,

which completes the proof since |t− τt| ≤ 1
N , ∀t.

3.6.2 Strong convergence results:

In order to derive a sharp convergence result, we must take into account the temporal regularity,
Assumption (HP3), of the the coefficients µ, σ and h.

Theorem 6. Let Assumptions (HP1) and (HP3) hold and set β = min(α, 1
2). Then, for any

p > 0 there exists a generic constant Cp,(35) such that for any x ∈ Rd∥∥∥∥∥sup
t≤T
|Xt(x)−XN

t (x)|

∥∥∥∥∥
Lp

≤ Cp,(35)
(1 + |x|)
Nβ

. (35)

Furthermore, for any γ < β, the random variables (Nγ supt≤T |Xt −XN
t |)N≥1 converge almost

surely to 0 as N tends to +∞.

Proof. To simplify, as in the previous lemma, we take d = q = q′ = 1. By definition, we have

Xt(x)−XN
t (x) =

∫ t

0

(
µ(s,Xs(x))− µ(τs, X

N
τs (x))

)
ds+

∫ t

0

(
σ(s,Xs(x))− σ(τs, X

N
τs (x))

)
dWs

+

∫ t

0

∫
R

(
h(s,Xs−(x), e)− h(τs, X

N
τ−s

(x), e)
)
Ñ(ds, de).

Take the power p and the expectation, and use Burkholder-Davis-Gundy’s inequality combined
with Jensen’s inequality

E

(
sup
t≤T
|Xt(x)−XN

t (x)|p
)
≤ 3p−1

{
T p−1

∫ T

0
E
(
|µ(s,Xs(x))− µ(τs, X

N
τs (x))|p

)
ds

+ T p/2−1[CBDG
p ]p

[ ∫ T

0
E
(
|σ(s,Xs(x))− σ(τs, X

N
τs (x)))|p

)
ds

+ λmax

∫ T

0

∫
R
E
(
|h(s,Xs−(x), e)− h(τs, X

N
τ−s

(x), e)|p
)
dsν(de)

]}
.

From now, all terms will be treated in the same way. Taking the last and write that

|h(s,Xs−(x), e)− h(τs, X
N
τ−s

(x), e)|p
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= |h(s,Xs−(x), e)− h(s,XN
s−(x), e) + h(s,XN

s−(x), e)− h(τs, X
N
s−(x), e)

+h(τs, X
N
s−(x), e)− h(τs, X

N
τ−s

(x), e)|p

≤ 3p−1
(
|h(s,Xs−(x), e)− h(s,XN

τ−s
(x), e)|p + |h(s,XN

s−(x), e)− h(τs, X
N
s−(x), e)|p

+|h(τs, X
N
s−(x), e)− h(τs, X

N
τ−s

(x), e)|p
)
.

Thanks to (HP1), (HP3), (29) in Proposition 2 and (31) in Lemma 1, one can easily deduce∫ T

0

∫
R
E
(
|h(s,Xs−(x), e)− h(τs, X

N
τ−s

(x), e)|p
)
dsν(de)

≤ 3p−1

∫
R

[CX(e)]pν(de)
[ ∫ T

0

(
E
(
|Xs(x)−XN

s (x)|p
)

+ E
(
(1 + |XN

τ−s
(x)|)p

)
(s− τs)pα

)
ds

+ Cp,(31)
(1 + |x|)p

Np/2

]
≤ 3p−1

∫
R

[CX(e)]pν(de)
[ ∫ T

0

(
E
(
|Xs(x)−XN

s (x)|p
)

+ Cp,(29)
(1 + |x|)p

Npα
+ Cp,(31)

(1 + |x|)p

Np/2

]
≤ Cp

[ ∫ T

0

(
E
(
|Xs(x)−XN

s (x)|p
)

+
1 + |x|
Npβ

]
.

For some generic constant Cp.
By the same reasoning for µ and σ we deduce the existence of a constant Cp such that

E

(
sup
t≤T
|Xt(x)−XN

t (x)|p
)
≤ Cp

(∫ T

0

(
E
(

sup
u≤s
|Xs(x)−XN

s (x)|p
)
ds+

(1 + |x|)p

Npα

)
.

The proof is then achieved by applying the Gronwall’s lemma

This result will be useful in the proof of our main result Theorem 5 (see section 3.6.3), but
unfortunately it is not sufficient at all. In view of Theorem 1 and its assumptions (in particular
(H3)), one should have a sup over |x| ≤ λ inside the Lp-norm. This is the purpose of the next
derivations.

Strong convergence (new results) We now aim at obtaining uniform in space convergence
results. Let us start with an easy result.

Proposition 3. Assume (HP1), (HP3) and let β = min(α, 1
2). For any p > 0 and any

ρ ∈ [0, β], there exists a generic constant Cp,ρ,(36) such that

∥∥Xt(x)−XN
t (x)−Xt(y) +XN

t (y)
∥∥
Lp
≤ Cp,ρ,(36)(1 + |x|+ |y|)1−ρ/β |x− y|ρ/β

Nβ−ρ (36)

for all x, y ∈ Rd and t ∈ [0, T ]. Furthermore, for any p > 0 and any ρ > 0, there exists a generic
constant Cp,ρ,(37) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)−XN

t (x)|

∥∥∥∥∥
Lp

≤
Cp,ρ,(37)

Nβ−ρ λ, ∀λ ≥ 1. (37)
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The proof of this result is identical to that of the [GM18, Theorem 6].
As it is the case for Theorem 6, this result is not sufficient to derive Theorem 5. The next step
is to generalize this two results. By making the best use of the regularity assumptions made
on ∇xµ and ∇xσi (see (HP2) and (HP4)) we now obtain, in the following crucial Theorem,
improved dependency in N by allowing the case ρ = 0.

Theorem 7. Let (HP1), (HP2), (HP3), (HP4) hold and let β = min(α, 1
2). For any p > 0,

there exists a generic constant Cp,(38) such that∥∥∥∥sup
u≤t
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|

∥∥∥∥
Lp

≤ Cp,(38)(1 + |x|+ |y|) |x− y|+ |x− y|
δ

Nβ
(38)

for all x, y ∈ Rd and t ∈ [0, T ]. Furthermore, for any p > 0 there exists a finite generic constant
Cp,(39) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)−XN

t (x)|

∥∥∥∥∥
Lp

≤
Cp,(39)

Nβ
λ2, ∀λ ≥ 1. (39)

Proof. As in the previous proofs, we argue that it is enough to assume p ≥ 2. To alleviate the
presentation, we additionally assume d = q = q′ = 1, the derivation in the general case being
similar. From the dynamics of X and XN , we write

Xt(x)−XN
t (x)−Xt(y) +XN

t (y)

=

∫ t

0

(
µ(s,Xs(x))− µ(τs, X

N
τs (x))− µ(s,Xs(y)) + µ(τs, X

N
τs (y))

)
ds

+

∫ t

0

(
σ(s,Xs(x))− σ(τs, X

N
τs (x))− σ(s,Xs(y)) + σ(τs, X

N
τs (y))

)
dWs

+

∫ t

0

∫
R

(
h(s,Xs−(x), e)− h(τs, X

N
τ−s

(x), e)− h(s,Xs−(y), e) + h(τs, X
N
τ−s

(y), e)
)
Ñ(ds, de)

The same reasoning as in the proof of Proposition 1 leads to

E
(

sup
u≤t
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|p

)
≤ 3p−1tp−1

∫ t

0
E
(∣∣∣µ(s,Xs(x))− µ(τs, X

N
τs (x))− µ(s,Xs(y)) + µ(τs, X

N
τs (y))

∣∣∣p)ds

+ 3p−1[CBDG
p ]ptp/2−1

{
×
∫ t

0
E
(∣∣∣σ(s,Xs(x))− σ(τs, X

N
τs (x))− σ(s,Xs(y)) + σ(τs, X

N
τs (y))

∣∣∣p) ds

× λmax
∫ t

0

∫
R
E
(∣∣∣h(s,Xs(x))− h(τs, X

N
τs (x))− h(s,Xs(y)) + h(τs, X

N
τs (y))

∣∣∣p) ν(de)ds.
}

(40)

The three terms of the right side of above inequality can be treated in the same way, thus we
only detail the computations for the last integral. First write that

h(s,Xs(x), e)− h(τs, X
N
τs (x), e)− h(s,Xs(y), e) + h(τs, X

N
τs (y), e)

= h(s,Xs(x), e)− h(s,XN
s (x), e)− h(s,Xs(y), e) + h(s,XN

s (y), e)
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+ h(s,XN
s (x), e)− h(τs, X

N
τs (x), e)− h(s,XN

s (y), e) + h(τs, X
N
τs (y), e). (41)

Now, we treat the two lines above separately.
1. Denoting by XN,α,x

s := Xs(x) + α(XN
s (x)−Xs(x)

)
for λ ∈ [0, 1], we have

h(s,Xs(x), e)− h(s,XN
s (x), e)− h(s,Xs(y), e) + h(s,XN

s (y), e)

=
(
Xs(x)−XN

s (x)−Xs(y) +XN
s (y)

) ∫ 1

0
∇xh

(
s,XN,α,x

s , e
)
dα

+
(
Xs(y)−XN

s (y)
) ∫ 1

0

(
∇xh(s,XN,α,x

s , e)−∇xh(s,XN,α,y
s , e)

)
dα.

By definition of XN,α,x, using the fact that |∇xh(t, x, e)| ≤ CX,∇(e) and |∇xh(t, x)−∇xh(t, y)| ≤
CX,∇(e)|x−y|δ with

∫
R(CX,∇(e))pν(de) <∞, ∀p ≥ 2; there exists a generic constant Cp (whose

values may change from line to line)∫
R
|h(s,Xs(x), e)− h(s,XN

s (x), e)− h(s,Xs(y), e) + h(s,XN
s (y), e)|pν(de)

≤ Cp
(
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

+ |Xs(y)−XN
s (y)|p

∫ 1

0

∣∣(1− λ)
(
Xs(x)−Xs(y)

)
+ λ
(
XN
s (x)−XN

s (y)
)∣∣δpdλ)

≤ Cp
[
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

+ |Xs(y)−XN
s (y)|p

(
|Xs(x)−Xs(y)|δp + |XN

s (x)−XN
s (y)|δp

)]
where we have used the Minkowsky inequality to handle the dλ-integral and also used the
inequality

(a+ b)γ ≤ 2(γ−1)+ (aγ + bγ) ≤ 2γ (aγ + bγ) , ∀a, b, γ ≥ 0 (42)

Now, we integrate over (s, ω) and apply the Cauchy-Schwarz inequality, to obtain

E
[ ∫ t

0

∫
R
|h(s,Xs(x), e)− h(s,XN

s (x), e)− h(s,Xs(y), e) + h(s,XN
s (y), e)|pν(de)ds

]
≤ Cp

[ ∫ t

0
E
(
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

)
ds

+

∫ t

0

√
E (|Xs(y)−XN

s (y)|2p)
√

E (|Xs(x)−Xs(y)|2δp + |XN
s (x)−XN

s (y)|2δp)ds
]

which rewrites, owing to (14)-(30) and (35),

E
[ ∫ t

0

∫
R
|h(s,Xs(x), e)− h(s,XN

s (x), e)− h(s,Xs(y), e) + h(s,XN
s (y), e)|pν(de)ds

]
≤ Cp

(∫ t

0
E
(
|Xs(x))−XN

s (x)−Xs(y) +XN
s (y)|p

)
ds+

(1 + |y|)p

Nβp
|x− y|δp

)
, (43)

for a new generic constant Cp.
2. Now we focus on the second line of identity (41). Similarly to before, we introduce for
simplicity the notations {

X̃N,α
s (x) := XN

s (x) + α(XN
τs (x)−XN

s (x)) (44)

XN,α
τs (x, y) := XN

τs (x) + α(XN
τs (y)−XN

τs (x)) (45)
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h(s,XN
s (x), e)− h(τs, X

N
τs (x), e)− h(s,XN

s (y), e) + h(τs, X
N
τs (y), e)

= h(s,XN
s (x), e)− h(s,XN

τs (x), e)−
(
h(s,XN

s (y), e)− h(s,XN
τs (y), e)

)
+ h(s,XN

τs (x), e)− h(s,XN
τs (y), e)−

(
h(τs, X

N
τs (x), e)− h(τs, X

N
τs (y), e)

)
=

∫ 1

0
∇xh

(
s, X̃N,α

s (x), e
)
dα(XN

s (x)−XN
τs (x))−

∫ 1

0
∇xh

(
s, X̃N,α

s (y), e
)
dα(XN

s (y)−XN
τs (y))

+

∫ 1

0
∇xh

(
s,XN,α

τs (x, y), e
)
dα(XN

τs (x)−XN
τs (y))−

∫ 1

0
∇xh

(
τs, X

N,α
τs (x, y), e

)
dα(XN

τs (x)−XN
τs (y))

=

∫ 1

0

(
∇xh

(
s, X̃N,α

s (x), e
)
−∇xh

(
s, X̃N,α

s (y), e
))
dα(XN

s (x)−XN
τs (x))

+

∫ 1

0
∇xh

(
s, X̃N,α

s (y), e
)
dα× (XN

s (x)−XN
τs (x)−XN

s (y) +XN
τs (y))

+

∫ 1

0

(
∇xh

(
s,XN,α

τs (x, y), e
)
−∇xh

(
τs, X

N,α
τs (x, y), e

))
dα(XN

τs (x)−XN
τs (y)).

As in the first step of this proof, taking the power p using the fact that |∇xh(t, x, e)| ≤ CX,∇(e)
and |∇xh(t, x)−∇xh(t, y)| ≤ CX,∇(e)|x−y|δ with

∫
R(CX,∇(e))pν(de) <∞, ∀p ≥ 2; there exists

a generic constant Cp such that∫
R
|h(s,XN

s (x), e)− h(τs, X
N
τs (x), e)− h(s,XN

s (y), e) + h(τs, X
N
τs (y), e)|pν(de)

≤ CX,∇
[ ∫ 1

0

∣∣∣(1− λ)(XN
s (x)−XN

s (y)) + λ(XN
τs (x)−XN

τs (y))
∣∣∣δdα|XN

s (x)−XN
τs (x)|

+
∣∣XN

s (x)−XN
τs (x)−XN

s (y) +XN
τs (y)

∣∣
+ |s− τs|α

∫ 1

0

(
1 +

∣∣XN
τs (x) + λ(XN

τs (y)−XN
τs (x))

∣∣)dα∣∣XN
τs (x)−XN

τs (y)
∣∣].

Integrating w.r.t. (s, ω), one can easily gets, for some new generic constant Cp∫ t

0

∫
R
E
(
|h(s,XN

s (x), e)− h(τs, X
N
τs (x), e)− h(s,XN

s (y), e) + h(τs, X
N
τs (y), e)|p

)
ν(de)ds

≤ Cp

[∫ t

0

(√
E (|XN

s (x)−XN
s (y)|2pδ) +

√
E
(
|XN

τs (x)−XN
τs (y))|2pδ

))
×
√

E
(
|XN

s (x)−XN
τs (x)|2p

)
ds

+

∫ t

0
E
(
|XN

s (x)−XN
τs (x)−XN

s (y) +XN
τs (y)

∣∣p) ds

+
1

Nαp

∫ t

0

(
1 +

√
E
(
|XN

τs (x)|2p
)

+
√
E
(
|XN

τs (y)|2p
))√

E
(
|XN

τs (x)−XN
τs (y)

∣∣2p)ds

]
.

From results of Proposition 2 and Lemma 1, there is a new constant Cp such that

E
[ ∫ t

0

∫
R
|h(s,XN

s (x), e)− h(τs, X
N
τs (x), e)− h(s,XN

s (y), e) + h(τs, X
N
τs (y), e)|pν(de)ds

]
≤ Cp

( |x− y|pδ
Np/2

(1 + |x|)p +
|x− y|p

Np/2
+
|x− y|p

Nαp
(1 + |x|p + |y|p)

)
≤ Cp(1 + |x|+ |y|)p |x− y|

p + |x− y|δp

Nβp
. (46)
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Thus, (41), (43) combined with (46) lead to

E
[ ∫ t

0

∫
R
|h(s,XN

s (x), e)− h(τs, X
N
τs (x), e)− h(s,XN

s (y), e) + h(τs, X
N
τs (y), e)|pν(de)ds

]
≤ Cp

[ ∫ t

0
E
(
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

)
ds+ (1 + |x|+ |y|)p |x− y|

p + |x− y|δp

Nβp

]
,

(47)

where Cp is a new constant. The same estimates hold for µ and σ instead of h. Hence, plugging
the above into (40), we obtain the existence of generic constants Cp such that

E
(

sup
u≤t
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|p

)
≤ Cp

[ ∫ t

0
E
(

sup
u≤s
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|p

)
ds

+ (1 + |x|+ |y|)p |x− y|
p + |x− y|δp

Nβp

]
≤ Cp(1 + |x|+ |y|)p |x− y|

p + |x− y|δp

Nβp
,

where the last inequality follows from Gronwall’s Lemma; the proof of (38) is complete.
Let us now deduce (39) from (38) by applying Corollary 1 with G(x) := Xt(x)−XN

t (x). From
(38) we have

‖G(x)−G(y)‖Lp ≤ Cp,(38)(1 + |x|+ |y|) |x− y|+ |x− y|
δ

Nβ

≤ 2Cp,(38)(1 + |x|+ |y|)2−δ |x− y|δ

Nβ
,

using |x− y|+ |x− y|δ = |x− y|δ(1 + |x− y|1−δ) ≤ 2|x− y|δ(1 + |x|+ |y|)1−δ. Thus, we can take
C(G) = 2Cp,(38)/N

β, τ (G) = 2 − δ and β(G) = δ provided that δ ∈ (d/p, 1], which is true for p
large enough. We conclude as for the proof of (37).

We now have all the necessary elements to finalize the proof of our main result.

3.6.3 Proof of Theorem 5

We now carefully apply Theorem 1 with F (ω, x) := Xt(ω, x), FN (ω, x) := XN
t (ω, x), Θ :=

Ys(ω, y) and ΘN := Y N
s (ω, y).

(a) If the coefficients of X and Y satisfy (HP1) and (HP3).

1. As it is highlighted in Remark 3.1, Assumption (H1) is satisfied with C
(H1)
p := Cp,(21)

and α
(H1)
p := 1 (in view of Theorem 4) and (H2) is also satisfied for any given

κ ∈ (0, 1) with C
(H2)
p := Cp,(22) (depending on κ) and α

(H2)
p := 1− κ.

2. (H3) is valid owing to Proposition 3 where, for any given ρ > 0, we take ε
N,(H3)
p :=

Cp,ρ,(37)

NβX−ρ (with βX := min(αX , 1
2)) and α

(H3)
p := 1.

3. Finally, (H4) is clearly true using Propositions 1 and 2 applied to Y instead of X,

which yields C
(H4-a)
p := max(Cp,(13), Cp,(29))(1 + |y|). and Theorem 6, applied to Y

and Y N , which gives ε
N,(H4-b)
p :=

Cp,(35)

NβY
(1 + |y|) with βY := min(αY , 1

2).
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Thus, for any given κ ∈ (0, 1) and ρ > 0, Theorem 1 gives∥∥XN
t (Y N

s )−Xt(Ys)
∥∥
Lp

= O(N−κβ
Y

+N−β
X+ρ),

thus the announced result.

(b) If in addition to the first case, the coefficients of X satisfy (HP2) and (HP4). Assumption
(H1) and (H4) are still valid. Assumption (H2) is satisfied with κ = 1 thanks to (25).
Assumptions (H3) holds as in the previous case, but now with ρ = 0 owing to Theorem
7. The rest of the proof is unchanged, we are done.

4 Approximation of utility-SPDE

Our goal now is to apply the results of the previous section to the numerical approximation of
the solution of the utility-SPDE (1). From (3), the marginal utility is the composition of two
stochastic flows,

Uz(t, z) = Xt

(
uz(0, ξt(z))

)
, U(0, z) = u(0, z) (48)

ξt(z) := Y −1
t (z) denotes the inverse flow of y 7→ Yt(y). We assume that X and Y are two

scalar SDEs with coefficients (µ, σ, h) and (b, γ, g) respectively, driven by the same q-dimensional
Brownian motion B and the same Lévy measure (for simplicity we take λ(t) = 1 for any t ). Our
aim is to give an approximation of Uz, using the results like those of Theorem 5. For this, one
last difficulty remains to be overcome: How to invert Y ? We have identified four approaches for
computing the inverse flow: (a) as an inverse of a random function; (b) as a forward in time
SPDE; (c) as a forward in time SDE with stochastic coefficients; (d) as a backward in time
SDE with standard coefficients.

In our paper [GM18], we have discussed these different approaches in detail (see [GM18,
Section 4]) and we have exposed the main difficulties of each method. The simplest, most
efficient and less expensive is the backward method. Without going into detail, this is the
method we will adopt here.

Inverse flow as a backward in time SDE with standard coefficients. This approach
asks to consider the dynamics of ξs,t(x) in the variable s: doing so, we aim at computing the
inverse of Y backward in time instead of forward in time. This approach relies on the following
key result.

Theorem 8 ([Kun04, Theorems 3.11 and 3.13 ]). Suppose the coefficients b, γ and g of the SDE
(9) satisfy (HP1), (HP2). Assume further that the maps φ(t, ., e) : y 7→ y + g(t, y, e);Rd → Rd
are homeomorphic with I +∇g(t, y, e) is invertible for any y a.e (t, e).

(i) Then the solution Y defines a stochastic flow of C1-diffeomorphisms.

(ii) If in addition the inverse maps ψ(t, ., e) of φ(t, ., e) satisfy (HP1) and γ ∈ C2,1 in (t, x).
Denote k(t, z, e) = z − ψ(t, z, e) and assume that

∫
R |k(t, z, e)− g(t, z, e)|ν(de) is bounded.

Then the inverse flow ξ satisfies the following backward SDE
dξs,t(z) =

[
b(s, ξs,t(z))− ∂xγ(s, ξs,t(z)) · γ(s, ξs,t(z)−

∫
R
g(s, ξs,t(z), e)ν(de)

]
d̂s

+γ(t, ξs,t(z)) · d
←−
B s +

∫
R
k(s, ξs,t(z), e)N(d̂s, de), (49)

ξt,t(z) = z.
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The notations d̂s and
←−
B s are to remind that the integrals must be considered in a backward way.

With this result in hand, the approximation of ξs,t is made possible simply using a standard
Euler scheme like for XN . Using similar notations to those of Section 3.5: for N ≥ 1, we consider
the discretization family {t̄i := i TN , i ∈ J0, NK} of [0, T ], the jump times {θk, k ∈ J1, JK} with
corresponding marks {Ek, k ∈ J1, JK} and finally the augmented partition

PN := {tl, l ∈ J0, N + JK} := {t̄i := i
T

N
, i ∈ J0, N̄K} ∪ {θk, k ∈ J1, JK}

• Set ξNt,t(z) = z. If t ∈ {θk, k ∈ J1, JK}, set ξNt−,t(z) = z − k(t, z, Et) else ξNt−,t(z) = z.

- Let tkN be defined as sup{tk ∈ PN : tk < t};

- For s ∈ (tkN , t], set.

ξNs,t(z) = ξNt−,t − γ(t, ξNt−,t(z)) · (Bt −Bs) (50)

−
[
b(t, ξNt−,t(z))− ∂zγ(t, ξNt−,t(z)) · γ(t, ξNt−,t(z))−

∫
R
g(t, ξNt−,t(z), e)ν(de)

]
(t− s).

• For l ≤ kN ,

- if tl ∈ {θk, k ∈ J1, JK} set ξN
t−l ,t

(z) = ξNtl,t(z)− k(tl, ξ
N
tl,t

(z), Etl) else ξN
t−l ,t

(z) = ξNtl,t(z)

- and for s ∈ [t(l−1), tl[

ξNs,t(z) = ξN
t−l ,t

(z)− γ(tl, ξ
N
t−l ,t

(z)) · (Btl −Bs) (51)

−
[
b(tl, ξ

N
t−l ,t

(z))− ∂xγ(tl, ξ
N
t−l ,t

(z)) · γ(tl, ξ
N
t−l ,t

(z))−
∫
R
g(tl, ξ

N
t−l ,t

(z), e)ν(de)
]
(tl − s).

Observe in (50) that as a difference with the usual Euler scheme, the first time step may be
smaller than T/N (instead of equal to): this choice has the slight advantage to simplify the
overall numerical scheme since we use the same Brownian increments for both XN

0,t and ξN0,t.
Also, the fact that the two Euler schemes are built with the same Brownian motion (actually
one is the time-reversal of the other) justifies the need for a general result like Theorems 1 and
5, available for arbitrary dependency in F and Θ.

Theorem 9. Assume the coefficients (µ, σ, h) of X to satisfy (HP1)-(HP2)-(HP3)-(HP4)
(which α-parameter is denoted by αX) and the coefficients (b − ∂xγ · γ −

∫
gν(de), γ, k) of ξ.,t

satisfy Assumptions (HP1)-(HP3) (which α-parameter is denoted by αY ). Denote by XN
0,. the

Euler approximation associated to X0,., with time step T/N , and by ξN.,t the Euler approximation
of the inverse flow ξ.,t of Y , with time step T/N , according to (50)-(??).
Then, for any concave function u with Lipschitz marginal utility uz, the compound Euler scheme
XN
. (uz(ξ

N
. )) converges to Uz(., .) (solution to the SPDE of the form (1)) in any Lp-norm, at

the order β := min(αX , αY , 1
2) w.r.t. N : For any p > 0 and any t ∈ [0, T ],∥∥XN

0,t(uz(ξ
N
0,t(z)))− Uz(t, z)

∥∥
Lp

= O(N−β).

The proof of this result is obvious. Without the function uz, it would be a direct application
of Theorem 5. However, since uz is Lipschitz, we easily check the estimates are unchanged.
Now having an accurate approximation of Uz(t, z) using two Euler schemes (with computational
cost equal to 2N), we can easily retrieve U(t, z) by standard numerical integration, using a
known value, in general the utility of a zero wealth is equal to zero at any time, i.e., U(t, 0) = 0.
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Conclusion: Numerical approximation of the solution of a stochastic PDE is not an easy
task; it requires a lot of heavy computations because we have to discretize the solution and its
derivatives using a finite differences method for example, which requires the resolution in the
full space (or on a grid in z). This makes it extremely difficult to obtain strong convergence
results. In this work as well as in [GM18], we have shown that we can proceed otherwise in
some situations where we can represent the solution as the compound of two random fields. In
this case, the simplest scheme to approximate the SPDE’s solution is the compound of the two
schemes approximating X and Y . The key point in our study is the regularity of X with respect
to its initial condition. It is this regularity, generally not considered too much in the literature,
that allowed us to obtain the strong convergence rate for the compound and thus to avoid a
discretization of the SPDE.
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