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Abstract  
Natural products are a reliable source of bioactive molecules and represent an industrial and pharmaceutical stake. Indeed, 

the model yeast species Saccharomyces cerevisiae is a well-known eukaryotic organism largely used as a biotechnological 

tool, but still a topical subject of study. In this work, the exploration of Saccharomyces cerevisiae is taken further through 

an untargeted metabolomics workflow. The aim is to enrich databases and bring new information about the standard S. 

cerevisiae strain in a given medium. Analytical methods and bioinformatics tools were combined in a high-throughput 

methodology useable to dereplicate many types of biological extracts and cartography secondary metabolites. Ultra-high-

performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analyses were carried out and spectral 

data were pre-processed to build molecular networks. Annotations were attributed to compounds through comparison with 

databases and manual investigation of networks. Ultra-high-resolution Fourier-transform ion cyclotron resonance mass 

spectrometry (FTICR-MS) brought additional information thanks to a higher dynamic range and enhanced UHPLC-MS/MS 

results by unveiling ambiguities and bringing accurate molecular formulae. Therefore, accurate and reliable annotated 

features resulted from the UHPLC-MS/MS data while FTICR-MS provided an overall cartography of metabolites thanks to 

van Krevelen diagrams. Various small molecules such as amino acids derivatives and indole alkaloids have been determined 

for the first time in this yeast. The complementarity of FTICR-MS and UHPLC-MS/MS for secondary metabolite 

annotation brought this new mapping of S. cerevisiae.  
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1. Introduction 
 

Saccharomyces cerevisiae is one of the best-known model systems for eukaryotic cell biology. It belongs to the 

Saccharomycotina yeasts, a subphylum of Ascomycete unicellular fungi found on a wide variety of substrates such as 

insects, plants or soils [1]. The S. cerevisiae strain S288c is a widely used laboratory strain and was the first eukaryotic 

organism to have its genome fully sequenced through a systematic sequencing project. This reference sequence is stored in 

the Saccharomyces Genome Database (SGD) [2]. Yeasts are involved in numerous agri-food applications like winemaking, 

brewery, bakery [3] or drugs as probiotics, but S. cerevisiae is also an effective biotechnological tool for the production of 

biopharmaceuticals: hormones like insulin, or vaccines such as hepatitis B vaccine and human papillomavirus vaccine [4–

6]. Fermentation and other biological processes make yeasts capable of producing interesting secondary metabolites that 

represent a large structural biodiversity. As natural products can show biological effects against many diseases, determining 

what S. cerevisiae naturally synthetize represents an industrial, pharmaceutical and scientific stake. Previous studies have 

characterized some of these small molecules by gas chromatography-mass spectrometry (GC-MS) analyses [7,8], liquid 

chromatography-mass spectrometry (LC-MS) analyses [9] or carried out metabolic profiling by nuclear magnetic resonance 

(NMR) techniques [10]. 

 

The last two decades have brought many technological advances in mass spectrometry, concerning ionization sources, 

analyzers or hyphenation with other separation techniques. Therefore, metabolomics research has evolved and among 

common techniques, high performance liquid chromatography (HPLC) is an efficient starting point to separate compounds 

according to their polarity. The coupling of liquid chromatography with high resolution mass spectrometry (HPLC-HRMS), 

with atmospheric pressure ionization such as electrospray ionization, allows a screening of a wide range of metabolites. In 

addition, tandem mass spectrometry (MS/MS), and in particular high resolution MS/MS spectra, affords structural 

information on metabolites [11,12].  

 

High resolution mass spectrometry analyses in metabolomics generate an important amount of data that require automated 

data processing. Indeed, the complete analytical workflow in metabolomics studies implies data acquisition, data processing 

and finally data interpretation. With regard to data processing, computerized and automated tools are great time savers as 

manual MS-data deciphering is heavily time-consuming. The use of algorithms also avoids human error. As available 

applications are in development, there are a lot of parameters to optimize. For example, the open software MZMine2  

processes HPLC-MS/MS data to convert spectral data in feature lists [13,14].  

 

With regard to data interpretation the first descriptor used is the mass determination. Accurate mass-to-charge ratios (m/z) 

measurement allow to attribute molecular formulae that can be compared to databases to annotate the features (e.g. Yeast 

Metabolome Database, Human Metabolome Database, MassBank [15–18]). High resolution analyzers such as time-of-flight 

and orbitrap present a mass accuracy up to 5 ppm. With such accuracy there are however often several possible molecular 

formulas for a given signal even considering specific criteria such as the seven golden rules [19]. Fourier Transform Ion 

Cyclotron Resonance systems (FTICR-MS) have the required resolution (>1,000,000) and accuracy (<0.5 ppm) to solve this 

issue [20]. FTICR-MS is used in metabolomics for rapid metabolome fingerprinting or exploratory profiling with direct 

injection approaches [21,22]. The high quality of high field FTICR spectra allow to attribute unique molecular formulae to 

each ion with great confidence. The use of isotopic fine structure can be used to confirm the presence of some specific 

elements such as sulfur [23]. This annotated data can be used to generate molecular mapping using for instance van 

Krevelen diagrams [24,25].  

  

The other descriptors used in data interpretation are the tandem mass spectra of metabolite ions. Fragmentation data are 

used on the Global Natural Products Social molecular networking platform to build molecular networks 

(https://gnps.ucsd.edu), as structurally related molecules share similar fragmentation patterns [26]. In addition, GNPS 

compares uploaded MS/MS spectra to constantly enrich databases and annotate compounds from the feature list. This recent 

bioinformatics tool is already a valuable instrument in the exploration of microorganisms and in drug discovery [27,28]. The 

combination of MZMine2 and molecular networking proves to be very worthwhile to accelerate the dereplication of 

biological samples and subsequently focus on potential unknown compounds. 

 

In metabolomics studies, annotation is carried out based on the Metabolomics Standard Initiative annotation levels thanks to 

all descriptors obtained previously [29]. Ranging across four different levels, it respectively covers fully identified 

molecules, putatively annotated compounds, putatively annotated compound classes and unknown metabolites. 

  

Thus, we present here an in-depth exploration of S. cerevisiae reference strain S288c extracts via the complementarity of 

UHPLC-MS/MS and Direct Injection FTICR-MS, completed by molecular networking data treatment. This approach 

accelerated significantly the deciphering of the biological extracts, and could be applied to other complex mixtures.  
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2. Materials and methods 
 

2.1. Statement of Human and Animal Rights 
This article does not contain any studies with human participants or animals. 

 

2.2. Yeast culture 
Saccharomyces cerevisiae S288c (CLIB 338) standard laboratory strain is preserved at the Biological Resource Centre 

CIRM-Levures (INRAE, Jouy-en-Josas, France; www.inra.fr/cirm_eng/Yeasts). This strain was routinely grown on YPD (1 

% yeast extract, 1 % peptone, 1 % glucose) agar medium at 26.5 °C. For analysis, strains were streaked from an overnight 

culture on YNB (6.7 % Yeast Nitrogen Base, 1 % peptone, 1 % glucose) agar medium and incubated for 3 days at 26.5 °C. 

One culture have been extracted, and control samples, also called culture medium extracts were prepared in the same way, 

except that no yeast strain were added to the culture medium. 

 

2.3. Metabolites extraction  
Dichloromethane, ethyl acetate and methanol are HPLC gradient grade solvents. Intracellular and extracellular metabolites 

were extracted by addition of 15 mL of 1:1 v/v dichloromethane and ethyl acetate on the culture, helped by a 30 min 

sonication (Branson B-5200-54, 450 W). The extract was filtered through a sintered glass funnel (porosity from 16 µm to 40 

µm). 10 mL of dichloromethane and ethyl acetate (1:1, v/v) were added to the medium, sonicated 10 min and filtered. The 

two gathered dichloromethane / ethyl acetate extracts were concentrated by solvent dry evaporation under vacuum at 40 °C 

to give a brown residue of 8.5 mg named “DE extract” and stored at – 20 °C. 10 mL of methanol were added to the same 

growing medium, the mixture was sonicated 5 min and filtered. The extracted metabolites were then concentrated by 

evaporation. A brown gel residue of 183.5 mg was obtained, named “M extract” and stored at – 20 °C. Culture medium 

without yeasts went through the same process (leading to a CDE extract and a CM extract), prepared and analyzed in the 

same way. 

 

2.4. Sample preparation for analysis 
Methanol, water and acetonitrile are Fisher Chemical Optima LC-MS grade. DE and CDE extracts were resuspended in 

methanol, M and CM extracts were resuspended in water to a concentration of 50 mg/mL. Every sample was half-diluted 

with water / acetonitrile (1:1 v/v), which corresponds to the mobile phase, for analysis. All samples were filtered through 

PTFE 0.45 µm filters. Analytical blanks were prepared with the same solvents as the mobile phase and analyzed before and 

at the end of each analytical sequence to further clean-up the spectral data of background interference signals, like 

plasticizers or solvent impurities. Pure chemical standards (Table S1) were individually dissolved in water / acetonitrile (1:1 

v/v) and mixed, then diluted to 0.01 mg/mL and analyzed by UHPLC-MS/MS. 

 

2.5. UHPLC-ESI-QTOF-MS/MS analysis 
Chromatographic separation was carried out using a UHPLC system (Dionex Ultimate 3000 UPLC+, Thermo Scientific, 

San Jose, CA, USA) equipped with a C18 silica-based Column (Acquity UPLC HSS T3 1.8 µm x 1.0 mm x 100 mm, 

Waters Corporation, Milford, MA, USA) with a prefilter of 0.2 µm. The column was kept at 40 °C during the analysis. An 

autosampler kept the samples at 4 °C. The injection volume was 1 µL. The solvents used for gradient separation are the 

following: water + 0.1 % formic acid (solvent A); acetonitrile + 0.1 % formic acid (solvent B); solvents are Fisher Chemical 

Optima LC-MS grade; formic acid is LiChropur (Merck) for LC-MS. The flow rate was 0.1 mL/min. Gradient consisted of 

1 % B at 0 min; 1 % B at 1 min; going up linearly to 100 % B at 23 min then maintained 100 % B for 2 minutes; finally, 1 

% B as initial conditions at 25.2 min. The run ended after 30 min including the stabilization step. 

 

UHPLC was coupled to a hybrid quadrupole-time of flight analyzer (QTOF, SYNAPT G2 HDMS, Waters MS 

Technologies, Manchester, UK) equipped with an Electrospray Ionization source (ESI). The instrument was driven by 

MassLynx 4.1 software. Experiments were realized in positive and in negative ionization mode. m/z range was 50-2000. 

The ionization parameters and acquisition parameters for the data dependent scan method are indicated in Table S2. The 

instrument was externally calibrated with a sodium formate mixture (10 % formic acid / 0.1 M NaOH / acetonitrile in 1:1:8, 

v/v/v). The lock mass used during runs as internal calibrant was a Leucine-Enkephalin solution (2 ng/µL in 

water/isopropanol 1:1, v/v); the lock mass ions were m/z 556.2771 and m/z 554.2615 in positive and negative ionization 

mode respectively. 

 

2.6. Spectral data processing  
UHPLC-MS/MS data were firstly centroided on MassLynx 4.1 with the “Automatic peak detection” module. Raw data 

(Waters “.raw” format) were then imported within the MZMine2 software. Features are characterized by variables as m/z 
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ratio, retention time (RT in minutes), intensity, and are linked to corresponding MS/MS spectra. Retention time is 

considered so isomers can be discriminated. Peaks were detected with the “Exact mass” algorithm from the “Mass 

detection” module then detected masses were built into a chromatogram with “ADAP Chromatogram Builder” [30]. The 

chromatogram was deconvoluted with the Wavelet (ADAP) algorithm, removing background noise features then MS2 scans 

were paired to corresponding MS1 features. Isotopes were grouped and duplicate features were removed. Then, feature lists 

from samples and controls analyzed with the same ionization polarity were aligned. The “Formula prediction” module 

attributed molecular formulae following the seven golden rules [19]. Fragments and adducts were automatically searched 

with adequate modules. The detailed parameters for each module are shown in Table S3. Feature lists were then exported in 

a fitted format for GNPS [14]. 

 

2.7. Molecular networking on Global Natural Products Social molecular networking 
We exported MZMine2 pre-processed feature lists and imported it on the GNPS platform. A molecular network was created 

with the feature based molecular networking workflow (https://ccms-

ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/) on the GNPS website (http://gnps.ucsd.edu). The 

data was filtered by removing all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were 

window filtered by choosing only the top 6 fragment ions in the +/- 50Da window throughout the spectrum. The precursor 

ion mass tolerance was set to 0.02 Da and a MS/MS fragment ion tolerance of 0.02 Da. A network was then created where 

edges were filtered to have a cosine score above 0.7 and more than 4 matched peaks. Further, edges between two nodes 

were kept in the network if and only if each of the nodes appeared in each other's respective top 10 most similar nodes. 

Finally, the maximum size of a molecular family was set to 0, and the lowest scoring edges were removed from molecular 

families until the molecular family size was below this threshold. The spectra in the network were then searched against 

GNPS' spectral libraries. The library spectra were filtered in the same manner as the input data. All matches kept between 

network spectra and library spectra were required to have a score above 0.7 and at least 4 matched peaks. Molecular 

networks were visualized through Cytoscape. 

 

2.8. FTICR-MS analysis 
Analyses were carried out on a FTICR instrument (SolariX XR FTMS, Bruker Daltonics) equipped with a 12 Tesla 

superconducting magnet and a dynamically harmonized ICR cell. The instrument is equipped with an electrospray 

ionization source. The same samples analyzed by UHPLC-MS/MS were analyzed by direct injection FTICR-MS after 

dilution (1/10,000) with water / acetonitrile (1:1, v/v), at a flow of 120 µL/h. Each sample was analyzed both in positive and 

negative ionization mode. Source and analyzer parameters (shown in Table S4) were inspired by previous work and chosen 

in order to guarantee a robust and sensitive analysis [31]. FTICR-MS data were treated with Data Analysis 5.0 (Bruker). 

Molecular formulae were attributed considering M + H, Na and K adducts for positive mode, M − H and Cl for negative 

mode, for C1-100H0-200N0-8O0-20S0-1 (then P0-1) species. The tolerance was set to 0.3 ppm, RDBE from 0 to 80 and H/C ratio 

from 0 to 3. To exclude media components and artefacts, masses from analytical blanks and culture medium were subtracted 

from the sample MS scan for each extract in both ionization modes (“Xpose” mode with a ratio of 5). 

 

3. Results and discussion 
 

3.1. Feature determination and molecular networking 
Dichloromethane / ethyl acetate (DE) and methanol (M) extracts from the strain S. cerevisiae S288c, together with culture 

medium control extracts, have been analyzed by UHPLC-MS/MS and Direct Injection FTICR-MS. Figure 1 summarizes the 

entire analysis and interpretation workflow. Figure S1 shows the base peak ion chromatogram (BPC for DE and M extracts 

in positive and negative ionization mode). UHPLC-MS/MS data were processed within MZMine2. During the automated 

data treatment, background noise features, blank features, in-source fragments, adducts and dimers were discarded. Yeast 

extract data and control sample data were aligned. The feature tables for each ionization mode were exported to build 

molecular networks on GNPS. Alignment and molecular networking allowed the removal of features exclusively found in 

culture medium extracts. The medium components present in networks are kept as they can help us to decipher yeast extract 

component that are linked to molecular networks, requiring the investigation of these additional networks. It is important to 

note that primary metabolites (e.g. amino-acids) are in the culture medium, and often cluster with structurally similar yeast 

metabolites. The feature tables and the molecular networks are the first form of results needed to begin data interpretation. 

Manual interpretation of result lists is a crucial step to confidently annotate the yeast extract compounds. 

 

Annotations were attributed via database comparison and were supported by molecular network investigation. For instance, 

a feature was detected at m/z 231.1126 in positive mode, RT = 7.98 min. This node was included in a large molecular 

network, where indole alkaloids have already been annotated. Molecular networks built on GNPS displayed structurally 

related nodes. By comparing MS/MS spectra with tryptophol MS/MS spectrum and with MS/MS databases (e.g. HMDB), 

we could lead to an annotation that fitted with the molecular formula of the medium feature at m/z 217.0974: 1,2,3,4-
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Tetrahydro-beta-carboline-3-carboxylic acid (Figure S2a). As this node was a crossroad of two other nodes, we used it to 

determine hypotheses for m/z 190.0864 and m/z 231.1126, attributed respectively 3-Indolepropionic acid and 1-Methyl-

1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid. These annotations corroborate of an indole alkaloid network (Figure 2a). 

As compound hypotheses could be given, the annotation level is 2 for these compounds.  Molecular networking permits the 

annotation spread and accelerates the whole annotation process. 25 level 2 annotations were provided thanks to progressing 

through molecular networks (21 in positive ionization mode and 4 in negative). Figure S3 shows all molecular networks for 

S. cerevisiae analysis including annotations after manual investigation. We observed that positive ionization mode led to 

bigger and more complex molecular networks. This is due to the structural families of the detected compounds, which led to 

more informative MS/MS spectra, therefore more networks. The largest network is related to alkaloids, as mentioned 

before, with an indole part and a quinoline part. Another small network corresponds to sulfated amino-acids. The last one 

clusters only medium and is also found in negative mode, alongside small networks of sulfated amino-acids, tryptophan 

derivatives and alkaloids. 

 

To assess the confidence level of the annotations, we considered the metabolomics annotation level system [29]. The 

compounds may be given putative annotations on the basis of molecular formula, database search and molecular 

networking. Level 1 are identifications allowed by retention time and MS/MS correlation between the studied feature and a 

pure standard. In our work, six pure standards were compared and six features were identified as level 1 (Table 1). 

Structural similarities associated to database match led to level 2 annotations. When structural similarities were 

characterized between an unknown compound and a putatively annotated compound, molecular networking was incredibly 

useful to get level 3 annotations. Finally, all compounds that cannot be associated to known molecules are considered level 4 

or unknown compounds. In parallel, additional data treatment and bibliographical search was done to increase the molecular 

network information. Figure 2b summarizes the number of annotated features for each level after the first manual data 

deciphering that led to annotations for 55 % of the 92 features in positive mode and for 44 % of the 55 features in negative, 

based on UHPLC-MS/MS analyses. 

 

3.2. Contribution of FTICR-MS 
The direct injection ESI-FTICR analyses, yielded an average mass accuracy of 0.08 ppm. After analysis subtraction, 1676 

ions have been detected from positive ion spectra of DE extract, and 794 in negative ion spectra, with signal to noise of 9. M 

extract yielded 1604 ions in positive ion spectra, and 1471 in negative. From which unique molecular formulae have been 

attributed considering parameters told in Material and methods section (603 for DE POS, 403 for DE NEG, 404 for M POS, 

304 for M NEG). Isotopic fine structure was used to confirm the presence of specific elements. In a few cases in which 2 

possible molecular formulae are proposed, manual control was used to discard wrong attribution (keeping the formulae with 

the best accuracy in ppm, or discarding aberrant formulae with O/C ratio > 1 or formulae without enough H or too much N 

for the number of C). 

The data from the two techniques were manually linked by searching corresponding m/z between UHPLC-MS/MS data and 

FTICR-MS data. Some molecular formulae were not attributed in UHPLC-MS/MS due to the lower time-of-flight precision. 

The highest FTICR mass measure precision was able to enhance molecular formulae determination. Therefore, more than 

91 % of the features already detected by UHPLC-MS/MS could be linked to an accurate molecular formula in positive 

mode, and 96 % in negative mode. The compounds whose formulae were not retrieved tend to level 4 annotations and 

remain unknown. These values prove the efficacy of analyzing yeast extracts with UHPLC-MS/MS on a side and FTICR-

MS on the other. It should be pointed out that compared to the UHPLC-MS/MS analysis the DI FTICR analysis yielded a 

large amount of sodium and potassium adduct due to the lack of chromatographic separation. 

 

It can be shown that the manual linking of FTICR-MS molecular formulae to UHPLC-MS/MS features enhanced 

significantly the quality of the obtained metabolomics results. The major interest is revealed when the chromatographic 

workflow did not lead to a precise annotation. The lower precision of TOF analysis, with errors around 2 to 5 ppm, could 

lead to several possible molecular formulae, from two to more than seven for high m/z ratio compounds, and then prevent 

the feature annotation. FTICR helped to discriminate the right formula. Level 2 annotations were confirmed if the given 

formula corresponds to the compound hypothesis. Some level 3 compounds had a chemical class attributed (e.g. alkaloid) 

thanks to molecular networking and common fragments, and FTICR-MS provided the missing molecular formula that 

allowed, combined with MS/MS data, a level 2 annotation. Level 4 unknown compounds at least have a formula. An empiric 

example of a hypothesis ambiguity was a feature detected at RT 12.76 min (Figure S4). The FTICR-MS data allowed us to 

determine the molecular formula among the three possible ones, confirming the Paspalic acid (C16H16N2O3) hypothesis. The 

enhancement of the deeper manual interpretation after FTICR-MS is shown in Figure 2c. Thus, 89 % of annotations is 

reached in positive mode and 87 % in negative mode. FTICR-MS enhanced previous results as a fast and complementary 

technique. In fact, the separation based on LC-MS methods has the advantage on isomer identification and matrix ion 

suppression effects reduction whereas the direct FTICR injection has the advantage on mass measure accuracy, leading to 

unique molecular formula determination. The critical annotation step is therefore improved. FTICR-MS also have the 
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advantage of the sensitivity and dynamic range that allows the observation of features that could not be detected in UHPLC-

MS/MS. 

 

Based on FTICR-MS data, global metabolic profiling was established for S. cerevisiae extracts. Molecular formulae were 

automatically attributed during data treatment, then O/C ratios were plotted against H/C ratios to create van Krevelen 

diagrams. These diagrams are bidimensional graphical representations of the global elemental composition of each sample. 

The van Krevelen diagrams presented in Figure 3a depicts a qualitative description of the four extracts, that is to say a 

snapshot of what S. cerevisiae can produce when cultivated on the studied medium. The dot color testifies the chemical 

composition in C, H, O, N and S of the determined formulae, so the compositional differences between extracts may be 

examined. In Figure S5, blue dots represent the common masses detected both by FTICR-MS and LC-MS/MS. Thus, more 

features are observed in FTICR-MS analyses, which enhanced the metabolite coverage of the study by its sensitivity and 

dynamic range. Namely, 603 and 404 features were detected in positive ion mode (respectively in DE extract and in M 

extract) and 404 and 304 features in negative ion mode. The accuracy of this MS technology reveals the richness of 

metabolite classes within the yeast extracts. By comparing our data with previously described LC-MS/MS data (Figure S6), 

alkaloids, lipids and amino-acids were placed. Van Krevelen diagrams from the literature [21,32] allowed to confirm lipid 

region and amino-acid region, and to locate small acids. Compared to these papers, a very few compounds of the “oxy-

aromatics” region were detected. 

 

The S. cerevisiae extracts appear to have a highly diverse content of alkaloids of diverse polarities, as it was seen according 

to LC-MS/MS results. Many were detected in the DE extract. Alkaloids are often found in non-polar extracts, but in this 

case, there is a lot of CHON and CHONS molecules in the methanol extract too. These alkaloids present in the M extract are 

more polar than average and may contain one or several hydroxyl groups. A lot of CHON signals are found in the M POS 

van Krevelen diagram, in an area classically dedicated to lipids and non-polar compounds. These could be saturated 

alkaloids or amino-acids derivatives with hydroxyls for example. Van Krevelen diagrams were built to discriminate 

nitrogen-rich features from others (Fig. S7): the bluer the dot, the more nitrogen-rich is the formula. We can see compounds 

with a lot of nitrogen, confirming an overlay between the alkaloid region and lipid region (indicated on Figure 3a). The 

methanol extracted a lot of alkaloids with a high H/C ratio. Van Krevelen diagrams are a useful tool for the comparison and 

the differentiation of the different yeast extracts, here from the same strain, but it could be used to compare extracts from 

different strains or species. 

 

The histograms shown in Figure 3b represent the distribution of masses among chemical compositions (CHO, CHOS, 

CHON and CHONS). The most represented composition is CHON, which corresponds to the numerous alkaloids and 

amino-acid derivatives found in the samples, followed by CHO, CHOS and CHONS, and far ahead from CH, CHNS and 

phosphorus type molecules. The fermentation ability of yeast explains the prominence of CHON and CHONS chemical 

space. Data were compared to build Venn diagrams (Figure 3c), comparing for each polarity the presence of detected 

masses between both DE and M extracts. As in LC-MS/MS data, DE extract analyses provided more features than M extract 

analyses, which can be attributable to the sequence of extraction (DE comes first and extracts more metabolites). Positive 

ionization mode also led to more detected masses. Ions that are common between DE and M extract are found in the 

intersection of the two circles. The amount of common masses is significantly smaller than each extract exclusive species. 

This is explained by the polarity difference of the used solvent mixtures, and by the order of the extractions (the culture is 

extracted by dichloromethane / ethyl acetate, then by methanol). The methanol extraction picked some metabolites that 

dichloromethane / ethyl acetate did not. It confirms the value of using two different extractions to expand the metabolite 

coverage. 

 

3.3. Saccharomyces cerevisiae secondary metabolites 
The annotated compounds are listed in Table 1, together with their annotation level, the origin of the extract and the 

ionization polarity. We also summarized in Figure 2d the proportions of the different substance types. All the detected lipids 

may be part of the membrane system remaining after the solvent-based extraction. Except for glycero-phosphoryl choline, 

they are all detected in the DE extract, the most non-polar extract. Amino-acids may come from strain primary metabolism, 

but are also derived compounds such as N-Acetyl-methyltryptophan or Kynurenic acid. “Other” compile diverse families, 

such as sugars. Alkaloids are a major family part of the small molecules of this strain, in the form of indole alkaloids or 

quinoline alkaloids. All these compounds are presumably secondary metabolites produced by the yeast, such as Paspalic 

acid (Peak ID 69), which is an indolo-isoprenic alkaloid identified in Claviceps purpurea [33] and used in the hemisynthesis 

of therapeutic alkaloids. The (2S,5R)-5-(1H-Indol-3-yl)-4-oxo-2,3,5,6-tetrahydro-1H-azepino[4,5-b]indole-2-carboxylic 

acid (Peak ID 75, also called Malassezindole A) is an indole alkaloid involved in the tryptophan metabolism [34]. Some 

other features have been sparsely described like Ethyl 3-methyl-9H-carbazole-9-carboxylate (Peak ID 62) and 5-(3-Methyl-

2-butenyl)-1H-indole-3-carboxylic acid (Peak ID 84). To the best of our knowledge, this is the first time that these 

compounds have been described in S. cerevisiae. It is important to note that focused structural studies, such as NMR 
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experiments or MS experiments with standards, are necessary to bring structural evidences and convert putative annotations 

into identifications. The possibility of several isomers and isobars still exists. However, we obtained evidence of the 

presence of many unexpected compounds so far, such as the indole and quinoline alkaloids described here for the first time 

in this species. 

 

Previous studies have implemented gas chromatography to analyze S. cerevisiae secondary metabolites [7,8]. Compared to 

this work, the S.cerevisiae strain was cultivated in a solid medium, the extraction method started with a dichloromethane / 

ethyl acetate mixture to obtain a moderately polar fraction followed by a second extraction with methanol. It was expected 

to find more diversified chemical classes, the method was rapid and presented a good level of annotation confidence. The 

GC-MS analysis by Al-Jassani et al. [7] led to non-polar and volatile compound determination such as terpenoids, whereas 

we characterized more polar or averagely polar compounds. The two studies appear to be complementary, the GC-MS 

workflow determined the volatile molecules synthetized during fermentation, while we analyzed intracellular and excreted 

secondary metabolites. The differences may also be explained by the difference between the strains, the difference of 

culture media or the sample derivatization. Palomino-Schätzlein et al. [10] have profiled S. cerevisiae global metabolism by 

NMR. Apart from the analytical technique, the differences in the used strains, the culture media or the extraction method are 

the reason why we determined different secondary metabolites and less molecules from primary metabolism, such as 

nucleotides and all the amino-acids. The same observation is done by comparing the work by Farrés et al. [9] who studied S. 

cerevisiae metabolism by LC-MS; the primary amino-acids L-Tryptophan or L-Methionine are also found in our work but 

not displayed as they were found in the culture medium too.  

 

The methodology described here, summarized in Figure 1, is very versatile and could also be applied to many types of 

biological extracts. Globally, more features were described by positive ionization mode analysis, and more masses were 

detected in the first extract (DE extract), whether by visualizing FTICR-MS results or UHPLC-MS/MS molecular networks. 

The solvent mixture permitted to extract a wide range of polar, non-polar and averagely polar metabolites. The extraction 

step is crucial and has to be optimized for every type of analyzed sample. Treatment steps are also essential; the 

optimization of process parameters is a crucial point to care about for each analysis batch. Finally, decisive steps in this kind 

of study are manual investigation and data interpretation after the automated processes.  

 

 

4. Conclusion 
Throughout this study, Saccharomyces cerevisiae S288c strain cultures were extracted then dereplicated via a combination 

of mass spectrometry techniques. UHPLC-MS/MS-feature-based molecular networking provides accurate and reliable 

annotations, with the advantage of ionization suppression reduction and discrimination of isomers. In addition, FTICR-MS 

represents a valuable technology to complement our results by throwing away doubts within compound annotation, by 

means of accurate molecular formula determination. FTICR-MS data also brought another dimension to the metabolite 

mapping through a global molecular representation.  

The most important challenge in most of metabolomics studies is the spectral data interpretation. Thanks to the large 

polarity extraction range, the data processing steps and the multiple available databases, 128 features S. cerevisiae exclusive 

features were detected, with 55 % of them annotated in positive ion mode, and 44 % in negative (level 1, 2 and 3 

annotations). The annotation propagation was permitted by the molecular networks that were built, with bigger networks in 

positive ion mode. A rich molecular network was obtained for the indole and quinoline-type alkaloids.  

The direct injection FTICR-MS analysis detected many more features, due to its great sensitivity. It also largely enhanced 

the annotation levels of the UHPLC-MS/MS analysis, going up to 89 % annotations in positive ion mode, and to 87 % in 

negative ion mode. This analysis brought van Krevelen diagrams as global metabolic profiling representations and 

demonstrating the richness of the yeast extracts in term of metabolites. 

Among the annotated features, 58 % of alkaloids were found. Our work revealed many alkaloids produced by this strain that 

could expand fungal databases. The overall representation shows the many alkaloids and amino-acid derived molecules that 

S. cerevisiae can produce when cultivated on the studied medium. 

As for S. cerevisiae strain S288c, our work provided an effective mapping of compounds by complementing previous 

studies. This methodology represents the laid foundations for a fast exploration of the metabolites from other yeast strains or 

species, and can also be applied to various biological samples, as plants or soils. 
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Figure 1: Summary diagram of the yeast extract analysis workflow with the different annotation levels. Metabolites are 

extracted from yeast cultures to prepare the samples that are analyzed through UHPLC-MS/MS. Spectral data are processed 

and used to build molecular networks. Annotation are attributed and can be upgraded thanks to FTICR-MS analysis. 
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Figure 2: Results from UHPLC-MS/MS-molecular networking workflow on Saccharomyces cerevisiae extracts. a: example 

of alkaloid network built in GNPS (positive mode). Color is the sample origin (Orange: DE; Red: M; Green and Blue: 

culture medium). Node labels display the proposed metabolite, or the compound class with the m/z ratio. Node size is 

proportional to intensity, edge size to cosine score. b: features from the analysis by UHPLC-MS/MS. The number of 

features is displayed after a comparison with databases and GNPS annotations. c: feature number after FTICR-MS analysis 

and deeper investigation step. d: compound classes pie chart based on UHPLC-MS/MS analysis enhanced by FTICR-MS. 

Compounds from DE extract and M extract analyzed in positive and negative mode are present.  
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Figure 3: Representations of FTICR-MS data from Saccharomyces cerevisiae extract analysis after chemical formula 

attributions. a: FTICR-MS spectra and corresponding O/C vs. H/C van Krevelen diagrams. Brown dots are CHO features; 

red dots are CHOS; green dots are CHON; blue dots are CHONS. b: histograms of FTICR-MS data distribution among 

chemical composition types (four most numerous classes) in number of features. Red bars are for DE extract in POS 

ionization mode; yellow bars are for DE NEG; blue bars are for M POS; purple bars are for M NEG. c: Venn diagrams 

comparing attribution number between DE extracts and M extracts, in positive and negative ionization modes. 
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Table.1: Proposed metabolites from Saccharomyces cerevisiae analysis. 128 compounds from DE extract and M extract 

analyzed in positive and negative mode are present. Concerning features detected in both ionisation modes, the observed 

m/z value comes from the UHPLC-MS/MS analysis in positive (POS) and/or negative mode (NEG). 

 

Peak 

ID 

RT 

(min) 

Extract Proposed metabolite Type of 

ion 

Observed 

m/z 

Molecular 

formula 

Annotation 

level 

1 1.07 M Unknown Positive 381.0779 Unknown 4 

2 1.07 M Choline glycerophosphate M + H 258.1101 C8H20NO6P 2 

3 1.10 DE Alkylamine M + H 102.1283 C6H15N 3 

4 1.13 M Unknown M + H 365.1074 C18H20O6S 4 

5 1.13 M 
β-D-Glucopyranose-3-amino-3-

deoxy-β-D-glucopyranose (1:1) M + H 
360.1511 C12H25NO11 2 

6 1.13 DE Amino acid M + H 176.0911 C7H13NO4 3 

7 1.24 DE N-Acetylmethionine sulfoxide 
M + H 

M − H 

208.0637 

206.0485 
C7H13NO4S 2 

8 1.28 M Unknown Positive 308.0913 Unknown 4 

9 1.75 DE; M Amino-acid M + H 208.0636 C7H13NO4S 3 

10 3.45 DE Lipids M − H 145.0503 C6H10O4 3 

11 5.48 DE Unknown Negative 327.0581 Unknown 4 

12 5.48 DE 2-Amino-3-hydroxybenzoic acid M + H 154.0504 C7H7NO3 2 

13 5.58 DE Indole-3-acetaldehyde M + H 160.0760 C10H9NO 2 

14 6.07 DE Carboxylic acid M − H 117.0550 C5H10O3 3 

15 6.66 DE Hydroxylated sulfated ester M − H 193.0532 C7H14O4S 3 

16 6.70 DE Carboxylic acid M − H 161.0814 C7H14O4 3 

17 6.86 DE Unknown Positive 293.9688 Unknown 4 

18 6.99 DE; M N-Acetyl-L-methionine 
M + H 

M − H 

192.0693 

190.0539 
C7H13NO3S 2 

19 7.04 M 
4,8-Dihydroxyquinoline-2-

carboxylic acid 

M + H 

M − H 

206.0446 

204,0298 
C10H7NO4 2 

20 7.37 DE Carboxylic acid M − H 194.0445 C9H9NO4 3 

21 7.40 
DE 

M 

4-Hydroxyquinoline-2-carboxylic 

acid 

M + H 

M − H 

190.0503 

188,0356 
C10H7NO3 1 

22 7.44 
DE 

M 
Carboxylic acid 

M − H 
175.0609 C7H12O5 3 

23 7.98 M 
1-Methyl-1,2,3,4-tetrahydro-β-

carboline-3-carboxylic acid 

M + H 

M − H 

231.1126 

229.0974 
C13H14N2O2 2 

24 8.12 DE 2-Benzamidoacetic acid M − H 178.0500 C9H9NO3 2 

25 8.21 DE 2-Isopropylmaleic acid M − H 157.0502 C7H10O4 2 

26 8.24 DE 5-Hydroxytryptophol M + H 178.0864 C10H11NO2 2 
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27 8.24 
DE 

M 
N-Propionylmethionine 

M + H 

M − H 

206.0848 

204.0693 
C8H15NO3S 2 

28 8.40 DE Carboxylic acid M − H 131.0709 C6H12O3 3 

29 8.71 DE Alkaloid M + H 160.0765 C10H9NO 3 

30 8.84 DE N-Acetyl-DL-leucine M − H 172.0973 C8H15NO3 2 

31 8.86 DE (1H-Indol-3-yl)methanol M + H 148.0761 C9H9NO 2 

32 8.91 DE Alkaloid M + H 233.0925 C12H12N2O3 3 

33 8.91 DE Alkaloid 
M + H 

M − H 

251.1023 

249.0865 
C12H14N2O4 3 

34 9.11 DE Alkylphenylketone M − H 209.0826 C11H14O4 3 

35 9.23 DE 3-Phenyllactic acid M − H 165.0554 C9H10O3 1 

36 9.39 DE Amino-acid M + H 166.0867 C9H11NO2 3 

37 9.45 DE N-Acetyl-L-phenylalanine M − H 206.0808 C11H13NO3 1 

38 9.69 DE 1-Formyl-L-tryptophan M + H 233.0922 C12H12N2O3 2 

39 9.72 DE 
2-Hydroxy-3-(1H-indol-3-

yl)propanoic acid M − H 
204.0665 C11H11NO3 2 

40 9.81 DE N-Acetyl-DL-tryptophan 
M + H 

M − H 

247.1080 

245.0921 
C13H14N2O3 2 

41 9.86 DE Unknown M − H 277.0816 C13H14N2O5 4 

42 9.95 DE 1H-Indazole-3-carbaldehyde M + H 147.0555 C8H6N2O 2 

43 10.51 DE Alkaloid M − H 220.0965 C12H15NO3 3 

44 10.57 DE Alkaloid M + H 291.1488 C19H18N2O 3 

45 10.57 DE Indole-3-acetic acid 
M + H 

M − H 

176.0705 

174.0557 
C10H9NO2 1 

46 10.57 DE Tryptophol M + H 162.0920 C10H11NO 1 

47 10.57 DE Unknown M + H 319.1443 C20H18N2O2 4 

48 10.63 DE Alkaloid M + H 335.1385 C20H18N2O3 3 

49 10.65 DE Sugar M − H 327.0957 C10H21N2O8P 3 

50 10.71 DE 
N-Acetyl-5-methyl-DL-

tryptophan 

M + H 

M − H 

261.1233 

259.1078 
C14H16N2O3 2 

51 10.89 DE Unknown M − H 337.1240 C16H22N2O4S 4 

52 10.98 DE 3-Acetylindole M + H 160.0764 C10H9NO 1 

53 11.12 DE N-(5-Methyl-3-oxohexyl)alanine M − H 200.1283 C10H19NO3 2 

54 11.18 DE Amino-acid 
M + H 

M − H 

234.1155 

232.1000 
C10H19NO3S 3 

55 11.19 DE Alkaloid M + H 188.1091 C12H13NO 3 

56 11.32 DE 3-(1H-Indol-3-yl)propanoic acid M + H 190.0864 C11H11NO2 2 

57 11.57 DE Unknown M − H 323.0666 C17H12N2O5 4 
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58 11.63 DE Alkaloid M − H 234.1125 C13H17NO3 3 

59 11.66 DE Amino-acid 
M + H 

M − H 

268.1006 

266.0849 
C13H17NO3S 3 

60 11.74 DE Alkaloid M + H 379.1102 C21H18N2O3S 3 

61 11.80 DE 6-Methylquinoline M + H 144.0807 C10H9N 2 

62 11.86 DE 
Ethyl 3-methyl-9H-carbazole-9-

carboxylate M + H 
254.1176 C16H15NO2 2 

63 12.21 DE 
1,2,3,5-Tetrahydroxy-10H-

acridin-9-one M + H 
260.0558 C13H9NO5 2 

64 12.27 DE Unknown Positive 234.9864 Unknown 4 

65 12.41 DE Alkaloid 
M + H 

M − H 

285.1229 

283.1077 
C16H16N2O3 3 

66 12.48 DE Alkaloid M + H 254.1176 C16H15NO2 3 

67 12.56 DE 2,4-Dihydroxydodecanoic acid M − H 231.1583 C12H24O4 2 

68 12.76 DE 
6-(3-Methylbut-2-enyl)-1H-

indole-3-carboxylic acid  M + H 
230.1176 C14H15NO2 2 

69 12.76 DE Paspalic acid M + H 269.1290 C16H16N2O2 2 

70 12.95 DE Alkaloid M − H 374.1151 C21H17N3O4 3 

71 12.97 DE 

Methanone, (6-hydroxy-9H-

pyrido[3,4-b]indol-1-yl)(5-

methoxy-1H-indol-3-yl)- M + H 

358.1188 C21H15N3O3 2 

72 13.03 DE Methyl 2-(1H-indol-3-yl)acetate M + H 190.0868 C11H11NO2 2 

73 13.14 DE Alkaloid M + H 188.1075 C12H13NO 3 

74 13.22 DE Alkaloid M + H 243.0761 C13H10N2O3 3 

75 13.22 DE 

(2S,5R)-5-(1H-Indol-3-yl)-4-oxo-

2,3,5,6-tetrahydro-1H-

azepino[4,5-b]indole-2-carboxylic 

acid 

M + H 

M − H 

360.1339 

358.1188 
C21H17N3O3 2 

76 13.36 DE Alkaloid M + H 218.0812 C12H11NO3 3 

77 13.36 DE Alkaloid M + H 335.1385 C20H18N2O3 3 

78 13.39 DE Alkaloid M − H 289.1345 C19H18N2O 3 

79 13.42 DE 1-Acetylindole M + H 160.0767 C10H9NO 2 

80 13.42 DE Quinoline-2-carboxylic acid M + H 174.0557 C10H7NO2 2 

81 13.45 DE Alkaloid M − H 303.1130 C19H16N2O2 3 

82 13.49 DE 
2,2-Di(1H-indol-3-yl)propanoic 

acid M + H 
305.1292 C19H16N2O2 2 

83 13.49 DE Alkaloid M + H 407.1971 C24H26N2O4 3 

84 13.57 DE 
5-(3-Methyl-2-butenyl)-1H-

indole-3-carboxylic acid M + H 
230.1180 C14H15NO2 2 
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85 13.63 DE Alkaloid M + H 333.1236 C20H16N2O3 3 

86 13.69 DE Alkaloid M + H 289.1332 C19H16N2O 3 

87 13.83 DE Alkaloid M + H 243.0765 C13H10N2O3 3 

88 13.83 DE Alkaloid 
M + H 

M − H 

360.1348 

358.1189 
C21H17N3O3 3 

89 13.89 DE Unknown Negative 564.2285 Unknown 4 

90 13.89 DE Unknown M + H 520.2361 C36H29N3O 4 

91 14.04 DE Alkaloid M + H 190.0871 C11H11NO2 3 

92 14.31 DE 
3,4-Bis(1H-indole-3-yl)-2,5-

dihydrofuran-2-one M + H 
315.1129 C20H14N2O2 2 

93 14.39 DE Alkaloid M + H 188.1071 C12H13NO 3 

94 14.41 M Tauroursodeoxycholic acid 
M + H 

M − H 

500.3040 

498.2892 
C26H45NO6S 2 

95 14.43 DE Unknown M − H 347.1758 C22H24N2O2 4 

96 14.51 DE 

3-[[4-(3-Carboxyanilino)-3,6-

dioxocyclohexa-1,4-dien-1-

yl]amino]benzoic acid M + H 

379.0925 C20H14N2O6 2 

97 14.68 DE Alkaloid M − H 287.1180 C19H16N2O 3 

98 14.72 DE 
2-Phenyl-1-(9H-pyrido[3,4-

b]indol-1-yl)ethanone M + H 
287.1178 C19H14N2O 2 

99 14.72 DE Alkaloid 
M + H 

M − H 

333.1232 

331.1078 
C20H16N2O3 3 

100 14.86 DE Alkaloid 
M + H 

M − H 

291.1489 

289.1337 
C19H18N2O 3 

101 14.86 DE Alkaloid M + H 305.1288 C19H16N2O2 3 

102 14.86 DE N-(Phenylacetyl)-L-tryptophan M + H 323.1396 C19H18N2O3 2 

103 14.86 DE Unknown Positive 310.1227 Unknown 4 

104 14.88 DE Lipids M − H 259.1902 C14H28O4 3 

105 15.01 DE 1-(1H-Indol-3-yl)butan-1-one M + H 188.1067 C12H13NO 2 

106 15.21 DE Alkaloid M + H 315.1133 C20H14N2O2 3 

107 15.79 DE 2-Quinolinemethanethiol acetate M − H 216.0481 C12H11NOS 2 

108 15.82 DE Unknown Positive 616.1765 Unknown 4 

109 16.07 DE Unknown M − H 315.1131 C20H16N2O2 4 

110 16.09 DE 9H-Carbazole-1,3-diol M + H 200.0691 C12H9NO2 2 

111 16.28 DE Alkaloid M − H 359.1389 C22H20N2O3 3 

112 16.34 DE 2-Methylquinoline M + H 144.0812 C10H9N 2 

113 16.49 DE 
(2S,3R)-2-aminooctadecane-1,3-

diol M + H 
302.3047 C18H39NO2 2 

114 16.57 DE Alkaloid M + H 289.1330 C19H16N2O 3 
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115 16.79 DE Alkaloid M + H 188.1070 C12H13NO 3 

116 17.17 DE Polycyclic alcohol M − H 253.1801 C15H26O3 3 

117 17.52 DE 
1-(1-Ethyl-1H-indol-3-yl)-

ethanone M + H 
188.1073 C12H13NO 2 

118 18.04 DE Lipids M + H 330.3366 C20H43NO2 3 

119 20.21 DE Unknown M − H 342.2635 C19H37NO4 4 

120 20.58 DE Alkene M + H 205.1944 C15H24 3 

121 21.09 DE Amino-acid M − H 357.1886 C14H26N6O5 3 

122 21.27 DE Unknown Positive 343.2023 Unknown 4 

123 21.37 DE Lipids 
M + H 

M − H 

255.2309 

253.2163 
C16H30O2 3 

124 21.44 DE Lipids M + H 319.2843 C18H38O4 3 

125 23.00 DE 

N-[(2S,3R)-1,3-

dihydroxyoctadecan-2-

yl]dodecanamide M + H 

484.4716 C30H61NO3 2 

126 23.85 DE 

N-[(2S,3R)-1,3-

dihydroxyoctadecan-2-

yl]tetradecanamide M + H 

512.5035 C32H65NO3 2 

127 24.63 DE 

N-[(2S,3R)-1,3-

dihydroxyoctadecan-2-

yl]hexadecanamide M + H 

540.5356 C34H69NO3 2 

128 25.51 DE 

N-[(2S,3R)-1,3-

dihydroxyoctadecan-2-

yl]octadecanamide M + H 

568.5648 C36H73NO3 2 

 






