
HAL Id: hal-03211087
https://hal.science/hal-03211087

Submitted on 25 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A combined mixed- s -skip sampling strategy to reduce
the effect of autocorrelation on the X̄ scheme with and

without measurement errors
Sandile Charles Shongwe, Jean-Claude Malela-Majika, Philippe Castagliola

To cite this version:
Sandile Charles Shongwe, Jean-Claude Malela-Majika, Philippe Castagliola. A combined mixed-
s -skip sampling strategy to reduce the effect of autocorrelation on the X̄ scheme with
and without measurement errors. Journal of Applied Statistics, 2021, 48 (7), pp.1243-1268.
�10.1080/02664763.2020.1759033�. �hal-03211087�

https://hal.science/hal-03211087
https://hal.archives-ouvertes.fr


1 

 

 

 

A combined mixed-s-skip sampling strategy to reduce the effect of 

autocorrelation on the  ̅ scheme with and without measurement errors 
 

 

Sandile Charles Shongwe
1 

Email: sandile@tuks.co.za   

 

Jean-Claude Malela-Majika
1 

Email: malelm@unisa.ac.za   

 

Philippe Castagliola
2
 

Email: philippe.castagliola@univ-nantes.fr 

 

1
Department of Statistics, College of Science, Engineering and Technology, University of 

South Africa, Pretoria, South Africa. 

 

2
Département Qualité Logistique Industrielle et Organisation, Université de Nantes & LS2N 

UMR CNRS 6004, Nantes, France. 

 

 

 

 

Declaration of interest: We have no conflict of interest or any competing interest to declare. 

 

                                                           

 Corresponding author. E-mail: sandile@tuks.co.za 

Tel : +27 64 848 2001 / +27 11 670 9243/+27 11 670 9259. Fax: +27 12 429 8129. 

 

mailto:sandile@tuks.co.za
mailto:malelm@unisa.ac.za
mailto:philippe.castagliola@univ-nantes.fr
mailto:sandile@tuks.co.za


2 

 

A combined mixed-s-skip sampling strategy to reduce the effect of autocorrelation on 

the  ̅ scheme with and without measurement errors 
 

Abstract 

In order to reduce the effect of autocorrelation on the  ̅ monitoring scheme, a new sampling 

strategy is proposed to form rational subgroup samples of size n. It requires sampling to be 

done such that: (i) observations from two consecutive samples are merged, and (ii) some 

consecutive observations are skipped before sampling. This technique which is a generalized 

version of the mixed samples strategy is shown to yield a better reduction of the negative 

effect of autocorrelation when monitoring the mean of processes with and without 

measurement errors. For processes subjected to a combined effect of autocorrelation and 

measurement errors, the proposed sampling technique, together with multiple measurement 

strategy, yields an uniformly better zero-state run-length performance than its two main 

existing competitors for any autocorrelation level. However, in steady-state mode, it yields 

the best performance only when the monitoring process is subject to a high level of 

autocorrelation, for any given level of measurement errors. A real life example is used to 

illustrate the implementation of the proposed sampling strategy.  

 

Keywords: Autocorrelation, Measurement errors, Mixed samples strategy, Multiple 

measurements, Skipping sampling strategy, Steady-state, Zero-state. 

 

1. Introduction 

The maximization of profit is the ultimate goal of any business-oriented organization. To 

meet this goal, the organization must present to its customers a high quality service and 

products, and avoid wasting time and products. This can only be possible if the production or 

any other similar process is thoroughly monitored. Statistical monitoring schemes are the 

most popular modern tools used to serve this broader purpose. The first modern monitoring 

scheme was proposed by W. A. Shewhart in the 1930s, see [21]. The original Shewhart 

monitoring scheme was designed under the assumptions of independent and identically 

distributed (i.i.d.) observations and perfect measurements. However, in practice, these 

assumptions are usually violated. The presence of autocorrelation and/or measurement errors 

is known to have a negative effect on the performance of monitoring scheme. A number of 

researchers have developed more interesting and advanced monitoring schemes under similar 

assumptions. There have been a great number of articles that investigated either the effect of 

autocorrelation or measurement errors; see for example [1, 3, 6, 7, 8, 11, 12, 13, 14, 15, 16, 

17, 19, 20, 22, 23, 24, 26, 32, 33, 36]. For recent reviews on monitoring schemes under 

autocorrelated and measurements errors, readers are referred to [25] and [18], respectively.  

The combination of the effect of autocorrelation and measurement errors has a profound 

negative effect on the efficiency of monitoring schemes. A combined effect of 

autocorrelation and measurement errors has been also investigated in the literature; see for 
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example [5, 27, 28, 34, 35]. All the forgoing investigations have led to one conclusion, which 

is the deterioration of the performance of the monitoring schemes due by the negative effect 

of autocorrelation and measurement errors. Therefore, there is a growing need of reducing or 

eliminating this negative effect of autocorrelation and measurement errors. 

In order to reduce the effect of autocorrelation, a number of authors have suggested the use of 

skipping and mixed samples strategies in order to construct rational subgroups. The skipping 

strategy (denoted as s-skip) is the combination of non-neighbouring observations by skipping 

s observations before sampling to form a rational subgroup of size n, where s is a positive 

integer (see Figure 1 (a)) – this was first proposed in [5] for the  ̅ scheme. Moreover, the s-

skip strategy was used by the following: [13] for the basic Hotelling‟s T2
 chart, [6] for the 

synthetic T
2
 chart, [10, 29, 30, 31] for the synthetic and runs-rules  ̅ schemes. Next, the 

mixed sampling strategy is the mixture of the observations from two consecutive samples by 

skipping one observation (i.e. s = 1) in each sample (see Figure 1(b)) – this was first proposed 

in [7] for the  ̅ scheme. Moreover, the mixed samples strategy was used by the following: 

[14] for the basic Hotelling‟s T2
 chart and [6] for the synthetic T

2
 chart. In general, from the 

abovementioned papers, it was observed that for small levels of autocorrelation, the s-skip 

strategy is more efficient than the mixed samples strategy; however, the converse is true for 

large levels of autocorrelation. Finally, the economic design of the  ̅ scheme with the 

skipping and mixed samples strategies is studied in [8].   

<Insert Figure 1 here> 

Thus, in this paper, a new technique of reducing the effect of autocorrelation (with and 

without measurement errors) on the performance of a monitoring scheme is introduced and 

the Shewhart  ̅ scheme is used to demonstrate the new technique. In essence, the new 

sampling strategy is the combination of the s-skip and mixed samples strategies (see Figure 

1(c)) – it is explained in detail in Section 2.3. The purpose of this paper is to improve on the 

research works by [5, 7]; hence, the same models are used to account for autocorrelation and 

measurement errors. That is, a first order autoregressive model (i.e. AR(1)) accounts for the 

(within-sample) autocorrelation and the additive model with a constant standard deviation 

accounts for the measurement error.  

The rest of the paper is organized as follows: In Section 2, the basic properties of 

autocorrelation, as well as the existing sampling strategies used to reduce the negative effect 

thereof are discussed along with the proposed technique. Moreover, their empirical run-

length performance using the Shewhart  ̅ scheme is investigated. In Section 3, we present the 



4 

 

run-length performance of the proposed sampling strategy under the presence of both 

autocorrelation and measurement errors, and compare its performance with other competing 

strategies. A real life example is used to demonstrate the proposed sampling strategies in 

Sections 2 and 3. Finally, the concluding remarks are given in Section 4. 

 

2. Autocorrelated observations 

Assume that, at time   1, the quality characteristic {        = 1, 2,…,  } is a sequence of 

samples from an autocorrelated N(     ) distribution that fits a stationary AR(1) model, 

given by          (         )    , t   1,     = 1, 2, …,    (1) 

where   is the level of serial dependence (or autocorrelation) assumed to satisfy       and    are i.i.d. normal (0,   ) random variables. Moreover, the nominal IC mean and standard 

deviation process parameters are denoted by    and   , respectively, where      √     and, 

without loss of generality, assume     1; see [2]. Note that after the occurrence of assignable 

causes, the process mean shifts from    to          , so that          . A standard way 

to calculate the mean or the plotting statistic of the  ̅ scheme is   ̅    ∑         . (2) 

While we assume dependence within the computation of  ̅ ; however, between any  ̅  and  ̅  

(   ) there is independence (i.e. no cross-correlation) – this is in line with the derivation in 

[2] for sub-grouped data. Hence, for the basic  ̅ scheme, the charting limits (i.e. the upper / 

lower control limit denoted by (       )) are given by:            ̅      ̅   (3) 

where   ̅      and   ̅     √   are the mean and standard deviation of  ̅ , respectively;    

0 is the design parameter that is related to the distance from the center line to the         in 

terms of the standard deviation and finally,   depends on which sampling strategy is 

implemented as shown in Table 1. Note that for the i.i.d. case,   is simply equal to 1.  

<Insert Table 1 here> 

There are two main sampling strategies that are used in the SPM literature to reduce the effect 

of autocorrelation and these are discussed below in subsections 2.1 and 2.2. Then, in Section 

2.3, the combined mixed-s-skip strategy is introduced and the corresponding empirical 

analysis is done in Section 2.4.  
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2.1 s-skip sampling strategy 

In the presence of autocorrelation, the s-skip strategy involves sampling of non-neighboring 

observations and is particularly used as a remedial approach to reduce autocorrelation. Costa 

and Castagliola [5] showed that the process in Equation (1) that incorporates the s-skip 

sampling strategy remains an AR(1) process; however, defined as {   (   )         1;   = 1, 2, 

3,…, n} with parameter      (instead of  ):             (           )      (4) 

with                             . Let  ̅  denote the plotting statistic at sampling 

point  , no longer calculated as in Equation (2), but using  ̅    ∑    (   )       . (5) 

Hence, for the  ̅ scheme with the s-skip strategy the charting limits are as given in Equation 

(3); however, with   given in Table 1. Some other works in the literature that considered the 

s-skip sampling strategy are [6, 7, 8, 10, 13, 29, 30, 31].  

 

2.2 Mixed samples strategy 

The mixed sampling strategy proposed by Franco et al. [7] implements the „1-skip‟ rule in 

two consecutive samples to merge the observations within the two samples, at times t-1 and t, 

into a single sample having size n. That is,  ̅  is not calculated as in either Equation (2) or (5) 

but, instead, it is computed as 

 ̅       (      ∑            
   )     (    ∑         

   ) (6) 

where      and    are sizes of the subsamples taken at times     and  , respectively, 

satisfying          . In their paper, Franco et al. [7] suggested the following 

combinations for      and   : when   is odd then      (   )   and    (   )  ; 

however, when   is even then            . Hence, for the  ̅ scheme with mixed 

samples strategy, the charting limits are as given in Equation (3); however, with   given in 

Table 1. Some other works in the literature that used mixed samples are [6, 8, 14].  

 

2.3 Mixed-s-skip samples strategy 

The proposed combined mixed-s-skip strategy is a generalization of the mixed samples one in 

the sense that it implements the „s-skip‟ rule in two consecutive samples to merge the 

observations within the two samples into one sample having size n. Hence, instead of having 
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Equations (2) or (5) or (6) as a plotting statistic, the combined mixed-s-skip samples strategy 

uses  ̅       .      ∑      (   )        /     .    ∑    (   )        /. (7) 

Hence, for the  ̅ scheme with mixed-s-skip samples strategy, the charting limits are as given 

in Equation (3); however, with   given in Table 1. Note that when s=1, the proposed strategy 

is the same as the mixed samples strategy in [7]. 

Next, the run-length properties of the Shewhart  ̅ scheme that incorporates the mixed-s-skip 

samples strategy depends on whether the process shift occurred: (i) at the beginning of the 

monitoring process; or (ii) it begins in IC and stays IC for a while and goes OOC just before 

sampling point  . These two latter modes of analysis are known as the (i) zero-state and, (ii) 

steady-state modes, respectively. Since the Shewhart  ̅ scheme is the simplest monitoring 

scheme that makes use of the information in the most recently inspected sample (and not in 

past samples), then its run-length distribution follows a geometric distribution with parameter 

(   ), where   represents the Type II error . Hence, the zero-state average and standard 

deviation run-length (denoted by ZSARL and ZSSDRL) are given by             and         √      (8) 

respectively; where    (   √    )   (    √    )  (9) 

Following a similar procedure as in [7], it follows that the steady-state average and standard 

deviation run-length (denoted by SSARL and SSSDRL) of the  ̅ scheme using mixed-s-skip 

samples strategy are given by                and         √  (      )     (10) 

respectively; where   is the same as in Equation (9) and      (   √        )   (    √        )  (11) 

To evaluate the performance of the proposed scheme from an overall performance 

perspective, the expected ARL (EARL) and the expected SDRL (ESDRL) are used because 

users tend not to know beforehand what exact shift value(s) is(are) targeted, see for instance 

[4]. The EARL and ESDRL measure the performance of a monitoring scheme over a range of 

shift values, i.e.      to      – which are the lower and the upper bound of  , respectively. 

The EARL and ESDRL are given by 
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     ∫    ( )    
      ( )                       ∫     ( )    

      ( )     (12) 

subject to    (   )      , with   ,         -  Note that the shifts within the interval ,         - usually occur according to a probability distribution function (p.d.f.) equal to  ( ) which is usually unknown, where    ( ) and     ( ) are the ARL and SDRL as a 

function of the shift   in the parameter under surveillance. In the absence of any particular 

information, it is usually assumed that the shifts in the process mean happen with an equal 

probability, then  ( )    (         ) i.e. a Uniform (         ) distribution. The 

proposed scheme is designed such that, we fix   at a specific value, so that the attained IC 

ARL is equal to the target nominal ARL (denoted by ARL0). Thus, we choose the scheme that 

yields the best overall performance for a range of specified shifts; i.e. the smallest EARL or 

ESDRL. Equation (12) can equivalently be written as  

       ∑    ( )    
                             ∑     ( )    

       (13) 

where   is the number of increments from      to      of a Riemann sum.  To preserve 

writing space, we use increments of size 0.25 in the summations in Equation (13), with     =0 and     =3. Based on the latter, it follows that  =13. 

 

2.4 Empirical analysis for autocorrelated data 

Table 2 illustrates the well-known negative effect of autocorrelation, that is, as the level of 

autocorrelation increases from 0 to some value between 0 and 1, the corresponding 

performance deteriorates, especially when   is very high. In each panel of Table 2, it is 

observed that the EARL and ESDRL (computed using Equation (13)) deteriorate as   

increases. To investigate to what extent increasing the value of   has deteriorated the 

scheme‟s performance as compared to the i.i.d. case (i.e.  =0), we define the percentage 

difference (%Diff). More specifically,        is defined as a percentage difference of EARL 

at some specified value of   from the corresponding i.i.d. case, i.e.,                                 ; where       denote the EARL of the  ̅ scheme for 

some specified  >0, whereas         denote the EARL of the  ̅ scheme when  =0. 

Similarly, let         denote the percentage difference of ESDRL at some specified value of   from the corresponding i.i.d. case; hence,                                     . Based on 
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        and        , it is observed that the higher the value of  , the worse the deterioration 

as compared to the i.i.d. case. Finally, in Table 2, it is observed that at each   value, the 

SDRL is slightly lower than the ARL and consequently the same holds for the ESDRL and 

EARL over the range of considered shift values.   

<Insert Table 2 here> 

Next, in Tables 3 and 4, the effect of using the mixed-s-skip samples strategy (in zero- and 

steady-state modes) when   {1, 2, …, 10} is investigated for the cases shown in Table 2. 

“No remedy” denotes a scenario where there is no remedial approach used to offset the 

negative effect of autocorrelation. Note that when s=1 for the mixed-s-skip strategy, the 

resulting performance corresponds to the one in [7], that is, s=1 is a special case 

corresponding to mixed samples strategy. In essence, Tables 3 and 4 compare the 

performances of the  ̅ schemes using the s-skip, mixed samples and mixed-s-skip strategies.  

<Insert Tables 3 and 4 here> 

From Table 3, it is observed that for relatively small values of  , then at each corresponding 

value of s, the mixed-s-skip strategy is either uniformly better or the same as the s-skip 

strategy for all possible values of s, in the zero-state mode. Also, it is seen that for small  , 

the negative effect of autocorrelation can be theoretically eradicated by skipping at least 5 

observations before sampling to form a subgroup of size 4 when  =0.3. While the mixed-s-

skip strategy in zero-state does theoretically eradicate the effect of autocorrelation, this is not 

the case when the process is in the steady-state mode. For instance, while the        

converges to 0% when  =0.3 in zero-state; however, in steady-state mode, it converges to 

1.5%. This is visually illustrated in Figure 2(a) where the „SS: Mixed-s-skip‟ (which denotes 

the mixed-s-skip in steady-state mode) line graph converges to a value of the EARL that is 

slightly higher than the i.i.d. case value; however, the line graphs of the „ZS: Mixed-s-skip‟ 

(which denotes the mixed-s-skip in zero-state mode) and the s-skip are equal to the i.i.d. case 

when s   5. Also, while the mixed-s-skip and s-skip strategies are flexible as s increase, the 

mixed samples strategy is static. More importantly, Figure 2(a) illustrate that the no remedial 

approach has the worst performance and adds the motivation for the use of any remedial 

approach to counteract the negative effect of autocorrelation.  

<Insert Figure 2 here> 

Next, in Table 4, it is observed that when   is very large (i.e. close to 1), then at each 

corresponding value of s, the mixed-s-skip strategy is uniformly better than the s-skip 

strategy for all possible values of s, in both the zero- and steady-state modes. While for small 
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   values, it is possible to skip few observations and consequently eradicate the negative 

effect of autocorrelation, this is not the case with large   values. Moreover, it is observed that 

the mixed-s-skip strategy in zero-state has slightly smaller values of the EARL than those in 

steady-state mode; hence, the        is slightly lower in zero-state mode. This is illustrated 

in Figure 2(b), where it is observed that the mixed samples strategy is not flexible, and thus, 

even the s-skip strategy outperforms the mixed samples for large   values as the value of s 

increases. Thus, it is observed that the new mixed-s-skip strategy introduces the flexibility 

such that even for high values of s, it maintains its competitiveness when compared to the s-

skip strategy. Note that [7] only used the steady-state mode to evaluate the performance of 

the mixed samples  ̅ scheme and concluded that it has a better performance than the s-skip 

strategy for large   values; however, Figure 2 shows that this is not the case for large s 

values. Note though, the new generalized version of mixed samples rather yields a better 

performance than the s-skip for all possible values of s. Even as    , the EARL or ESDRL 

of the mixed-s-skip and s-skip strategies converge to an approximately equal values with 

those of the mixed-s-skip strategy slightly smaller, e.g. for s=30 with  =0.95 and n=10, the 

resulting EARLs, with     =0 and     =3, are equal to 39.51 and 39.05 for the s-skip and 

(steady-state) mixed-s-skip strategies, respectively. 

A similar pattern as that of the ARLs (i.e. Tables 3 and 4) is observed for the SDRLs for each 

of the considered strategies at different values of   and s; hence, in Table 5 we only show the 

ESDRL and        , which have a similar pattern as the EARL and        shown in Tables 

3 and 4, as the value of s increases. 

<Insert Table 5 here> 

The effect of the sample size on the performance of the mixed-s-skip  ̅ scheme in zero-state 

mode is illustrated in Figure 3 when n   {3, 4, 7, 10} which implies that (       )   {(1,2), 

(2,2), (3,4), (5,5)}, respectively. It is evident from Figure 3 that increasing the sample size 

leads to an improved performance of the mixed-s-skip  ̅ scheme. While Figure 3 is 

specifically done for zero-state and s=3, a similar pattern is observed in steady-state as well 

as for other values of s.   

<Insert Figure 3 here> 

2.5 Implementation example for monitoring autocorrelated data 

The yogurt cup filling process dataset taken from page 1418 of Franco et al. [7] is displayed 

on Table 6, which shows the weights of different yogurt cups taken at different sampling 

points. The dataset has 24 samples (each of size 5 yogurt cups taken every hour). The Phase I 
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analysis of this process indicated that the weight of a yogurt cup,     , fits an AR(1) model 

with parameter    0.7, an IC mean estimate,     125  and an IC standard deviation,    = 

1 . For illustration purpose, assume that the data in Table 6 is a full dataset and here we 

show how to implement the mixed-s-skip sampling strategy to form rational subgroups of 

size n=3 (i.e., with     =1 and   =2). In the last two columns, the corresponding plotting 

statistics at each sampling point are shown when   {1,2}. For instance, for  =2 and   {2,3}, then using Equation (7), these are calculated as follows:  ̅    .      /    (  (         ))     (126.45+125.56+123.77) = 125.26,   ̅    .      /    (  (         ))     (123.60+127.18+126.32) = 125.70.  

<Insert Table 6 here> 

For  =3,    0.7 and assuming that the process is in a steady-state mode, we obtain   (see 

Equation (3) and Table 1) equal to 1.1518 and 1.1085 for   equal to 1 and 2, respectively. 

That is, as   increases, the value of   converges towards the value of 1. Hence, the UCL / 

LCL for the  ̅ scheme are given by 126.99 / 123.01 and 126.92 / 123.08 for   equal to 1 and 

2, respectively. That is, as   increases, the control limits become narrow. As it can be seen in 

Figures 4(a) and (b), for each mixed-s-skip sampling strategy with   {1,2}, the  ̅ scheme 

does not yield an OOC signal when  =1; however, it issues the first OOC signal at sampling 

point   = 16 when  =2. In summary, this example shows that the  ̅ scheme‟s control limits 

become narrow as   increases (i.e.,   decreases towards 1 as   increase); hence, there is an 

improvement in the OOC detection rate especially as   is relatively large in the steady-state 

mode. 

<Insert Figure 4> 

3. Autocorrelated observations with measurement errors 

3.1 The proposed strategy 

Assume that the *   (   )   + observations from Equation (1) are not directly observable, but 

can only be assessed from the results {   (   )           1;   = 1,2,…,n;  j = 1,2,…,m}, where 

each element of the sequence can be expressed in terms of the additive model with a constant 

standard deviation, see [16], i.e.,    (   )            (   )       (   )     ;   (14) 

where    (   )       (    ) is a random error term due to measurement inaccuracy and    is 

the standard deviation of the measurement system, where   and   are two constants 

depending on the measurement system location error (for a sake of simplicity, in this paper, 
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we assume that A=0 and B=1). Since we assume that *   (   )     + are from an imperfect 

measurement system (i.e.         0, which denotes the ratio of the measurement system 

variability to the process variability) then it is standard practice to take multiple 

measurements (of size m, with m > 1) as a remedial approach in reducing the effect of 

measurement errors, see [16]. Hence, instead of Equations (9) as a plotting statistic, the 

combined mixed-s-skip samples strategy and m-multiple measurements strategy (denoted as 

mix-s&m) uses m separate measurements, each of size   (i.e. a total of     observations), 

so that the plotting statistic is given by 

 ̅     ∑∑   (   )      
   

 
      (∑      (   )     

    ∑   (   )     
      ∑∑   (   )      

   
 

   )  (15) 

The  ̅ scheme‟s         are given by:            ̅      ̅   (16) 

with   ̅      and   ̅     √   are the mean and standard deviation of  ̅ , respectively;   is 

as defined in Equation (3) and   depends on which sampling strategy is implemented to 

account for both autocorrelation and measurement errors. Note that for the i.i.d. case, with 

perfect measurement,   is equal to 1. The expressions for   when the sampling strategy 

implemented is the mix-s&m strategy, the s-skip strategy with m-multiple measurements 

strategy (denoted by s&m) proposed in [5] and the mixed samples strategy with m-multiple 

measurements strategy (denoted by mix&m) are each shown in Table 7. 

<Insert Table 7 here> 

Note that the ZSARL, ZSSDRL, SSARL and SSSDRL of the  ̅ scheme with mix-s&m strategy 

are also given by Equations (8) and (10); however, with     (   √    )   (    √    ) (17) 

and      (   √        )   (    √        )  (18) 

Note that [7] proposed the mixed samples strategy for autocorrelated data but without taking 

measurement errors into account. Thus, in an effort to extend on their work so that it accounts 

for measurement errors, the mix&m is introduced here by taking s=1 in Equations (15), (17) 

and (18). In the next subsection, the run-length performance of the s&m strategy is compared 

with the two new strategies (i.e. mix&m and mix-s&m) in both zero- and steady-state mode 

of analysis. 
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3.2 Empirical analysis of autocorrelated data with measurement errors 

In Tables 8 and 9, the negative effect of autocorrelation and measurement errors is illustrated 

for both   and   equal to {0.3, 0.9}, the i.i.d. case (i.e. both   and   equal to 0) and the no 

remedial approach case to offset the combined negative effect of autocorrelation and 

measurement error which is denoted as “No remedy”. Note that in Tables 8 and 9, the aim is 

to illustrate the degree of the negative effect of a small / large level of autocorrelation and 

measurement errors in the short- and long-run scenarios; and more importantly, to illustrate 

how the magnitude of the zero- and steady-state ARLs are affected as s and m increase for 

different values of   and  . Firstly, in both tables, it is observed that when s=1, the mix-s&m 

and mix&m have exactly the same OOC performance; however, when s > 1, then the mix-

s&m strategy uniformly outperforms the mix&m strategy. Secondly, in Table 8, with  =0.3, 

as s increases (for any value of m) the s&m strategy becomes more competitive than the 

mix&m strategy – this is because the mix&m strategy is not flexible with respect to the s 

variable. That is, for small   values, the s&m strategy tends to outperform the mix-s&m 

strategy in steady-state; however, in zero-state, the mix-s&m strategy is uniformly better than 

all the competing strategies. Note though, for large   values (see Table 9 with  =0.9), the 

s&m strategy is outperformed by the mix-s&m strategy in both the zero- and steady-state 

modes. Thirdly, increasing s and m improves the performance of each of the monitoring 

schemes. Fourthly, while for the process under the effect of low level autocorrelation only 

(say,  =0.3 in Table 3 or Figure 2(a)), skipping at least 5 observations ensures that we can 

theoretically get rid of all autocorrelation and the scheme yields the same OOC performance 

as the i.i.d. version, but for the combined negative effect of autocorrelation and measurement 

errors (e.g.  =0.3 and  =0.3), it is not possible to theoretically get rid of all the negative 

effect of autocorrelation and measurement errors for moderate values of s and m so that        or         converges to 0.0% - this only happens for unreasonably large values of s 

and m. That is, a combined effect of both autocorrelation and measurement errors introduces 

more variability in the process than autocorrelation only. Lastly, similar to Figure 3, 

increasing the sample size yields an improved performance for the mix-s&m strategy as well 

as the other strategies.  

<Insert Tables 8 and 9 here> 

In essence, we observed that at any possible corresponding values of s and m: 
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 In zero-state mode, the mix-s&m strategy has a better OOC performance than the 

mix&m and s&m strategies.   

 In steady-state mode, the s&m strategy tends to outperform the mix&m and mix-s&m 

strategies for large values of s when   is small (for any value of  ). However, when   

is large (for any value of  ), the mix-s&m strategies uniformly outperform the s&m 

and mix&m strategies, whereas the mix&m strategy only outperforms the s&m 

strategy for relatively small to moderate values of s.  

 

3.3. Implementation example for monitoring autocorrelated data with measurement 

errors  

The yogurt cup filling process dataset taken from page 670 of Costa and Castagliola [5] is 

displayed on Table 10, which shows the weights of different yogurt cups taken at different 

sampling points. The dataset has 20 samples (each of size 5 yogurt cups taken every hour and 

each of them weighted m=2 times) corresponding to a 20-hours sequence of production and 

for the sake of illustration, assume this is a full dataset. The Phase I analysis of this process 

indicated that the weight of a yogurt cup,       , fits an AR(1) model with parameter    

0.38, an IC mean estimate,     124.9  and an IC standard deviation,    = 0.76 . An R&R 

study indicates that the measurement system standard deviation,    = 0.24 , so that  =0.316. 

The aim of this example is to show how to implement the mix-s&m sampling strategy to form 

rational subgroups of size n=3 (i.e., with     =1 and   =2) when   {1,2},  =2 when the 

process is in a steady-state mode. In the last two columns, the corresponding plotting 

statistics at each sampling point are shown. For instance, for  = =2 and   {2,3}, these are 

calculated as follows:   ̅      .(             )  (             )  (             )/   125.08,   ̅      .(             )  (             )  (             )/   123.92.  

<Insert Table 10 here> 

When  =3,    0.380 and  =0.316, then using Equation (16) and Table 7, the resulting   are 

equal to 1.0706 and 1.0423 for the mix-1&2 and mix-2&2 strategies, respectively. That is, as   increases, the value of   converges towards the value of 1 (given that m is constant) and 

thus the control limits become narrow. That is, the UCL / LCL for the  ̅ scheme are given by 

127.34 / 122.46 and 127.28 / 122.52 for the mix-1&2 and mix-2&2 strategies, respectively. 

Note though, as can be seen from Figure 5, the mix-s&m strategy do not signal any 
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assignable causes in the process being monitored. In essence, this example illustrates the 

weakness of the mix-s&m strategy when the level of autocorrelation is small and the process 

is in a steady-state mode, see the last paragraph of Section 3.2.      

<Insert Figure 5 here> 

 

4. Conclusion 

In an effort to reduce the negative effect of autocorrelation, the mixed-s-skip sampling 

strategy which combines the s-skip and mixed samples methodology is proposed. Using the 

average and standard deviation of the run-length distribution, it is shown that, in the zero-

state mode, the mixed-s-skip strategy yields the best OOC performance than the s-skip and 

mixed samples strategies for any level of autocorrelation when evaluating the run-length 

processes with and without measurement errors. However, in steady-state mode, it only 

yields the best OOC performance when the level of autocorrelation is very high for processes 

with and without measurement errors. 

This new remedial approach sampling strategy is recommended instead of the mixed samples 

strategy (for any autocorrelation level value in both zero- and steady-state modes) and s-skip 

strategy (for any autocorrelation level value in zero-state; however, only for large 

autocorrelation values in steady-state) when the process is under the negative effect of 

autocorrelation with and without measurement errors. Finally, although it yields better 

performance, the drawback of the proposed strategy is that it requires way more observations, 

time and effort to implement as compared to the standard no remedy approach.  

For future research purpose, we intend to investigate the performance of this sampling 

strategy when the autocorrelation parameter,  , as well as the distributional parameters, are 

estimated from some historical Phase I data; that is, in part, in a similar manner as done in 

Garza-Venegas et al. [9]. Moreover, the new mixed-s-skip strategy can easily be applied for a 

variety of other monitoring schemes (i.e. the basic T
2
 scheme, synthetic  ̅ or T

2
 schemes, 

exponentially weighted moving average or Cumulative Sum, etc., with key basic concepts 

discussed in [5], [6], [13], [14], [24]) and different quality characteristics (i.e. median, 

standard deviation, etc.).    

 

Data availability statement 

The data used in the application example is available from the papers by Costa and 

Castagliola [5] and Franco et al. [7]. 
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Table 1:   terms for different sampling strategies when the process is i.i.d. and when it is 

under the effect of autocorrelation 
Sampling strategy   

(i) i.i.d. 1 

(ii) s-skip √   (                                     )  

(iii) Mixed samples √    (                           )        (                                 )  

(iv) Mixed-s-skip √    (                                        )        (                                              )  

 

 

 

 

  



 

Table 2: The ARL, SDRL, EARL and ESDRL of the  ̅ scheme when   {0, 0.3, 0.9} when     =0,     =3 and  =4 with no remedial approach 
  ARL    SDRL  

Shift i.i.d.  =0.3  =0.9  i.i.d  =0.3  =0.9 

0 370.4 370.4 370.4  369.9 369.9 369.9 

0.25 155.2 199.5 272.0  154.7 199.0 271.5 

0.5 43.9 71.1 142.6  43.4 70.6 142.1 

0.75 15.0 27.6 71.7  14.5 27.1 71.2 

1 6.3 12.3 37.7  5.8 11.8 37.2 

1.25 3.2 6.3 21.0  2.7 5.7 20.5 

1.5 2.0 3.6 12.4  1.4 3.1 11.9 

1.75 1.5 2.4 7.8  0.8 1.8 7.3 

2 1.2 1.7 5.2  0.5 1.1 4.7 

2.25 1.1 1.4 3.7  0.3 0.7 3.1 

2.5 1.0 1.2 2.7  0.2 0.5 2.2 

2.75 1.0 1.1 2.1  0.1 0.3 1.5 

3 1.0 1.0 1.7  0.0 0.2 1.1 

EARL 46.4 53.8 73.2 ESDRL 45.7 53.2 72.6          16.1% 57.8%           16.4% 58.9% 

 

 

 

 

 

 

 

 

 

  



 

Table 3: The ARL and EARL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-

state)  ̅ scheme when  =0.3,   {1, 2,…, 10},     =0,     =3 and n=4 (with   =    =2) 
Type Shift i.i.d. No remedy s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 

s-
sk

ip
 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 155.2 199.5 168.7 159.3 156.4 155.6 155.3 155.3 155.2 155.2 155.2 155.2 

0.5 43.9 71.1 51.3 46.0 44.5 44.1 44.0 43.9 43.9 43.9 43.9 43.9 

0.75 15.0 27.6 18.2 15.9 15.2 15.1 15.0 15.0 15.0 15.0 15.0 15.0 

1 6.3 12.3 7.7 6.7 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

1.25 3.2 6.3 3.9 3.4 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 

1.5 2.0 3.6 2.4 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

1.75 1.5 2.4 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

2 1.2 1.7 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

2.25 1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

2.5 1.0 1.2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

2.75 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 EARL 46.4 53.8 48.4 47.0 46.5 46.4 46.4 46.4 46.4 46.4 46.4 46.4 

          16.1% 4.5% 1.3% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

S
te

a
d

y
-s

ta
te

: 
M

ix
-s

 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 155.2 199.5 164.3 158.3 156.5 155.9 155.8 155.7 155.7 155.7 155.7 155.7 

0.5 43.9 71.1 49.2 46.0 45.0 44.7 44.7 44.6 44.6 44.6 44.6 44.6 

0.75 15.0 27.6 17.8 16.4 16.0 15.8 15.8 15.8 15.8 15.8 15.8 15.8 

1 6.3 12.3 8.0 7.4 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

1.25 3.2 6.3 4.5 4.2 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 

1.5 2.0 3.6 3.1 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 

1.75 1.5 2.4 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

2 1.2 1.7 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

2.25 1.1 1.4 1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 

2.5 1.0 1.2 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

2.75 1.0 1.1 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

3 1.0 1.0 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

 EARL 46.4 53.8 48.4 47.4 47.2 47.1 47.1 47.0 47.0 47.0 47.0 47.0 

          16.1% 4.3% 2.3% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 

Z
er

o
-s

ta
te

: 
M

ix
-s

 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 155.2 199.5 163.9 157.9 156.0 155.5 155.3 155.3 155.2 155.2 155.2 155.2 

0.5 43.9 71.1 48.5 45.3 44.3 44.0 43.9 43.9 43.9 43.9 43.9 43.9 

0.75 15.0 27.6 17.0 15.6 15.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 

1 6.3 12.3 7.2 6.6 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3 

1.25 3.2 6.3 3.7 3.4 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 

1.5 2.0 3.6 2.2 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

1.75 1.5 2.4 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

2 1.2 1.7 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

2.25 1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

2.5 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

2.75 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

EARL  46.4 53.8 47.7 46.8 46.5 46.4 46.4 46.4 46.4 46.4 46.4 46.4          16.1% 2.8% 0.9% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

 

 

 

 

 

 



Table 4: The ARL and EARL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-

state)  ̅ scheme when  =0.9,   {1, 2,…, 10},     =0,     =3 and n=4 (with   =    =2) 
Type Shift i.i.d. No remedy s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 

s-
sk

ip
 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 155.2 272.0 263.0 254.4 246.1 238.2 230.8 224.0 217.6 211.7 206.4 201.5 

0.5 43.9 142.6 131.2 121.0 112.0 104.0 96.9 90.7 85.2 80.5 76.3 72.6 

0.75 15.0 71.7 63.6 56.7 50.9 45.9 41.7 38.1 35.1 32.5 30.3 28.3 

1 6.3 37.7 32.6 28.4 24.9 22.1 19.7 17.7 16.1 14.8 13.6 12.6 

1.25 3.2 21.0 17.8 15.3 13.3 11.6 10.3 9.2 8.3 7.6 7.0 6.4 

1.5 2.0 12.4 10.4 8.9 7.7 6.7 5.9 5.3 4.8 4.4 4.0 3.7 

1.75 1.5 7.8 6.5 5.6 4.8 4.2 3.7 3.3 3.0 2.8 2.6 2.4 

2 1.2 5.2 4.4 3.7 3.2 2.9 2.6 2.3 2.1 2.0 1.9 1.8 

2.25 1.1 3.7 3.1 2.7 2.3 2.1 1.9 1.8 1.6 1.5 1.5 1.4 

2.5 1.0 2.7 2.3 2.0 1.8 1.7 1.5 1.4 1.3 1.3 1.2 1.2 

2.75 1.0 2.1 1.9 1.6 1.5 1.4 1.3 1.2 1.2 1.1 1.1 1.1 

3 1.0 1.7 1.5 1.4 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.0 

 EARL 46.4 73.2 69.9 67.1 64.6 62.5 60.6 59.0 57.5 56.3 55.2 54.2 

          57.8% 50.8% 44.7% 39.4% 34.7% 30.7% 27.2% 24.1% 21.4% 19.0% 16.9% 

S
te

a
d

y
-s

ta
te

: 
M

ix
ed

-s
-s

k
ip

 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 155.2 272.0 214.8 210.3 206.1 202.2 198.4 194.9 191.7 188.6 185.8 183.1 

0.5 43.9 142.6 83.2 79.7 76.5 73.5 70.8 68.3 66.0 64.0 62.1 60.4 

0.75 15.0 71.7 34.4 32.5 30.8 29.2 27.9 26.6 25.5 24.5 23.6 22.8 

1 6.3 37.7 16.2 15.2 14.3 13.5 12.9 12.2 11.7 11.2 10.8 10.4 

1.25 3.2 21.0 8.7 8.2 7.7 7.3 7.0 6.7 6.4 6.1 5.9 5.7 

1.5 2.0 12.4 5.4 5.1 4.8 4.6 4.4 4.2 4.1 4.0 3.8 3.7 

1.75 1.5 7.8 3.8 3.6 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.8 

2 1.2 5.2 2.9 2.8 2.7 2.6 2.6 2.5 2.4 2.4 2.3 2.3 

2.25 1.1 3.7 2.4 2.4 2.3 2.2 2.2 2.2 2.1 2.1 2.1 2.0 

2.5 1.0 2.7 2.1 2.1 2.1 2.0 2.0 2.0 1.9 1.9 1.9 1.9 

2.75 1.0 2.1 2.0 1.9 1.9 1.9 1.8 1.8 1.8 1.8 1.8 1.8 

3 1.0 1.7 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7 

 EARL 46.4 73.2 57.5 56.6 55.8 55.0 54.2 53.6 53.0 52.4 51.9 51.5 

          57.8% 24.1% 22.1% 20.3% 18.6% 17.0% 15.6% 14.3% 13.1% 12.0% 11.0% 

Z
er

o
-s

ta
te

: 
M

ix
ed

-s
-s

k
ip

 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 155.2 272.0 214.4 210.0 205.8 201.8 198.1 194.6 191.3 188.2 185.4 182.8 

0.5 43.9 142.6 82.6 79.1 75.8 72.8 70.1 67.6 65.4 63.3 61.4 59.7 

0.75 15.0 71.7 33.6 31.7 30.0 28.5 27.1 25.9 24.7 23.7 22.8 22.0 

1 6.3 37.7 15.4 14.4 13.5 12.7 12.0 11.4 10.9 10.4 9.9 9.6 

1.25 3.2 21.0 7.9 7.4 6.9 6.5 6.1 5.8 5.5 5.3 5.0 4.8 

1.5 2.0 12.4 4.5 4.2 4.0 3.7 3.5 3.4 3.2 3.1 3.0 2.9 

1.75 1.5 7.8 2.9 2.7 2.6 2.4 2.3 2.2 2.1 2.1 2.0 1.9 

2 1.2 5.2 2.0 1.9 1.8 1.8 1.7 1.6 1.6 1.5 1.5 1.5 

2.25 1.1 3.7 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.3 1.2 1.2 

2.5 1.0 2.7 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 

2.75 1.0 2.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 

3 1.0 1.7 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

EARL  46.4 73.2 56.8 55.9 55.0 54.3 53.5 52.9 52.3 51.7 51.2 50.8          57.8% 22.6% 20.6% 18.7% 17.0% 15.5% 14.0% 12.7% 11.6% 10.5% 9.5% 

 

 

 

 

 

 

 

 



 

Table 5: The ESDRL (and         – in brackets) of the s-skip, mixed samples, mixed-s-skip 

(zero- and steady-state)  ̅ scheme when   {0, 0.3, 0.9},   {1, 2,…, 10},     =0,     =3 

and n=4 (with   =    =2) 

  
 =0.3 

  
  =0.9 

 
i.i.d. 45.7 45.7 45.7 45.7 45.7 45.7 

No remedy 53.2 (16.4%) 53.2 (16.4%) 53.2 (16.4%) 72.6 (58.9%) 72.6 (58.9%) 72.6 (58.9%) 

s=1 47.8 (4.6%) 47.2 (3.2%) 47.0 (2.9%) 69.4 (51.8%) 56.3 (23.2%) 56.3 (23.1%) 

s=2 46.3 (1.3%) 46.2 (1.2%) 46.1 (0.9%) 66.5 (45.6%) 55.4 (21.2%) 55.3 (21.0%) 

s=3 45.9 (0.4%) 46.0 (0.6%) 45.8 (0.3%) 64.1 (40.2%) 54.5 (19.3%) 54.5 (19.2%) 

s=4 45.8 (0.1%) 45.9 (0.4%) 45.7 (0.0%) 61.9 (35.5%) 53.7 (17.6%) 53.7 (17.4%) 

s=5 45.7 (0.0%) 45.9 (0.3%) 45.7 (0.0%) 60.0 (31.4%) 53.0 (16.0%) 52.9 (15.8%) 

s=6 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 58.4 (27.8%) 52.4 (14.5%) 52.3 (14.4%) 

s=7 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 57.0 (24.6%) 51.7 (13.2%) 51.7 (13.0%) 

s=8 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 55.7 (21.8%) 51.2 (12.0%) 51.1 (11.8%) 

s=9 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 54.6 (19.4%) 50.7 (10.9%) 50.6 (10.7%) 

s=10 45.7 (0.0%) 45.8 (0.3%) 45.7 (0.0%) 53.6 (17.3%) 50.2 (9.9%) 50.1 (9.7%) 

 s-skip 
Steady-state: 

Mixed-s-skip 

Zero-state: 

Mixed-s-skip 
s-skip 

Steady-state: 

Mixed-s-skip 

Zero-state: 

Mixed-s-skip 

 

 

  



 

Table 6: The yogurt filling cup process dataset from Franco et al. [7]                            Mixed-1-skip Mixed-2-skip 

1 124.74 126.12 126.45 124.66 125.11    

2 125.56 123.24 123.60 123.77 123.54 125.09 125.26 

3 127.18 127.38 127.18 126.32 126.55 125.87 125.70 

4 124.41 124.22 124.29 126.10 124.60 125.36 125.90 

5 125.37 124.87 123.65 123.16 122.29 124.41 124.27 

6 124.83 126.62 126.24 125.86 127.53 125.31 124.78 

7 124.22 124.15 124.14 123.82 124.18 124.99 124.76 

8 123.91 124.28 126.31 126.06 127.08 124.79 124.70 

9 125.40 125.14 125.60 123.90 124.92 125.09 125.20 

10 125.53 125.36 124.24 123.71 123.64 124.97 124.95 

11 125.79 123.91 124.28 125.19 125.98 125.14 125.07 

12 124.55 126.61 126.98 126.84 127.60 125.15 125.22 

13 126.15 125.60 124.26 126.17 126.65 125.67 126.43 

14 123.54 124.42 123.52 123.53 122.95 124.22 123.78 

15 124.02 123.78 122.60 122.42 123.26 123.68 123.32 

16 124.02 123.78 122.60 122.42 123.26 123.47 123.01 

17 125.03 124.72 123.62 124.99 124.37 124.14 124.21 

18 125.17 125.10 124.45 124.03 125.11 124.78 124.27 

19 124.22 125.64 125.19 124.39 125.40 124.84 124.35 

20 123.35 122.90 122.31 122.42 120.09 123.77 123.65 

21 124.65 125.45 124.43 124.83 124.34 123.99 123.93 

22 124.88 125.27 124.73 123.09 123.14 125.02 124.13 

23 123.59 124.27 123.70 124.62 123.41 124.19 124.31 

24 124.24 125.87 124.62 125.99 124.19 124.38 124.64 



Table 7:   terms for different sampling strategies when the process is i.i.d. and when it is under the effect of autocorrelation and measurement 

errors 
Sampling strategy   

(i) i.i.d. 1 

(ii) s&m √(     )  (   (                                     ) )    

(iii) Mix&m √(     )  (    (                           )        (                                 ) )    

(iv) Mix-s&m √(     )  (    (                                        )        (                                              ) )    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8: The ARL and SDRL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-state)  ̅ scheme when  =0.3,  =0.3,   {1, 3, 5},   {2, 4, 6},      =0,     =3 and n=5 (with   =3 and     =2) 
      s=1,m=2     s=3,m=4     s=5,m=6   

 Shift i.i.d. 
No 

remedy 
s&m 

SS: 

Mix&m 

ZS: 

Mix&m 

SS: 

Mix-

s&m 

ZS: 

Mix-s&m 
s&m 

SS: 

Mix&m 

ZS: 

Mix&m 

SS: 

Mix-

s&m 

ZS: 

Mix-s&m 
s&m 

SS: 

Mix&m 

ZS: 

Mix&m 

SS: 

Mix-

s&m 

ZS: 

Mix-s&m 

A
R

L
 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 133.2 186.4 151.1 147.8 147.4 147.8 147.4 136.6 145.9 145.5 136.7 136.3 134.7 145.2 144.8 135.1 134.7 

0.5 33.4 62.1 41.8 40.6 40.0 40.6 40.0 34.9 39.7 39.0 35.4 34.8 34.1 39.4 38.7 34.7 34.1 

0.75 10.8 23.2 14.1 14.1 13.4 14.1 13.4 11.3 13.7 13.0 12.0 11.3 11.0 13.6 12.9 11.8 11.0 

1 4.5 10.1 5.9 6.4 5.6 6.4 5.6 4.7 6.2 5.4 5.5 4.7 4.6 6.2 5.4 5.4 4.6 

1.25 2.4 5.1 3.1 3.7 2.9 3.7 2.9 2.5 3.6 2.8 3.3 2.5 2.4 3.6 2.8 3.2 2.4 

1.5 1.6 3.0 1.9 2.6 1.8 2.6 1.8 1.6 2.6 1.8 2.4 1.6 1.6 2.5 1.8 2.3 1.6 

1.75 1.2 2.0 1.4 2.1 1.4 2.1 1.4 1.3 2.1 1.3 1.9 1.3 1.2 2.0 1.3 1.9 1.2 

2 1.1 1.5 1.2 1.8 1.1 1.8 1.1 1.1 1.8 1.1 1.7 1.1 1.1 1.8 1.1 1.7 1.1 

2.25 1.0 1.2 1.1 1.6 1.1 1.6 1.1 1.0 1.6 1.0 1.5 1.0 1.0 1.6 1.0 1.5 1.0 

2.5 1.0 1.1 1.0 1.5 1.0 1.5 1.0 1.0 1.5 1.0 1.4 1.0 1.0 1.4 1.0 1.4 1.0 

2.75 1.0 1.1 1.0 1.3 1.0 1.3 1.0 1.0 1.3 1.0 1.3 1.0 1.0 1.3 1.0 1.3 1.0 

3 1.0 1.0 1.0 1.2 1.0 1.2 1.0 1.0 1.2 1.0 1.2 1.0 1.0 1.2 1.0 1.2 1.0 

 EARL 43.3 51.4 45.8 45.8 45.2 45.8 45.2 43.7 45.5 44.9 44.2 43.7 43.5 45.4 44.9 44.0 43.5 

          18.8% 5.8% 5.8% 4.5% 5.8% 4.5% 1.0% 5.2% 3.9% 2.2% 1.0% 0.4% 4.9% 3.7% 1.7% 0.4% 

S
D

R
L

 

0 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 

0.25 132.7 185.9 150.6 146.9 146.9 146.9 146.9 136.1 145.0 145.0 135.8 135.8 134.2 144.3 144.3 134.2 134.2 

0.5 32.9 61.6 41.3 39.5 39.5 39.5 39.5 34.4 38.5 38.5 34.3 34.3 33.6 38.2 38.2 33.6 33.6 

0.75 10.3 22.6 13.6 12.9 12.8 12.9 12.8 10.8 12.5 12.5 10.8 10.8 10.5 12.3 12.3 10.5 10.5 

1 4.0 9.6 5.4 5.1 5.1 5.1 5.1 4.2 4.9 4.9 4.2 4.2 4.1 4.9 4.9 4.1 4.1 

1.25 1.8 4.6 2.5 2.4 2.4 2.4 2.4 1.9 2.3 2.3 2.0 1.9 1.9 2.3 2.3 1.9 1.9 

1.5 0.9 2.5 1.3 1.3 1.2 1.3 1.2 1.0 1.3 1.2 1.1 1.0 1.0 1.3 1.2 1.1 1.0 

1.75 0.5 1.4 0.7 0.8 0.7 0.8 0.7 0.6 0.8 0.7 0.7 0.6 0.5 0.8 0.7 0.7 0.5 

2 0.3 0.9 0.4 0.6 0.4 0.6 0.4 0.3 0.6 0.4 0.6 0.3 0.3 0.6 0.4 0.6 0.3 

2.25 0.2 0.6 0.3 0.6 0.2 0.6 0.2 0.2 0.5 0.2 0.5 0.2 0.2 0.5 0.2 0.5 0.2 

2.5 0.1 0.4 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.5 0.1 

2.75 0.0 0.2 0.1 0.5 0.1 0.5 0.1 0.0 0.5 0.1 0.4 0.0 0.0 0.5 0.1 0.4 0.0 

3 0.0 0.1 0.0 0.4 0.0 0.4 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.4 0.0 0.4 0.0 

 ESDRL 42.6 50.8 45.1 44.7 44.6 44.7 44.6 43.0 44.4 44.3 43.2 43.0 42.8 44.3 44.2 43.0 42.8 

           19.3% 5.9% 5.0% 4.6% 5.0% 4.6% 1.1% 4.4% 4.0% 1.4% 1.0% 0.5% 4.1% 3.8% 0.9% 0.5% 

  

 

 



Table 9: The ARL and SDRL of the s-skip, mixed samples, mixed-s-skip (zero- and steady-state)  ̅ scheme when  =0.9,  =0.9,   {1, 3, 5},   {2, 4, 6},      =0,     =3 and n=5 (with   =3 and     =2) 
      s=1,m=2     s=3,m=4     s=5,m=6   

 Shift i.i.d. 
No 

remedy 
s&m 

SS: 

Mix&m 

ZS: 

Mix&m 

SS: 

Mix-

s&m 

ZS: 

Mix-s&m 
s&m 

SS: 

Mix&m 

ZS: 

Mix&m 

SS: 

Mix-

s&m 

ZS: 

Mix-s&m 
s&m 

SS: 

Mix&m 

ZS: 

Mix&m 

SS: 

Mix-

s&m 

ZS: 

Mix-s&m 

A
R

L
 

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.25 133.2 282.1 266.3 229.2 229.0 229.2 229.0 242.6 221.8 221.5 210.3 210.0 223.0 219.1 218.9 196.9 196.6 

0.5 33.4 156.6 135.2 95.7 95.2 95.7 95.2 108.3 89.1 88.6 79.6 79.1 89.9 86.8 86.3 69.6 69.1 

0.75 10.8 82.3 66.4 41.3 40.7 41.3 40.7 48.6 37.6 36.9 32.4 31.8 37.6 36.3 35.6 27.2 26.6 

1 4.5 44.6 34.3 19.9 19.2 19.9 19.2 23.6 17.8 17.1 15.1 14.4 17.5 17.2 16.4 12.5 11.8 

1.25 2.4 25.4 18.9 10.7 10.0 10.7 10.0 12.5 9.6 8.8 8.1 7.4 9.1 9.2 8.5 6.8 6.0 

1.5 1.6 15.3 11.1 6.5 5.7 6.5 5.7 7.2 5.9 5.1 5.0 4.2 5.2 5.6 4.9 4.3 3.5 

1.75 1.2 9.7 7.0 4.4 3.6 4.4 3.6 4.5 4.0 3.2 3.5 2.7 3.3 3.9 3.1 3.1 2.3 

2 1.1 6.4 4.6 3.3 2.5 3.3 2.5 3.1 3.0 2.2 2.7 1.9 2.3 2.9 2.2 2.4 1.7 

2.25 1.0 4.5 3.3 2.6 1.9 2.6 1.9 2.2 2.5 1.7 2.3 1.5 1.7 2.4 1.7 2.1 1.3 

2.5 1.0 3.3 2.5 2.2 1.5 2.2 1.5 1.7 2.1 1.4 2.0 1.3 1.4 2.1 1.4 1.8 1.2 

2.75 1.0 2.5 1.9 2.0 1.3 2.0 1.3 1.4 1.9 1.2 1.8 1.1 1.2 1.9 1.2 1.7 1.1 

3 1.0 2.0 1.6 1.8 1.2 1.8 1.2 1.3 1.7 1.1 1.6 1.1 1.1 1.7 1.1 1.5 1.0 

 EARL 43.3 77.3 71.0 60.8 60.2 60.8 60.2 63.6 59.0 58.4 56.5 55.9 58.7 58.4 57.8 53.9 53.3 

          78.7% 64.1% 40.4% 39.0% 40.4% 39.0% 47.1% 36.4% 34.9% 30.6% 29.2% 35.7% 35.0% 33.6% 24.5% 23.1% 

S
D

R
L

 

0 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 

0.25 132.7 281.6 265.8 228.5 228.5 228.5 228.5 242.1 221.0 221.0 209.5 209.5 222.5 218.4 218.4 196.1 196.1 

0.5 32.9 156.1 134.7 94.7 94.7 94.7 94.7 107.8 88.1 88.1 78.6 78.6 89.4 85.8 85.8 68.6 68.6 

0.75 10.3 81.8 65.9 40.2 40.2 40.2 40.2 48.1 36.4 36.4 31.3 31.2 37.1 35.1 35.1 26.1 26.1 

1 4.0 44.1 33.8 18.6 18.6 18.6 18.6 23.1 16.6 16.6 13.9 13.9 17.0 15.9 15.9 11.3 11.2 

1.25 1.8 24.9 18.4 9.5 9.5 9.5 9.5 12.0 8.3 8.3 6.9 6.8 8.5 8.0 8.0 5.5 5.5 

1.5 0.9 14.8 10.6 5.2 5.2 5.2 5.2 6.7 4.6 4.5 3.7 3.7 4.7 4.4 4.3 3.0 2.9 

1.75 0.5 9.2 6.4 3.1 3.1 3.1 3.1 4.0 2.7 2.7 2.2 2.2 2.8 2.6 2.5 1.8 1.7 

2 0.3 5.9 4.1 2.0 1.9 2.0 1.9 2.5 1.7 1.7 1.4 1.4 1.7 1.6 1.6 1.1 1.1 

2.25 0.2 4.0 2.7 1.3 1.3 1.3 1.3 1.7 1.2 1.1 1.0 0.9 1.1 1.1 1.0 0.8 0.7 

2.5 0.1 2.8 1.9 1.0 0.9 1.0 0.9 1.1 0.9 0.7 0.7 0.6 0.8 0.8 0.7 0.7 0.4 

2.75 0.0 2.0 1.3 0.8 0.6 0.8 0.6 0.8 0.7 0.5 0.6 0.4 0.5 0.7 0.5 0.6 0.3 

3 0.0 1.5 1.0 0.6 0.4 0.6 0.4 0.6 0.6 0.4 0.6 0.3 0.4 0.6 0.3 0.5 0.2 

 ESDRL 42.6 76.8 70.5 59.6 59.6 59.6 59.6 63.1 57.9 57.8 55.4 55.3 58.2 57.3 57.2 52.8 52.7 

           80.4% 65.6% 40.1% 40.0% 40.1% 40.0% 48.2% 36.0% 35.8% 30.1% 29.9% 36.6% 34.6% 34.4% 23.9% 23.7% 



 

Table 10: The yogurt filling cup process dataset from Costa and Castagliola [5]                                                     Mix-1&2 Mix-2&2 

1 124.9 124.8 125.9 125.9 125.2 124.8 124.6 124.1 124.8 124.4   

2 124.9 125.2 125.5 125.0 124.1 123.9 125.2 125.2 125.0 125.6 124.98 125.08 

3 125.1 125.1 125.2 124.8 125.4 125.3 122.9 122.4 125.4 125.4 125.23 123.92 

4 126.1 125.9 124.6 124.8 125.7 125.5 126.4 126.5 124.9 125.7 125.53 125.93 

5 125.8 125.7 122.6 122.6 124.1 123.5 126.1 126.3 124.9 125.0 124.75 125.85 

6 125.0 125.2 125.5 124.8 124.8 125.0 124.9 124.8 124.8 124.2 124.20 124.58 

7 124.2 124.6 125.8 125.3 125.4 125.5 126.4 126.2 125.1 125.2 125.00 125.20 

8 124.9 124.9 123.8 123.2 125.1 125.3 124.0 124.5 124.4 124.2 125.22 124.87 

9 125.9 125.8 124.4 124.8 126.3 125.7 124.9 125.2 125.2 125.1 125.12 125.37 

10 124.2 124.3 126.2 125.5 125.6 125.0 124.4 124.4 124.1 124.3 124.72 124.88 

11 123.7 123.6 123.4 123.3 124.7 124.8 123.1 123.1 123.1 122.8 124.75 124.02 

12 124.0 124.1 122.6 122.4 123.6 123.6 124.4 124.5 123.6 123.1 123.67 124.42 

13 122.0 122.5 123.9 124.0 123.7 124.1 124.3 124.4 121.9 122.9 122.88 123.40 

14 122.4 123.0 122.8 123.1 123.7 124.2 123.7 124.1 122.8 123.1 123.53 123.50 

15 123.9 123.6 124.1 124.5 123.4 122.9 123.1 123.1 124.5 125.1 123.28 123.60 

16 121.9 122.3 123.4 123.3 123.5 123.3 125.3 125.5 123.3 123.6 123.27 123.55 

17 123.3 122.9 123.6 123.5 124.2 123.8 123.4 123.6 123.5 123.4 123.48 123.33 

18 122.0 122.2 123.6 123.4 124.7 125.0 122.6 122.5 124.5 123.9 123.50 122.88 

19 124.0 123.9 123.1 123.4 123.9 124.5 122.6 122.8 124.2 123.5 123.88 123.83 

20 125.5 124.9 122.2 122.3 123.2 123.2 123.2 123.3 123.2 123.2 123.88 124.22 

 

 

 

 

 



 

 

 

 

(a) s-skip (with s=1) (b) Mixed samples (c) Combined mixed-s-skip (with s=2) 

Figure 1: Different sampling strategies to reduce the negative effect of autocorrelation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
(a)  =0.3 

 
(b)  =0.9 

Figure 2: The EARL of the s-skip, mixed samples and mixed-s-skip  ̅ scheme in zero-state 

(ZS) and steady-state (SS) when   {0, 0.3, 0.9} and  =4 
 



 

 

 

Figure 3: The EARL and ESDRL of the mixed-s-skip  ̅ scheme (with s=3) in zero-state when   {0,0.1,0.2,…,0.9},   {3,4,7,10} and     =3 
 

 

 



 

 
(a) s=1 

 
(b) s=2 

Figure 4: The weight of yogurt cups example for the  ̅ scheme with the mixed-s-skip 

strategy 
 

 



 
(a) s=1 & m=2 

 
(b) s=2 & m=2 

Figure 5: The weight of yogurt cups example for the  ̅ scheme with the mix-s&m strategy 
 

 


