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Abstract. The measurement of the position of single-sized spheres in 3D from
a single, divergent, radiographic projection is addressed in the present study with
the development of a novel method. Generally speaking, the location of the
shadow cast by a single sphere on a detector defines a source-detector ray; the
position of the particle along this ray is identified by the strong prior knowledge of
its radius and the size of the shadow. For a dense assembly of equal-sized particles
whose projections overlap, a novel Fourier transform based technique is introduced
to give a first 3D determination of the particle centres. The uncertainty of this
measurement is calculated from synthetic data with a known noise distribution.
A further refinement of this measurement is performed based on the minimisation
of the projection residual. The combined approach is validated both on synthetic
data, and on real radiographs of a glass bead packing. The effect of noise on the
measurement uncertainty is evaluated. The technique is made available to the
community in the open source python package radioSphere.
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Table 1. Symbols used in this work.

Symbol Meaning

Imaging geometry (See Figure 1)

r Particle radius (mm)

X
3D position of a sphere centred at
[X,Y, Z] (mm)

x position on detector [y, z] (mm)

SOD centre-line source-object distance (mm)

SDD centre-line source-detector distance (mm)

L Path length through spheres (mm)

θ
Half-beam angle of particle location
(degree)

φ
Half-beam angle of particle diameter
(degree)

Pixelated images on detector

P Projection, units are L (mm)

p ROI (i.e., cropped) projection, units are
L (mm)

ψ
Single centred projection of a sphere
(mm)

I
“Indicator” valued zero everywhere
except at pixels which correspond to a
sphere centre (Eq. 4)

f Approximation of I
Fourier ingredients

k Wavelengths

Π
Function that operates on f , rounding it
to the nearest non-negative integer

tomopack ingredients

λ Sub-relaxation parameter

tol Convergence factor

ψmin
Minimum value of ψ which is considered
trustworthy

Ktrust
Wavelengths for which ψ̃(k) can be
trusted

Sensitivity field ingredients

N Number of particles

ε Applied perturbation (mm)

η, H Local and global residuals (mm)

w Weights vector

1. Introduction

A collection of spheres is the simplest form that a
granular material can take, yet it exhibits most of
the rich behaviour that makes granular mechanics
such a fascinating and active field of research [e.g.,

1, 2, 3]. This simple description lends itself well to
implementation in computer simulations (see “Discrete
Element Methods” or DEM stemming from [4]).

For granular experimentalists, glass spheres are
also a common system to study. Given the complexity
of grain kinematics, imaging methods capable of
identifying individual grains are extremely pertinent
[5, 6] and there now exist grain-based image analysis
methods which are able to characterise a granular
system from such measurements [7, 8]. Individual
particle information within a 3D granular system
is typically obtained using computed tomography.
However, a significant drawback of such a technique
is the requirement for the mechanically complex and
time-consuming acquisition of radiographs in many
directions, which limits time resolution significantly,
meaning that dynamical 3D granular flows are
essentially out of reach of tomography. One existing
method for probing the kinematics of a granular flow is
to interrupt the flow very quickly [see 9, for an example
of silo flow], record a tomography, and possibly trace
backwards in time the position of the beads. Many
alternative imaging techniques are beginning to fill
this gap: X-ray radiography-based rheography [10]
(which does not resolve individual particles directly)
and X-ray- or positron-based intruder detection [11,
12] (which require few, dense and/or radioactive
particles as markers in the flow) are notable examples.
Alternatively, grains can be immersed in a viscous fluid
with a matching refractive index [13] or characterised
by MRI [14] to track them individually or measure
the velocity field. Several recent works have used
an initial tomography scan of a granular packing and
updated particle positions only with a few radiographs
of each subsequent imaged state [15], itself a discrete
version of [16, 17]. There also exist sophisticated
techniques to recognise specific sets of shapes in three
dimensions from single divergent radiographs [18].
Finally, it is important to mention a similar method for
parallel projections of granular media, where boundary
conditions are imposed to regularise the displacements
in the x-ray direction [19].

Here, a novel technique is described that exploits
knowledge of particles shape and size (i.e., a strict
requirement for spherical particles of a known single
size) to reconstruct the 3D positions of each particle
from a single radiograph acquired with a divergent
beam. The uncertainties in the measured positions
are evaluated both with synthetic data with controlled
noise, and with real experimental data (with respect
to a tomography image). Since one key application of
this method is the analysis of granular flows, solving
the problem directly from a single radiograph, rather
than an initial tomography, is a challenge to be faced.
Indeed, it may not be possible to acquire a tomography
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Figure 1. Coordinate system used in 3D space (X = [X,Y, Z] in
mm), the detector dimensions (height and width H,W in mm),
and coordinates in mm [y, z].

scan in a number of flow geometries (and even if it is,
it is likely that studying a well-developed flow is more
interesting than the immediate vicinity of the static
part).

This paper is organised as follows: In Section 2 the
geometry of the problem is defined. In Section 3, an
FFT-based sphere detection algorithm called tomopack

is developed for a parallel beam, and in Section 4,
tomopack is used to make a 3D guess of particle
positions by scanning through different zoom levels for
a divergent cone beam. The tomopack algorithm is
then applied to synthetic data generated from DEM
sphere packings in Section 4.1. The initial 3D guess
of the particle locations is then improved with an
optimisation algorithm developed in Section 5. Finally,
the combined tomopack and optimisation techniques
are validated on an experimental case in Section 6.

2. Imaging geometry

The imaging system that is modelled herein is a
divergent laboratory x-ray (transmission or reflection)
source emitting a “cone beam” which is detected by a
relatively large 2D photosensitive detector. Although
specifications vary, such sources can achieve emission
cone half-angles as high as 70°, meaning that in
principle a “Source-Detector Distance” (SDD) of the
order of the detector size is possible, although not often
used in x-ray tomography. Micro-focus x-ray sources
can have extremely good focusing of the electron
beam onto the target, meaning that the size of the
resulting x-ray emission spot can in some cases be
below a micrometre in size. A significant advantage
of the combination of a focused, divergent x-ray source
and a flat-panel detector is that thanks to geometric
magnification such imaging systems are able to trade
off spatial resolution and field of view very easily by
translating a sample closer to the source or detector
respectively.

y

X

Y

p

2r

r r

x-ray source

Figure 2. Projection of spherical particles with a conical x-
ray beam. Two spherical particles of radius r are projected
individually onto a detector panel. The blue particle, located
closer to the x-ray source, appears larger on the detector panel
due to the conical beam.

As opposed to the parallel geometry typically
offered at a synchrotron, the radiographic projections
of a 3D object acquired on a divergent system has
a differing level of magnification in the direction of
the beam — this is necessarily taken into account
in tomographic reconstruction techniques such as
the famous FDK algorithm [20]. The technique
proposed in this work aims to position spheres in
three dimensions: simply put, with knowledge of the
imaging geometry and the physical size of a sphere
in a radiograph, the peak of the absorption spot on
the detector defines a source-detector line (as shown
in Figure 1) on which the centre of the sphere must
lie; positioning the sphere along this line can then
be achieved by detecting the size of the absorption
spot on the detector, which is related to the level of
magnification of the sphere, and thus its position along
the line.

In order to describe the problem mathematically,
the coordinate system is defined in Figure 1. The
centre of the ith sphere is denoted with capital letters
as Xi in three dimensional space. The first coordinate
X is along the centre line of the x-ray beam path, and
the remaining directions Y and Z are perpendicular to
it and each other.

Projected coordinates on the detector panel are
denoted in lowercase, x = {y, z} in mm. The sphere
radius is denoted r and is assumed to be identical for
all spheres, although it would be desirable to generalise
the approach in the future to a set of discrete particle
sizes. The projection of a sphere in a divergent beam is
schematically represented in Figure 2. With different
magnification factors (distances between the source
and the sphere), the width of the absorption peak
recorded is altered, but the magnitude of the peak is
not affected.

It is important to note that the projections
treated here are geometrical in nature, meaning
that the scalar “measured” on the detector is the
distance travelled through the material (i.e., L in
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Figure 3. Example of the convolution process to construct an image following Eq. (3). A set of 30 randomly positioned 1 mm
diameter particles is projected in a parallel projection onto a detector panel. Left : ψ, the projection of a fictional particle located at
Y = Z = 0 (colour is L in mm). Center : I, the indicator which represents the spatial position of each particle, with non-dimensional
units such that a value of unity represents a single particle with centroid at that pixel. Right : p = ψ ? I, the constructed image
(colour is L in mm).

mm). This is clearly not the raw output from a
radiograph in the lab, requiring at the very least
the natural log of the intensity-normalised radiograph
ln(I/I0) and a suitable calibration. In the case
where polychromaticity of the beam is significant, an
absorption calibration with a large object composed of
the same material as the particles that will be studied is
suggested, allowing an appropriate calibration function
of a known distance against the measured I/I0. This
calibration procedure is reported in the Appendix for
the experimental validation in Section 6. Although
keeping projections as calibrated values of L is
convenient for a quantitative comparison to projected
or synthetic data, the Signal-to-Noise Ratio is defined
in greylevels in terms of I/I0, as the difference in
values between the background and the maximum
value through a single particle (its diameter) divided
by the standard deviation of the background.

3. Finding sphere centres in a radiograph

Initially a parallel beam is discussed, instead of
a divergent beam. The connection between this
derivation and the use of the technique for a divergent
beam is made in Section 4. For a parallel x-ray beam,
the projection of one disk centred at Y = Z = 0 (and
therefore y = z = 0), in units of mm, will be recorded
on the detector as ψ(x), where

ψ(x) =

{
2
√
r2 − y2 − z2 if |x| ≤ r

0 else.
(1)

Hence the projection of the entire pack of N
particles is easily written as

p(x) =

N∑
i=1

ψ(x− xi). (2)

Such a function is shown in Figure 3. Let us note
that it can be rewritten as

p(x) =
∑
i

∫
ψ(x− x

′
)δ(x

′ − xi) dx
′

=

∫
ψ(x− x

′
)
∑
i

δ(x
′ − xi) dx

′

= ψ ? I (3)

where ? denotes a convolution, and I denotes the
indicator of the projected particle centres

I(x) =
∑
i

δ(x− xi) (4)

as depicted in Figure 3. A first question to address is to
estimate I(x) from the known p(x). In order to solve
this “deconvolution” problem, it is straightforward to
go to Fourier space, and denoting p̃(k) the Fourier
transform of p(x), and similarly for other variables,
the expression of p(x) becomes

p̃(k) = ψ̃(k)Ĩ(k) (5)

for all k. Hence, it appears trivial to write the solution
as

Ĩ(k) =
p̃(k)

ψ̃(k)
. (6)

Although this expression is mathematically true,
the inverse of ψ̃(k) is ill-behaved and any algorithm
simply based on this expression appears to be highly
unstable. The ill-behaviour of ψ̃(k)−1 can be traced
back to its (quasi-)divergences at some wavenumbers
as shown in Figure 4 (i.e., values becoming vanishingly
small), hence the Fourier transform I(k) contains
“gaps”, in the sense that some wavenumber amplitudes
should be treated as unknown , in order to avoid noise
amplification in the measured data.
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Figure 4. Representation of the tomopack algorithm process. For the same case as shown in Figure 3, additional fields are shown
for a detector with 200×200 pixels. Top left : |p̃(k)|. Top center : |ψ̃(k)|. Top right : |ψ̃(k)|−1. Bottom left : Ktrust(k) for a trust
cutoff of ψmin = 0.1. Bottom center : Π[f(x)] after 49 iterations of the algorithm to reach ε = 10−3. Bottom right : e, residual field
of difference between the true p(x) = ψ ? I and the reconstructed p(x) = ψ ?Π[f(x)] (colour is L in mm).

3.1. The tomopack algorithm

To be able to compute the inverse Fourier transform
f(x), all f̃(k) should be known including its gaps. To
find these missing values, prior information on can be
used f(x). Mathematically, it is positive, mostly 0, but
contains a collection of δ functions whose amplitude is
quantified (an integer number). If the unknown Fourier
transform amplitudes are set to an arbitrary value,
then those properties have no chance to be obeyed. It
is straightforward to project any given f(x) onto one
such indicator having the desired properties. For this
purpose, the projector Π is defined, which operates on
any f(x) to produce f̂(x) such that

f̂(x) = round(pos(f(x))) (7)

where “round” indicates rounding to the nearest
integer, and “pos” represents just positive values, such
that values of f(x) < 0 are projected to 0.

Thus the following algorithm is proposed. First,
wavenumbers are classified into two categories k ∈
Ktrust when |ψ(k)| > ψmin, and k ∈ Kdiscard if
not. The former may be trusted but not the latter
ones. Then, the algorithm summarized in Algorithm 1
proceeds sequentially by enforcing the f̃(k) values only
for trustworthy wavenumbers where the information
is known, and then projecting f(x) onto an indicator
which is physically admissible. These two steps are
repeated until a fixed point solution is obtained.

Input: Projection data, p(x), shape function
ψ(x), trusted values Ktrust,
convergence factor tol, sub-relaxation
parameter λ

Output: Indicator f(x)
initialisation;
f(x)← 0;

fold(x)← tol ;

while ||f − fold|| ≥ tol do
fold(x)← f(x);

f̃(k)← FFT[f(x)];

f̃(k)← p̃(k)/ψ̃(k) only for k ∈ Ktrust;

f(x)← iFFT[f̃(k)];
f(x)← f(x) + λ(Π[f(x)]− f(x));

end
Algorithm 1: Algorithm for a staggered iterative
scheme (FFT means discrete Fourier transforma-
tion, and iFFT its inverse transformation)

It is to be noted that the projection Π[f ] may
induce a large change on f , eventually leading to
trapping the solution at an unsatisfactory position, but
where the correction of the next iteration is cancelled
during the projection. For this reason, a softer
condition is chosen in the form of a sub-relaxation
parameter 0 < λ < 1 such that the last line in the loop
only accepts a fraction, λ, of the correction proposed
by the projection. The full correction is obtained for
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Figure 5. Performance of tomopack in finding a single particle
as a function of aspect ratio. Grey area indicates ± one standard
deviation.

λ = 1, but a smaller value (0.5) is preferable. In
the example shown in Figures 3 and 4, the position of
30 randomly located particles is estimated using this
algorithm. After tomopack is applied, the recovered
indicator is used to compute an estimated radiograph,
and the signed residual shown in the bottom right of
Figure 4. All particles were correctly identified within
1 pixel of their initial location.

3.2. Conical effects

The use of a cone beam necessarily implies that the
further from the centre-line of the x-ray beam a
particle is imaged, the more it will appear deformed
in its projection on the detector panel. The following
parameters define the projection geometry for a given
particle of radius r at location Xp = [Xp, Y p, Zp] as is
relevant to this deformity: φ, the half angle described
by the projection of a particle on the detector panel, θ,
the half angle describing the width of the cone beam,
and AR, the projected aspect ratio of the particle.

φ = tan−1

(
r

|Xp|

)
(8)

θ = tan−1

(√
Y p2 + Zp2

Xp

)
(9)

AR = sec θ (10)

The behaviour of tomopack as a function of the
aspect ratio is shown in Figure 5, with decreasing
positional accuracy with increasing aspect ratio. This
issue could be ameliorated by either choosing an
imaging geometry with small aspect ratios, or by
remapping the flat detector panel onto an imaginary
spherical detector panel centred on the source so that
all particles appear as spheres. Failing this, another
geometry suited to the sample, e.g., cylindrical for
a collection of particles in a column could partially
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Figure 6. Limits on particle detection with tomopack by varying
zoom level with a constant ψ with a single centred 1 mm particle.
Limits of sphere detection (in units of radius) with varying half-
beam angle for particle radius

alleviate the problem. In the work presented below, the
first approach has been used, which will additionally
apply to most imaging possible with a standard micro-
focus x-ray source with θ . 25° and φ . 5°.

4. Initialising a 3D guess from tomopack

If the tomopack algorithm were to be used to detect
single-sized spheres in a divergent beam, the key
question is its’ tolerance to deviations in magnification.
Simple numerical experiments are performed with a
single particle, where the structuring element ψ is kept
constant and the particle is gradually moved in the X
direction; tomopack is run and the sphere is considered
as detected if the resulting indicator is larger than 0.25
in the known position of the particle centre.

The shaded area in Figure 6 shows, for different
beam angles, the change in size of the projected
particle on the detector for which it is still detected
by ψ. This reveals that the tomopack algorithm is
sensitive to changes in size of the projected particle
(regardless of beam angle), with a ±0.3 % deviation in
radius tolerated.

This relatively narrow, but non-zero tolerance for
discrepancies in magnification between ψ and p in effect
means that in a divergent projection of a granular
assembly, different ψ can be used to scan the range
of expected magnifications (i.e., particle positions in
the X direction) in the experiment. Each particle
therefore is expected to appear for a number of different
ψ magnifications (corresponding to ±0.3 % variation in
particle size), with the best match being in the middle
of the range. A rough 3D guess of particle positions can
thus be obtained by scanning the divergent projection
of a mono-sized granular assembly with gradually
varying ψ. Since the algorithm is sensitive to changes
in projected size, the ±0.3 % change of projected
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Figure 7. Maximum projections of I series analysing a
synthetic radiograph of a centred sphere of radius 1 mm
at X=15 mm obtained by scanning psi from X=13 mm to
X=17 mm.

diameter corresponds to different displacements along
the beam axis as a function of the beam angle.

The sensitivity of tomopack can be exploited to
differentiate particles at different levels of magnifica-
tion by varying the magnification of ψ. In this case
a series of indicators I is computed for different mag-
nifications of ψ which can then be analysed for the
presence of particles. Figure 7 shows a ψ scan either
side of the correct value for a synthetic case of a sin-
gle centred sphere, and presents the max projection of
the resulting I image series in X, Y and Z directions.
The Y and Z projections in particular show how the
value of the indicator function increases and localises
into a point around the correct value, facilitating its
identification. At the first order the highest values in
the I-series can be selected as detected particles (pos-
sibly imposing a non-overlapping constraint), however
in the current implementation, the particle locations
are identified by matching the characteristic converg-
ing cones in I by convolution.

Therefore a divergent radiograph of a sphere
packing be can analysed by varying the X position
of the centred synthetic sphere projection used to
generate ψ and identifying the best X position for each
particle. For each particle, the best X position, taken
together with the detector coordinates y, z — which
can easily be converted to Y and Z — yields an initial
guess of the 3D position of the particle.

The accuracy of this guess will depend on the
size of the X steps in the ψ scanning and the limited
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Figure 8. Validation of tomopack algorithm with synthetic
data. The image in the middle shows the fraction of particles
lost by the tomopack algorithm (i.e., those not found within half
a radius of their true location). The four surrounding images
show the synthetic radiographs used, with varying optical depth
and noise level, as indicated by the black arrows.

accuracy of particle position on the detector.

4.1. Validation with synthetic tests

Validation of the ability of the tomopack technique
to find 3D particle locations was performed against
artificial radiographs produced from discrete element
method simulations using MercuryDPM [21]. Packings
of 1 mm diameter particles were produced at a solid
fraction of 0.6 (near the random close packing limit
for monodisperse spheres) to simulate a dense packing
of grains, with negligible overlaps between particles
(much less than one pixel), which is sheared over time
to generate many realisations of grain locations. To
generate an artificial radiograph, the set of grains
that have centres within a test domain are selected
and projected using the same mechanism as described
above.

The artificial radiographs were produced assuming
that φ = 1◦, the pixel size on the detector was 0.1 mm,
the detector resolution was 512×512 pixels and a zoom
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Figure 9. Operation of the sensitivity field optimisation.
Top left : Full-detector signed residual (in mm) for a synthetic
test case of a centred 4 mm diameter particle that has been
mis-detected by a perturbation of −1 mm in the Y direction.
Remaining images are local perturbation fields of 1 mm in the Y
and Z directions and 15 mm in the X direction.

factor (SDD/SOD) of 5, which implies a half cone beam
angle of θ ≈ 20◦ at the edges of the sample. Particles
were only sampled if they were within a distance of
±2 mm from the X axis, and at varying distances in
the X direction. In this way, different typical optical
depths could be investigated. The optical depth in
Figure 8 is defined as the distance in mm in which
particle centroids should lie in the X direction to be
sampled. Additionally, artificial noise was added to the
artificial radiographs which was normally distributed
with a mean of zero and a known standard deviation.
This standard deviation is reported in Figure 8 as the
mean noise level.

A particle is defined to be “lost” if the measured
centroid of the particle is not within a distance of half a
radius of the true location, thus treating X and (Y,Z)
on the same footing. With respect to finding particles,
it can be seen that the tomopack algorithm functions
at > 99% efficiency for optical depths up to 5 mm with
low noise levels. As the noise level and/or optical depth
increases, the performance of the tomopack algorithm
decreases.

5. Real-space optimisation with “sensitivity
fields”

In order to improve a 3D guess of particle positions
(starting from above, or from a previous tomography
scan where particles have been labelled), an optimisa-
tion to minimise squared residuals is carried out.
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Figure 10. Evolution of the step size |δX| and the squared
residual per pixel in a synthetic case of a noisy radiograph
containing a single centred sphere of radius 1 mm centred at
X = {30, 0, 0}, with an initial guess of X = {30.5, 0.5, 0.5} and
an initial sensitivity field perturbation of 1 mm in the Y and Z
directions, and 15 mm in the X direction.

Algorithm 2 outlines the implemented procedure,
which iteratively attempts to explain the current
residuals as a combination of 3 synthetic residual fields,
which are the perturbations of the current guess of
each particle in each direction. Figure 9 illustrates
one step in this approach, showing the signed residual
on the whole radiograph between the input radiograph
and projection of the current guess in the top left and
in the remaining plots the local sensitivity fields in
X,Y, Z directions with a perturbation ε of 15 mm in
X and 1 mm in Y and Z. As per the algorithm, a
combinations of these three fields will be sought to best
match the residual for this iteration.

Since many calls to a particle projection function
are made in this procedure, it is solved locally on a
Region Of Interest (ROI) of the detector pixels, by
identifying the pixels concerning a given particle with
an added margin, and only projecting the detector
pixels concerned, and thus only solving the problem on
those pixels. To calculate an appropriate perturbation
in the X direction, εX , the following relationship can
be used to relate this perturbation to the equivalent
perturbations in the detector plane, εX = εY

SOD
r . In

this work, where not indicated otherwise, an initial
perturbation of εY = εZ = 1 pixel on the detector
panel is assumed.

Figure 10 shows the evolution of the step size |δX|
and the squared residual per pixel in a synthetic case of
a noisy radiograph containing a single centred sphere
of radius 1 mm, with an incorrect initial guess that is
offset by 0.5 mm in X, Y , and Z. This shows that the
proposed algorithm is able to converge for relatively
poor initial guesses in this ideal condition.

Studying a more complicated case — the synthetic
reference case with 173 spheres — an initial guess
is needed. In this case the approximate 3D position
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Input: Measured projection data Pm,
N particle position initial guesses X0,
particle radius r in mm,
perturbation to apply ε in mm,
convergence factor tol
Output: Updated particle positions X
initialisation;
Xold ← X0;
|δX| ← tol;
while |δX| ≥ tol do

Compute complete synthetic projection of
current particle positions:

P ←
N∑

n=1

q(Xn
old, r,Whole Detector);

Compute current squared residual:
H2 ← (Pm − P )2;
for n = 1 to n = N do

Compute detector ROI for particle n
Compute reference local projection:

pnref ←
N∑

m=1

q(Xm
old, r,ROI);

for d = 1 to d = 3 do
Perturbation in direction d:
pnd ←

N∑
m=1

q
(
Xm

p (+X̂ · ε iff(n = m)), r,ROI
)

;

Local residual for perturbation:
ηnd ← (pnref − pnd )2

end
On ROI, solve for weights vector w:

w← lsq

(
H2(ROI) =

3∑
d=1

wdη
n
d

)
;

Update current guess:
for d = 1 to d = 3 do

Xn
d ← Xn

oldd
−wdεd;

end

end
if DEM regularisation then

Correct X by adding displacements as
function of overlap

end
|δX| ← |Xold −X|;
Xold ← X

end
Algorithm 2: Algorithm for local and individual
optimisation of guessed 3D positions to minimise a
residual computed on the projection.

resulting from the X-direction scan with the tomopack
algorithm is used as an initial guess. Figure 11
shows the updated residuals after 100 iterations of the
algorithm with two different colour bar ranges. The

mean positioning error is 0.076 mm, with SD 0.069 mm
obtained on the input radiograph with an SNR of 60.

6. Experimental validation

In order to prove the robustness and applicability of
this algorithm, it is also validated on a real experiment.

Radiographic acquisition is performed at the
detector highest speed setting (i.e., at 60 Hz which
imposes 4 × 4 binning and thus an effective pixel size
of 0.508 mm on the detector), in order to validate
this technique for imaging of dynamic processes. As
usual in x-ray imaging, the “dark field” of the detector
is measured and subtracted from all subsequent
measurements.

The RX-Solutions Easytom x-ray scanner in
SIMAP (Grenoble) was used for this validation.
Interestingly, two Hamamatsu x-ray sources are
available on this machine, as listed in Table 2. Both
are suitable for this validation, and although a larger
maximum half-angle θ is available on the transmission
source, the reflection source is selected for its much
higher flux, since fine focus is not needed for this
validation, given the relatively large particle size.

Since both tomopack and the sensitivity optimisa-
tion have been discussed (and programmed) with P in
mm, the acquired experimental data needs to be con-
verted into this description. To this end, a larger cal-
ibration sphere of the same material as those studied,
with diameter 7 mm, is also scanned allowing the at-
tenuation/mm curve to be fitted beyond 1 particle di-
ameter — there is a strong assumption that the ma-
terial of the calibration sphere and the material of the
spheres studied are the same. To simplify this cali-
bration, the 130 kV beam is strongly hardened with
a 0.5 mm Cu filter. The photon flux available on this
x-ray source means that the detector can be run in low-
sensitivity mode, which helps to reduce shot noise. The
source-detector distance was 242.6 mm and the source-
object distance around 23 mm. The maximum cone
beam half-angle is approximately 21.5° and the limits
of the beam are evident in the radiographs, as dark
zones. φ for the middle of the sample is 2.5°.

The following datasets are acquired, each time
allowing a 5 min stabilisation of the x-ray source:

• A single “flat field” I0 (the image of the beam with
no object) averaging 64 images

• A single image of the 7 mm soda-lime glass
calibration sphere

• 360 radiographs as the empty sample holder
is rotated (continuously) around 360°, again
averaging 64 images
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Figure 11. Artificial radiographs and signed residuals (units mm) for synthetic packing of 173 spheres with a cone angle of 20°
with applied noise of Signal-to-Noise Ratio 60. Top left : Artificial radiograph produced from DEM data. Top center : Noise to be
added to radiograph to ensure SNR=60. Note that the noise values extend well beyond this range, with the maximum absolute
value of noise added being approximately 1.1 mm. Top right : Artificial radiograph with added noise. Bottom left : Residual from
3D guess of tomopack and scanning with ψ magnification. Bottom center : After update of guess with optimisation with sensitivity
field algorithm. Bottom right : Same as center, but with a tighter lookup table, revealing some misalignment and noise in the input
synthetic radiograph.

Table 2. X-ray sources available for this study

Model Type Maximum beam
half-angle, θ

Focus spot size
@ max power

Current @ max
power

L12161-07 Reflection 21.5° 50 µm 500 µA

L10711-03 Transmission 70° 4 µm 50/100 µA

• a number of 360 radiograph series with the sample
holder filled with 22 soda-lime glass spheres of
1 mm radius‡ is rotated (continuously) around
360°, averaging [64, 32, 16, 8, 4, 2, 1] images for
the different series

A few of the acquired radiographs, as well as
the experimental setup are illustrated in Figure 12.
The radiograph of the 7 mm calibration sphere is
normalised by I0, whereas the radiograph of the
column of 2 mm spheres in the holder is directly
normalised by the empty sample holder at the same
rotation angle. The natural log of the normalised
images is computed, and for the calibration sphere the
path length L inside the sphere vs. these image values
is also computed (see Appendix). This fitted function
(L in mm vs log(I/I0)) is then applied to the natural

‡ from ballandrollerstore.com

log of the images acquired of the column of spheres,
finally resulting in a projection P in mm.

Since radiographs around 360° have been acquired,
the data is also tomographically reconstructed, which
offers a convenient validation of the quality of
the 3D positions obtained on the first radiograph
with tomopack, as well as after the optimisation.
The tomography data is analysed with spam [8]:
reconstructed grey values are thresholded and particles
separated using a markers-based watershed, thereafter
centres of mass of the particles are computed in pixels
and converted to mm with the known projected pixel
size of 0.05 mm/px.

Thereafter each radiograph (at different angles
and averaging amounts) is normalised by the radio-
graph of the sample holder acquired by averaging 64
measurements, and the fit applied to the log of the im-
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Setup I0
[0, 40000] counts

Icalib/I0 Icontainer/I0
[0.65, 1.0] [0.65, 1.0]

Isample/Icontainer µ× ln(Isample/Icontainer)

[0.65, 1.0] [0, 4] mm

Figure 12. Measured experimental data for a set of soda-
lime glass spheres. This illustrates the experimental process
of converting X-ray grey-level information into experimental
measurement of the path length through the sample in the
bottom right. The fit of µ to the path length for Icalib is shown
in Appendix 1.

age to make this an experimentally-measured p of L
in mm. The normalisation of low-average radiographs
with the high-average holder reveals some movement
artefacts (see Figure 14), which will induce bias in the
higher-noise experimental images. It is expected that
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Figure 13. Errors in tomopack positions and optimised
positions on the first radiograph of each averaging level (and thus
SNR) compared to labelled particle centres from tomography.

the measured positioning errors for the higher-noise im-
age are an overestimation compared to a more suitable
normalisation. The background of p (zones within the
source cone but without particles) is fitted with a bi-
linear function, which is then subtracted from p, with
the explicit goal of improving X direction iterations
for the sensitivity field. A tomopack guess scan is ob-
tained by varying ψ, and passed to a sensitivity field
optimisation, which is run until changes of position fall
below 5 µm.

3D particle centres are compared by subtracting
the mean position from all three datasets (labelled,
tomopack, optimised) and relabelling the centres in the
labelled image to their closest corresponding particle
from the tomopack scan. The rigid-body motion of
the labelled centres that minimises distances with the
tomopack-positions and the optimised positions are
both computed (which erases systematic errors) and
applied to labelled centres, after which the absolute
deviation and standard deviation of errors can be
computed.

Results are shown for all averaging levels (and
thus SNR levels) in Figure 13, revealing that the
tomopack 3D guess already offers a good estimation
of 3D positions with respect to the centres obtained
from tomography. As expected, errors increase with
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Figure 14. Residuals obtained for 0.94 and 60 Hz (top and bottom, SNR=61.7 and 12.6 respectively) for the first angle. Left column
presents residuals from positions obtained with tomopack, middle and right columns after optimisation, with the right column having
the scale bar zoomed ten times, colour scale in mm

noise level, and the direction normal to the detector,
X, is the most error-prone. For the lowest noise
level, absolute errors averaged over all particles for the
tomopack guess are X,Y, Z = 0.061, 0.016, 0.025 mm
and after optimisation 0.068, 0.008, 0.011 mm. As a
reminder, these experimental errors are to be compared
to the particle radius (1 mm), the detector pixel size
(0.508 mm) and the projected pixel size in the middle
of the sample (0.05 mm), which is the voxel size of the
reconstructed tomography volume. Using the projected
pixel size as a reference, the error in the X direction
from tomopack is slightly above this dimension, and
the optimisation step worsens the guess slightly, most
likely due to the slightly inhomogeneous background.
The Y and Z errors from tomopack are respectively
a third and half a project pixel – the difference likely
due to the sample being longer in the Z dimension
and thus the particle aspect ratio increasing away from
the centre. After the optimisation step (not sensitive
to aspect ratio), both error are about a fifth of the
projected pixel size, which is a very satisfactory result.

Furthermore, it is worth noting that the purchased
particles are ball bearings with a precision grade of

100, meaning a “nominal ball diameter tolerance” of
±0.0127 mm, which also puts the positioning errors
into context. It is expected that there will be a
positioning error in the X direction due to incorrectly
assumed radii, inversely proportional to the beam
angle. With a perfectly calibrated p, particles with
incorrect radii would appear as circular patches in the
residual.

Interestingly, as the SNR decreases from 62 to 32,
the measured errors are essentially constant, indicating
that some artefacts not described by the model are
limiting accuracy (scattering artefacts are visible in
the top row of Figure 14). Below an SNR of 30, noise
begins to limit accuracy – the tomopack guess is more
sensitive to the noise (in the case of SNR = 24 the
optimised position error is still close to the lowest noise
one). At an SNR of 12 – which means imaging at 60 Hz
– the errors for tomopack are X,Y, Z = 0.202, 0.025,
0.027 mm and the optimised positions are 0.127, 0.024,
0.037 mm.

For reference, the residual images obtained with
the tomopack guess, and after the sensitivity field
optimisation are presented in Figure 14 for the
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highest and lowest noise cases (1 and 60 Hz imaging
respectively). In the case of the lowest noise (top),
residuals are very low, however on the right, it
can be seen that they are far from zero: for large
values of L (i.e., with significant overlaps) there is an
underestimation of L in the experimental image, and
around the sample there is a scattering corona. The
underestimation of L is likely due to beam hardening.
In the higher noise case, it is clear that there is
an artefact induced by the different averaging of the
sample holder, which causes problems visible on the ±
1 radius scale of the left and middle images, however
it seems that the optimisation is able to converge
successfully despite this significant bias.

Although the analysis of a time-series could be
performed by making displacements guesses and only
using the optimisation, in order to evaluate the
robustness of the combination of tomopack and the
optimisation step, the entire set of 360 radiographs is
analysed individually. This means that a large number
of different particle overlap configurations are tested.
Until SNR 24, excellent tracking is obtained, after
which the loss of a few particles in a few views damaged
the tracking obtained. As an illustration of the
results that can be obtained, the measured trajectories
for the lowest-noise case are shown in Figure 15.
The figure shows good tracking for all particles, and
mostly cirecular trajectories, and confirms that the
uncertainty in the X direction is higher than the
others.

Figure 15. Rendering of measured displacement vectors viewed
down the Z axis (the axis of rotation) for the experimental data
with the lowest noise. Colours indicate different particles.

7. Conclusions

The combination of the tomopack algorithm and the
optimisation method mean that mono-disperse spheres
of a known size can be placed in 3D space from a
single divergent radiograph, as can be acquired on any
laboratory x-ray scanner. This adds tremendous time
resolution to measurements of particle position, as well
as removing the requirement to rotate the sample, at
the cost of some positioning uncertainty, especially
in the direction of the beam. Between the synthetic
validation cases and the simple experiment presented
it turns out that the measurement of a radiograph
containing the distance travelled through the scanned
object is quite delicate: the application of a measured
attenuation profile on the same material is apparently
not sufficient, and small variations of the source can
cause problems (especially for the optimisation step),
better knowledge and thus modelling of flat fields is
doubtlessly needed, as per [22].

8. Perspectives

The perspectives coming from this work are split into
two categories: possible uses of this tool as-is, and
further developments that could improve performance
and release some assumptions.

In the case of a parallel beam, the tomopack tech-
nique could be a very effective (again with ψ scan-
ning) tool to count particles and their sizes. This may
also be achieved with divergent acquisitions at differ-
ent zoom levels. The combined tomopack and opti-
misation, could and will be used to make previously-
impossible measurements of 3D particle kinematics in
a number of fields such as the flow of grains down an
inclined plane (kinematic interaction with an obstacle),
hydrodynamic suspensions of particles (kinematics of
viscous resuspension), or sheared granular media (mea-
suring granular temperature and vortex structures).

The software used in this paper, as well as
both experimental and synthetic data are hosted on:
https://gricad-gitlab.univ-grenoble-alpes.fr/

ttk/radioSphere and will continue to be developed.
The perspectives for development of this technique are
manifold. First of all, it must be mentioned that the
requirement of single-sized spheres is a strong limita-
tion that can be lifted in a number of different ways:
in the case of a two- (or more) source and detector
imaging system, the limitation of monodispersity can
likely be removed with ease. Otherwise, if the initiali-
sation of 3D positions from a tomopack scan is aban-
doned and replaced with particles labelled in an initial
tomography, the sensitivity field optimisation process
should be able to successfully converge for displace-
ment unknowns for spheres of different sizes, and may
be able to yield good results also optimising three ro-

https://gricad-gitlab.univ-grenoble-alpes.fr/ttk/radioSphere
https://gricad-gitlab.univ-grenoble-alpes.fr/ttk/radioSphere
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tation unknowns for sufficiently unique shapes, in the
style of [15]. The initialisation from a tomography ob-
viously requires all the particles to be in the field of
view, and cannot tolerate particles being lost, so will
require small transformations between images.

More prosaically, some short-term improvements
to tomopack that could be implemented with relative
ease are the measurement of an experimental ψ to be
used, rather than a synthetic one (possibly at different
positions), which would include blurring as well as
scattering effects, which might render the particle
identification more robust. Furthermore, for very large
θ angles, there is distortion of particles towards the
edges of the detector, which can be faced with some
unwarping of the image (or warping of ψ). The effect of
radiograph de-noising by filtering (perhaps directly in
Fourier space) might increase the signal-to-noise ratio
of input data in a way that helps both tomopack and
the subsequent optimisation.

The sensitivity optimisation has been found to
be lead astray by missing particles, so some way
of enforcing edges in the optimisation may help.
Furthermore, small offsets in the calibrated p in units
of L cause offsets in the measured X position, meaning
that x-ray imaging artefacts such as scattering, source
movement, and beam hardening all have deleterious
effects on the optimised result. Better characterisation
of the source will certainly be a way to make
improvements in this direction.
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Appendix 1 – Fitting attenuation to path
length L

For convenience, a solution is provided for the path
length L of the sphere radius r located at Y = Z = 0
for a ray at angle θ. The angle β, indicated in
Figure 16, can be calculated as

sinβ =
SOD sin θ

r
. (11)

With this definition, the path length L can be
calculated as

L = 2r cos(β). (12)
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Figure 16. Geometry of path length in a sphere

This computation has been performed for a
calibration glass sphere, and when the beam is filtered
the Beer-Lambert law well fits the relationship between
this path length measure and the measured attenuation
on the detector panel, as shown in Figure 17.
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Figure 17. Fitted calibration of normalised attenuation vs.
path length for the 7 mm calibration sphere scanned with 130 kV
and 0.50 mm Cu filter.
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and François Hild. Soft route to 4d tomography.
Physical review letters, 117(2):025501, 2016.

[18] Ajinkya Kadu, Tristan van Leeuwen, and K Joost
Batenburg. Cosharp: A convex program for
single-shot tomographic shape sensing. arXiv
preprint arXiv:2012.04551, 2020.

[19] Ryan Hurley. Impact on granular media. Nature
Communications, 2021, submitted.

[20] Lee A Feldkamp, Lloyd C Davis, and James W
Kress. Practical cone-beam algorithm. Josa a,
1(6):612–619, 1984.

[21] Thomas Weinhart, Luca Orefice, Mitchel Post,
Marnix P. van Schrojenstein Lantman, Irana F.C.
Denissen, Deepak R. Tunuguntla, J.M.F. Tsang,
Hongyang Cheng, Mohamad Yousef Shaheen, Hao
Shi, Paolo Rapino, Elena Grannonio, Nunzio
Losacco, Joao Barbosa, Lu Jing, Juan E. Alvarez
Naranjo, Sudeshna Roy, Wouter K. den Otter,
and Anthony R. Thornton. Fast, flexible particle
simulations — an introduction to MercuryDPM.
Computer Physics Communications, 249:107129,
2020.

[22] Clément Jailin, J-Y Buffière, François Hild,
Martin Poncelet, and Stéphane Roux. On the
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