
HAL Id: hal-03210921
https://hal.science/hal-03210921

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rebooting Virtualization Research (Again)
Alain Tchana, Renaud Lachaize

To cite this version:
Alain Tchana, Renaud Lachaize. Rebooting Virtualization Research (Again). 10th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys ’19), Aug 2019, Hangzhou, China. pp.99-106,
�10.1145/3343737.3343746�. �hal-03210921�

https://hal.science/hal-03210921
https://hal.archives-ouvertes.fr


Rebooting Virtualization Research (Again)
Alain Tchana

Université Côte d’Azur, CNRS, I3S
06900 Sophia Antipolis, France

alain.tchana@unice.fr

Renaud Lachaize
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

38000 Grenoble, France
renaud.lachaize@univ-grenoble-alpes.fr

Abstract
Visible or hidden, virtualization platforms remain the cor-
nerstone of the cloud and the performance overheads of
the latest generations have shrunk. Is hypervisor research
dead? We argue that the upcoming trends of hardware dis-
aggregation in the data center motivate a new chapter of
virtualization research. We explain why the guest virtual
machine abstraction is still relevant in such a new hardware
environment and we discuss challenges and ideas for hy-
pervisor and guest OS design in this context. Finally, we
propose the architecture of a research platform to explore
these questions.

ACM Reference Format:
Alain Tchana and Renaud Lachaize. 2019. Rebooting Virtualization
Research (Again). In 10th ACM SIGOPS Asia-PacificWorkshop on Sys-
tems (APSys ’19), August 19–20, 2019, Hangzhou, China. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3343737.3343746

1 Introduction
Hypervisors remain a major building block of cloud comput-
ing: they are the cornerstone of Infrastructure-as-a-Service
(IaaS) platforms, which are themselves used to implement
other cloud models such as Containers-as-a-service (CaaS),
Functions-as-a-Service (FaaS), and (some types of) Platform-
as-a-Service (PaaS). However, while there are vibrant discus-
sions regarding the best ways to design high-level cloud ser-
vices [18, 28], it may seem that the main research questions
regarding hypervisors have now been settled and that the sci-
entific community should instead focus on other concerns.
Indeed, to some extent, the past decade has mostly been
spent refining the details of a design vision outlined long
ago for more efficient and more secure virtualization [23],
which relies on static partitions of the physical resources,
hardware assists and direct management of I/O devices and
interrupts by guests. These efforts have paid off and are al-
ready leveraged in production: for example, AWS claims that
its Nitro virtualization platform achieves near bare-metal
performance [15, 25].

APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 10th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’19), August
19–20, 2019, Hangzhou, China, https://doi.org/10.1145/3343737.3343746.

While it seems that a significant chapter of virtualization
research has reached its end, we argue that a new one must
begin, motivated bymajor, upcoming trends in data center de-
sign: the shift from monolithic computers (computer-centric
architecture) to pools of disaggregated resources (resource-
centric architecture) will lead the systems community to
deeply reconsider the ramifications of low-level virtualiza-
tion in the cloud.

The paper is organized as follows. First (§2, §3), we review
the hardware disaggregation trend and underline two poten-
tial visions: the use of a small number (a few tens) of large
resource blades vs. many (a few hundreds) smaller resource
blades. We present the implications of each vision. Second
(§4), we stress the necessity of keeping the virtualization
layer in this new architecture. In fact, disaggregation makes
a data center or a rack behave like a giant computer, moti-
vating more than ever before the need of building isolated
execution units. Third (§5), we describe the main systems
challenges raised by disaggregation. We argue that although
past approaches can be used for addressing some challenges,
others require new ideas. In particular, we consider how
the split-kernel approach [30] can inspire the general archi-
tecture of a distributed hypervisor (NewVirt, discussed in
§6). Conversely, we motivate the need for a novel approach,
Splinked OS in order to facilite the construction of distributed
guest OSes for a disaggregated architecture, by simplifying
the porting of existing guest OSes and supporting unmodi-
fied applications (§7). We conclude the paper in §8.

2 Data center disaggregation
Since the seminal paper on the resource disaggregation ap-
proach by Lim et al. [26] in 2009, several research works have
investigated it [5, 9, 12, 24, 29, 30]. This section summarizes
the state of the art and its implications.

Traditional architecture. The architecture adopted in cur-
rent data centers (DCs) is computer-centric (see Fig. 1 top).
It means that the DC is composed of computers, intercon-
nected using classical network equipments (switches, routers,
etc.). Each computer includes almost all resource types (CPU,
RAM, etc.) and accelerators (GPU, FPGA, etc.). In this archi-
tecture, an application (OS process) runs on a single com-
puter at a given time.

Disaggregated architecture. In this architecture, the DC is
resource-centric (see Fig. 1 bottom): it is composed of resource

https://doi.org/10.1145/3343737.3343746
https://doi.org/10.1145/3343737.3343746


APSys ’19, August 19–20, 2019, Hangzhou, China Alain Tchana and Renaud Lachaize

Figure 1. The architecture of a data center rack: computer-
(today) vs. resource-centric (the future).

blades, interconnected using fast networking technologies
(e.g., silicon photonics [12] or infiniband [9]). Each resource
blade includes only one resource or accelerator type (e.g.,
CPU or main memory). For scalability purposes, data center
disaggregation is imagined at the rack scale, in the same way
as current data centers are organized in racks. Thus, a rack
is seen as a “giant” computer. An application (OS process)
running on such a disaggregated rack uses several resource
blades at a time (a least one blade per resource type).

Two opposed visions of this architecture have emerged in
research papers. In the first vision [26] (that we call heavy
blade approach), the rack is composed of a small number (a
few of tens) of “heavy” resource blades, i.e., with each blade
including a large pool of resource instances. The second vi-
sion [30] (that we call lightweight blade approach) promotes
the utilization of very small blades, with each blade including
a small number of resource instances. The consequence is
the multiplication of the number of blades (in the order of
hundreds) in the rack. This second vision is more challenging
than the first vision. However, it provides all the potential
benefits of a disaggregated architecture, which is not the
case for the heavy blade approach, as detailed below.

Benefits of disaggregation.We summarize below themain
benefits expected from resource disaggregation. When nec-
essary, we highlight the ones than can only be achieved with
the lightweight blade approach.
1. It facilitates the scalability of each resource type. For in-
stance, the memory capacity of the rack can be increased

without increasing the number of CPUs.
2. It facilitates application scalability since the application can
use the entire resource rack. This reduces the development
burden for the application owner.
3. It allows optimal resource utilization (thus good energy
proportionality) by minimizing resource fragmentation, es-
pecially when small blades are used.
4. It limits the failure impact of a given resource type, especially
when small blades are used. In fact, the failure of a blade is
limited to that blade, it does not impact other blades neither
of the same type nor of a different type.
5. It facilitates the rapid integration of new technologies, es-
pecially for small blades. For instance, the integration in the
rack of a new CPU generation does not require to buy a
whole computer, and thus other resource types.
Since it is is not clear yet if one of the two visions (light-
weight/heavy blades) will dominate in the future, we believe
that it is important to consider software designs that can
accomodate one or the other (or a mix of both).

3 Related work
The disaggregation paradigm is inspired by various concepts
from the past: for example, in the context of the storage,
diskless machines and network block devices. But research
regarding more advanced storage rack disaggregation is re-
cent and still ongoing [24]. Similarly, several works have
studied memory disaggregation beyond the initial work by
Lim et al. [26]. For example, Nitu et al. [29] studied memory
disaggregation using commodity servers, and proposed a
new ACPI state which allows remote access to the mem-
ory of a suspended server. This way, the pool of suspended
servers can be used as a supply of memory by powered-on
servers. Several manufacturers have also proposed interme-
diate approaches for rack disaggregation based on micro
computers, for example Intel Rack-Scale, AMD SeaMicro
and HP Moonshot. All the above-mentioned works corre-
spond to an intermediate step towards full disaggregation.
In the context of the dRedBox European project [7], IBM
along with several academic institutions are currently trying
to build a real disaggregated rack prototype; this work only
focuses on hardware aspects.

Shan et al. [30] have introduced an OS blueprint and pro-
totype for disaggregated racks. The authors introduced the
concept of split-kernel, which consists in organizing the OS
of a disaggregated rack as a set of dedicated mini-OSes per
resource blade type. While we believe that the general idea
of this approach is a sound basis for a fully disaggregated
architecture, we question some of their main design choices.
First, LegoOS does not provide complete support for legacy
applications and some blade configurations. For example, all
the threads of a process must be located on the same CPU
blade, which may be limiting depending on factors such as
the granularity of the blade resources (lightweight/heavy).



Rebooting Virtualization Research (Again) APSys ’19, August 19–20, 2019, Hangzhou, China

Second, we believe that the low-level software layer should
hide as much as possible the complexity introduced by dis-
aggregation but nonetheless preserve a hardware-centric
interface, akin to IaaS (Infrastructure-as-a-Service) platforms
in computer-centric designs; this aspect is detailed in the
next section.

4 The need for virtualization
An important question that arises when contemplating the
implications of hardware disaggregation is: which interface
should be exported by the low-level software layers? Pre-
vious works that have considered the disaggregation of a
single resource (e.g., memory [26, 29]) have quite naturally
chosen a hardware-like interface (thus VMs) in order to fa-
cilitate integration with the rest of the system. However,
the question becomes more open-ended when considering
the case of full disaggregation (i.e., for all resource types);
LegoOS [30], the only system to date to tackle this issue,
exports a traditional, Linux-inspired process ABI.1 After all,
one can argue that a rack-scale disaggregated hardware in-
frastructure can be considered as an extreme form of a single
large-scale NUMA machine with hot-pluggable components.
Furthermore, such an abstraction seems to be a good fit for
modern cloud-native workloads, which are mostly based on
containers. However, we believe that it is generally more
relevant to export such disaggregated resources via a lower-
level, hardware-like interface, i.e., a hypervisor offering the
abstraction of several independent (virtual) machines hosted
in the same rack. Below, we summarize the main arguments
that motivate our case.

First, the machine abstraction is required to support legacy
systems and, indirectly, platforms and applications that rely
on the features of these systems. In addition, a low-level
interface provides a substrate that supports diverse kinds of
unmodified guest software while allowing guest-specific and
hardware-specific optimizations through paravirtualization.

Second, a low-level interface remains a more generic way
(and hence more pragmatic, due to the large diversity of
workloads) to deal with common administrative tasks such
as snapshots and live migration (across racks).

Third, it is generally admitted that enforcing strong secu-
rity isolation requires multiple layers of defense mechanisms,
including at low levels of abstraction. This is typically why
most public cloud providers use virtual machines to encapsu-
late the containers of different tenants in distinct hardware-
enforced security boundaries [4, 33]. Besides, hardened sand-
boxing solutions located at higher levels in the software stack
like gVisor [13] have additional shortcomings such as limited

1More precisely, LegoOS provides the concept of vNodes (virtual nodes).
Each vNode has it own IP address and file-system mount point. This notion
is actually more akin to a process group abstraction than to a low-level,
hypervisor-based abstraction like the one we advocate.

syscall compatibility and significant performance overheads
for some workloads [31].

Finally, we can also borrow insights from past episodes of
infrastructure research. For example, twenty years ago, the
Cellular Disco project [14] introduced a hypervisor-based ap-
proach to address performance scalability and hardware fault
containment issues in a large-scale SMP server, turning it
into a virtual cluster with flexible resource management. Sub-
sequent work has shown that monolithic, general-purpose
operating systems can be modified to address these chal-
lenges but still at the cost of significant engineering efforts.
Given the ever increasing scale, density and heterogeneity
of resources hosted in a cloud rack, we believe that address-
ing the above-mentioned challenges at the hypervisor level
remains a more relevant strategy today.
Therefore, in the remainder of this paper, we discuss the

implications of this hypervisor-based approach on the hard-
ware/software co-design of a disaggregated infrastructure.

5 Challenges
In this section, we try to identify and discuss the main system
challenges raised by disaggregated virtualization. We begin
with key architectural considerations (§5.1) and then touch
on more general and open-ended questions (§5.2).

5.1 Which software infrastructure?
Distributed hypervisor.Obviously, the hypervisor of a dis-
aggregated rack should be distributed, meaning that each
resource blade runs a piece of the hypervisor. Building on
existing OS paradigms, two main approaches can be envi-
sioned for the construction of such a distributed hypervisor,
namely multi-hypervisor (analog to multi-kernel [2, 3]) and
split-hypervisor (analog to split-kernel [30]). In the former,
the hypervisor is a collection of several complete hypervi-
sors. All hypervisors have the same code base. The latter
approach promotes a dedicated hypervisor per resource cat-
egory (or even per resource model within a category), with
possibly significant design differences between them. In both
approaches, components communicate by message passing.
We think that the split-hypervisor approach is the appro-
priate one, in particular because it facilitates support for
hardware heterogeneity and local optimizations within a
blade, which are key factors in a disaggregated environment.

Distributed guest OS. A guest OS running on a disaggre-
gated architecture should be distributable, i.e., be able to
span multiple blades of the same resource category, and
especially CPU blades. For example, in such a design, the
forked children of a main process could be transparently run
on other CPU blades. This distribution is necessary (i) to
support the provisionning of resource-heavy VMs on top
of lightweight blades and (ii) to achieve high hardware re-
source usage (by overcoming resource fragmentation issues



APSys ’19, August 19–20, 2019, Hangzhou, China Alain Tchana and Renaud Lachaize

that cannot be solely addressed via initial VM placement or
full-VM migration decisions, e.g. to support “vCPU bursting”
towards other CPU blades at small time scales). One may
think that building a distributed OS in this context raises the
same challenges as with the computer-centric architecture,
as studied in the previous decades [1, 32], but a disaggre-
gated context brings different characteristics. First, blade
resources are heterogeneous (specialized blades and differ-
ent technologies even for the same resource type). Second,
some of the past approaches required the modification of
user applications to integrate some OS tasks such as thread
scheduling [3, 32]. Third, to the best of knowledge, none of
them were able to support complete legacy/standard APIs
like POSIX in addition to fine-grained resource allocation
and strong isolation, limiting these OSes to the research area
or to single-application or single-tenant contexts. To make
disaggregation exploitable in production DC, the ideal goal
is the execution of unmodified applications and commodity
OSes in the distributed guest — we intend to achieve this via
a specific form of paravirtualization within a Linux guest.
The next sections present in more details the above ar-

chitectural principles, respectively for the hypervisor (§6)
and the guest OS (§7). These ideas will be used to build a
research prototype in order to explore the solution space for
the long-term challenges described next (§5.2).

5.2 Long-term challenges
Heterogeneity. One of the main advantages of disaggrega-
tion is the fact that it allows the rapid integration of new
technologies in the data center. Thus, a given rack is likely
to be heterogeneous, even for the same resource type. For
example, different CPU types (x86, ARM, etc.) can coexist.
Also, different CPU models within the same type may sup-
port different feature sets, for instance, they may or may
not support cache partitioning (e.g., Intel CAT [21]). The
challenge here is twofold. First, how to make the hypervisor
take into account this heterogeneity? We see above that this
can be addressed by the split-hypervisor model. For example,
the hypervisor piece which runs on a CAT-aware CPU will
enable hardware cache partitioning at start time, while the
hypervisor piece running on a non-CAT-aware CPU will use
a software-based alternative such as page coloring [34]. The
second issue is the provisioning of a homogeneous VM in
this context. How to support the execution of a VM’s vCPUs
over different physical processor types? Current hypervisors
are not able to support even this minimal heterogeneity. Also,
the challenge of supporting efficient migration between (het-
erogeneous) blades should be considered.

Blade hot plug. Fine-grained and unbounded hot plug-
ging of resources is another conceptual advantage of dis-
aggregation. Therefore, the hypervisor should be able to dy-
namically manage the integration and removal of resources.

This challenge is much more difficult to address than in cur-
rent computer-centric designs because several constraints
are significantly different. First, the infrastructure must ef-
ficiently support a very large number of resource modules
that are fully interconnected. Second, it must support a large
diversity of resources (which typically become more het-
erogeneous over the lifespan of a rack, and this lifespan is
greater than the one of a single server). In contrast, current
approaches are based on different assumptions: low-level
solutions (BIOSes/OSes) are efficient but only support a fixed
capacity and a limited set of resources that are known a pri-
ori, whereas higher-level solutions employed in distributed
systems are more flexible but have more overheads and are
not designed for the same time scales. Some of these issues
might nonetheless be alleviated by leveraging recent ap-
proaches such as live hypervisor upgrade solutions [35].

Performance. A disaggregated architecture relies on a very
low latency and very high bandwidth interconnect between
blades. However, a large number of blades increases traffic,
which could rapidly saturate the interconnect, thus result-
ing in low performance. This leads to an important design
principle for the split-hypervisor: supporting virtualization
features should not introduce a tight coupling between the
different types of blades. Besides, the communication be-
tween CPU and memory blades is the most critical one. The
question is how to guarantee certain performance levels
for this path. Several solutions can be adopted including: (i)
building CPU blades with high memory cache sizes (giga-
bytes) and optimizing the hypervisor to efficiently exploit
this local cache [29, 30]; (2) building dedicated network links
between CPU and memory blades; (3) allowing bandwidth
reservations on a shared interconnect.

Reliability. Compared to the failure of an OS in a native
system, the failure of a hypervisor in a virtualized data center
has generally bigger consequences because more applica-
tions are impacted. When shifting to a disaggregated in-
frastructure, the consequences worsen, because the entire
rack is impacted. In order to mitigate the impact of such
failures, replication techniques can (and should) be used at
various levels of the software stack. However, only relying
on such techniques for a disaggregated infrastructure may
raise cost-effectiveness issues. Therefore, it becomes impor-
tant to investigate the design of techniques allowing the
containment of (hardware and software) faults within a rack
without negating the potential benefits of disaggregation.

Security. Security remains the top concern for cloud
providers and tenants. A disaggregated infrastructure exac-
erbates several security-related challenges. First, compared
to a traditional architecture, it is more complex, and thus
has a greater attack surface. We believe that this problem



Rebooting Virtualization Research (Again) APSys ’19, August 19–20, 2019, Hangzhou, China

can be mitigated using techniques from dependable systems,
such as microkernels and modular hypervisors [6]. Second,
a disaggregated architecture contains many independent
components embedding a mini-OS/firmware that must be
upgradable but protected from hostile modifications. This
can be achieved by generalizing (at the scale of a distributed
architecture) the approach used in the AWS Nitro platform:
using specific hardware to prevent guest code from having
physical access to the firmware memory [25]. Third,
(hardware and software) side channel attacks [11, 16] are
currently very serious threats without any comprehensive
countermeasure to date [10, 17], and are exacerbated in
the context of a disaggregated architecture. In particular,
the fast interconnect between blades introduces a very
sensitive weakness. A possible (yet imperfect) mitigation
strategy may consist in preventing the tenant VMs from
easily making correlations between low-level architectural
events; this could be achieved by (i) abstracting the view
of the topology of disaggregated resources exposed to the
tenant VMs and (ii) enforcing specific co-location policies
(for example, preventing VMs that run on the same CPU
blades to also share other resources, such as memory blades).
Fourth, disaggregation also complicates the design and
implementation of facilities aimed at protecting the integrity
and/or confidentiality of the code and data of the tenants
(e.g., attestation and secure enclave mechanisms), as they
must enforce security and achieve efficient execution at the
scale of a distributed and heterogeneous architecture.

Bare metal as a service. Current IaaS cloud providers
offer the possibility to rent bare-metal instances for
customers having very strong performance and/or security
requirements. The transposition of this concept to a
disaggregated rack is not trivial and raises a number of
questions. For example, how can a provider flexibly sell a
subset of the rack’s disaggregated resources to a customer
with performance/security isolation guarantees (for the
tenants and the provider) that are at least similar to those
of a computer-centric model? And what is the interface
that should be used to make these resources accessible to
a tenant (e.g., through a pre-configured OS image – either
with a high-level interface like LegoOS [30] or a more
exokernel-like interface)?

6 The NewVirt platform
This section describes a blueprint for the general architec-
ture of the new virtualization platform that we envision to
build as a research testbed, depicted in Fig. 2. It is expected to
provide the following properties: (i) efficient execution of dis-
tributed guest VMs, leveraging hardware acceleration when
possible, (ii) flexibility of configuration, allowing freedom of
designs exploration for research purposes and customization

for specific use cases, and (iii) strong isolation (for perfor-
mance and security concerns) between guest and hypervisor
domains. In particular, this architecture is compatible with
the research directions suggested in §5.2.

In each rack of a virtualized disaggregated DC, we distin-
guish three blade categories: (i) Resource Blades (RB) provide
resources to VMs; Examples of RBs are CPU, GPU, memory,
network, disk blades. (ii) Resource Blade Managers (RBM):
an RBM manages RBs from the same resource type, e.g.,
CPU. (iii) The Global Manager (GM) controls RBMs, and thus
manages the entire rack.

An RB includes Resource Components (RComp), which rep-
resent resources that will be shared among VMs. For instance,
the CPU blade includes a CPU package that contains cores,
caches, etc. Notice that RComps may implement virtualiza-
tion features, but such features should be related only to the
component on the blade, not to a remote component. For
instance, the implementation of a feature like Intel PageMod-
ification Logging [20], currently within the CPU, should be
implemented on the memory blade in this new architecture.
In addition to RComps, an RB includes a programmable chip
(FPGA in the figure), a controller (Ctrl), and optionally a set
of accelerators (Acl, related to virtualization or not). The Ctrl
is a dedicated processor that runs a piece of the software part
of the hypervisor, called Local Blade Manager (LBM). This
way, the hypervisor does not share resources with the VMs,
thus avoiding hypervisor interferences and security risks.
Besides, the FPGA is at the heart of the RB architecture (all
the other components are linked to it). It implements the hy-
pervisor parts that require very high efficiency but also some
flexibility, and that have moderate complexity amenable to
FPGA synthesis. The code run by the FPGA monitors, con-
figures, and drives the other components on the RB except
the Ctrl. This way, the FPGA can implement, for instance, a
vCPU overprovisioning scheduler on a CPU RB. It can also
implement a working set size estimation algorithm, neces-
sary for memory oversubscription, on a memory RB. All
RBs communicate with each other using a fast interconnect.
Components inside an RB can directly talk to another RB or
can go through the FPGA before. The latter option allows
the execution of a custom operation (e.g., setting a tag) by
the FPGA before accessing the remote RB.

The Local Blade Manager (LBM), Resource Blade Manager
(RBM) and Global Manger (GM) run the software part of the
hypervisor. The GM is the entry point for managing the rack.
The LBMhas several roles. First, it runs the FPGA synthesizer.
Second, it runs all the hypervisor’s algorithms that are too
complex to run in a FPGA (e.g., livemigration to another rack,
checkpointing). Finally it executes the code that configures
RComps (e.g., partition sizing). The RBM plays two roles:
configuring LBMs of a specific type (e.g., CPU) and hosting
hypervisor algorithms that require a global view of a VM
resource utilization. Concerning the latter, the RBM should
run the top level of the CPU or memory overprovisioning



APSys ’19, August 19–20, 2019, Hangzhou, China Alain Tchana and Renaud Lachaize

Figure 2. The NewVirt platform for rack-scale disaggregated virtualization.

algorithms because a VM’s vCPUs or memory can be hosted
by several blades (VMs 1 & 2 in the figure).

7 Distributed guest OSes
This section presents Sprinkled OS, a new design model for
supporting distributed VMs on a disaggregated architecture,
with the illusion of a single system image per VM. Note that
this model is agnostic to the two disaggregation visions pre-
sented in §2 (heavy and lightweight blades). The main moti-
vation of this model is to facilitate the porting of legacy guest
code (initially designed for the computer-centric model) to
a disaggregated architecture. More precisely, the goal is to
support unmodified guest applications via a limited set of
changes made to the code base of an existing guest OS (e.g.,
Linux). With this model, the distributed VM is a collection
of several sprinkled VMs, each running on a CPU blade (see
Fig. 3). The number of sprinkled VMs that compose a dis-
tributed guest OS equals the number of CPU blades hosting
at least one vCPU of the distributed guest VM. A user who
connects to a distributed guest VM is redirected to a sprinkled
VM instance. The latter transparently sees all the hardware
and software resources (e.g., CPU cores and processes, re-
spectively) assigned to the entire distributed guest VM. The
data structures of a sprinkled OS are organized in two types:
real and stub. Real data structures directly reference virtual
CPUs and processes that are currently mapped to the local
CPU blade. Stub data structures represent remote entities;
accessing them (e.g., for sending a signal to a process run-
ning on a remote blade) triggers a trap in the hypervisor
(Mgr elements in Fig. 3), which then forwards the requests
to the target remote sprinkled OS instance. We believe that
this design facilitates the utilization of existing OSes to pro-
vide sprinkled VMs, with less modifications which can be
automated using tools like Coccinelle [27].

Figure 3. A distributed guest VM provided by two sprinkled
OS instances. The figure only depicts the CPU blades.

8 Conclusion
As the vision of full hardware disaggregation in the data
center is gaining traction, the implications on the software
stack are in need of clarification. We have made the case
for the persisting interest of virtualization in this context,
and we have suggested design directions for the hypervisor
and guest OSes. The exploration of hardware/software co-
designs to address these challenges will likely be difficult
but the blooming ecosystem of related tools also provides
opportunities to succeed [8, 19, 22].

Acknowledgments
This work was funded by the “ScaleVisor” project of Agence
Nationale de la Recherche, number ANR-18-CE25-0016, and
the “Studio virtuel” project of BPI and ERDF/FEDER, grant
agreement number 16.010402.01.

References
[1] A. Barak and R. Wheeler. 1988. MOSIX: An integrated Unix for multi-

processor workstations. TR-88-004. Univ. of Berkeley, California.
[2] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-

nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and



Rebooting Virtualization Research (Again) APSys ’19, August 19–20, 2019, Hangzhou, China

Binoy Ravindran. 2015. Popcorn: Bridging the Programmability
Gap in heterogeneous-ISA Platforms. In Proceedings of the Tenth
European Conference on Computer Systems (Bordeaux, France) (Eu-
roSys ’15). ACM, New York, NY, USA, Article 29, 16 pages. https:
//doi.org/10.1145/2741948.2741962

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (Big Sky, Montana,
USA) (SOSP ’09). ACM, New York, NY, USA, 29–44. https://doi.org/10.
1145/1629575.1629579

[4] Marc Brooker and Holly Mesrobian. 2018. A Serverless Journey: Un-
der the Hood of AWS Lambda. https://www.youtube.com/watch?v=
QdzV04T_kec. Online; accessed 2019-07-07.

[5] Amanda Carbonari and Ivan Beschasnikh. 2017. Tolerating Faults in
Disaggregated Datacenters. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (Palo Alto, CA, USA) (HotNets-XVI). ACM,
New York, NY, USA, 164–170. https://doi.org/10.1145/3152434.3152447

[6] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and AndrewWarfield. 2011. Breaking Up
is Hard to Do: Security and Functionality in a Commodity Hypervi-
sor. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). ACM, Cascais, Portugal, 189–202.

[7] dRedBox EUH2020 project. 2016. dRedBox: Disaggregated Data Center
in a Box. http://www.dredbox.eu/. Online; accessed 2019-07-07.

[8] ETH Zürich Systems Group. 2019. The Enzian Research Computer.
http://www.enzian.systems/. Online; accessed 2019-07-07.

[9] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Network Requirements for Resource Disaggregation. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Associa-
tion, Berkeley, CA, USA, 249–264. http://dl.acm.org/citation.cfm?id=
3026877.3026897

[10] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time
Protection: the Missing OS Abstraction. In EuroSys Conference (2019-
3-25). ACM, Dresden, Germany.

[11] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A Survey
of Microarchitectural Timing Attacks and Countermeasures on Con-
temporary Hardware. Journal of Cryptographic Engineering 8 (April
2018), 1–27. Issue 1. https://doi.org/10.1007/s13389-016-0141-6

[12] Madeleine Glick, Sebastien Rumley, and Keren Bergman. 2018. Silicon
Photonics Enabling the Disaggregated Data Center, In Advanced Pho-
tonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF).
Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks,
SPPCom, SOF), NeM3F.4. https://doi.org/10.1364/NETWORKS.2018.
NeM3F.4

[13] Google, Inc. 2019. gVisor. A container sandbox runtime focused on
security, efficiency, and ease of use. https://gvisor.dev. Online; accessed
2019-07-07.

[14] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosen-
blum. 2000. Cellular Disco: Resource Management Using Virtual Clus-
ters on Shared-memory Multiprocessors. ACM Transactions on Com-
puter Systems 18, 3 (Aug. 2000), 229–262.

[15] Brendan Gregg. 2017. AWS EC2 Virtualization 2017: Intro-
ducing Nitro. http://www.brendangregg.com/blog/2017-11-29/
aws-ec2-virtualization-2017.html. Online; accessed 2019-07-07.

[16] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Tra-
chtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh. 2019.
Page Cache Attacks. https://arxiv.org/abs/1901.01161. arXiv preprint
arXiv:1901.01161 (Jan. 2019).

[17] Gernot Heiser. 2018. For Safety’s Sake: We Need a New Hardware-
Software Contract! IEEE Design and Test 35 (March 2018), 27–30. Issue

2. https://doi.org/10.1109/MDAT.2017.2766559
[18] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. 2019. Serverless Computing: One Step Forward, Two Steps Back. In
Proceedings of the 2019 biennial Conference on Innovative Data Systems
Research (CIDR ’19). Asilomar, CA, USA.

[19] JohnHennessy and David Patterson. 2018. A NewGolden Age for Com-
puter Architecture: Domain-Specific Hardware/Software Co-Design,
Enhanced Security, Open Instruction Sets, and Agile Chip Develop-
ment. Turing lecture given at ISCA ’18. https://www.youtube.com/
watch?time_continue=125&v=3LVeEjsn8Ts. Online; accessed 2019-07-
07.

[20] Intel corporation. 2015. Page-Modification Logging for Virtual-
Machine Monitor. https://www.intel.com/content/www/us/en/
processors/page-modification-logging-vmm-white-paper.html. On-
line; accessed 2019-07-07.

[21] Intel Corporation. 2016. Introduction to Cache Allocation Technology
in the Intel Xeon Processor E5 v4 Family. https://software.intel.com/
en-us/articles/introduction-to-cache-allocation-technology. Online;
accessed 2019-07-07.

[22] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pem-
berton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B.
Nikolic, R. Katz, J. Bachrach, and K. Asanovic. 2018. FireSim: FPGA-
Accelerated Cycle-Exact Scale-Out System Simulation in the Public
Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA ’18). 29–42.

[23] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. 2010.
NoHype: Virtualized Cloud Infrastructure Without the Virtualization.
In Proceedings of the 37th Annual International Symposium on Computer
Architecture (Saint-Malo, France) (ISCA ’10). ACM, New York, NY, USA,
350–361. https://doi.org/10.1145/1815961.1816010

[24] Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin Donnelly,
Richard Black, Andrew Douglas, Nathanaël Cheriere, Daniel Fryer, Kai
Mast, Angela Demke Brown, Ana Klimovic, Andy Slowey, and Antony
Rowstron. 2017. Understanding Rack-scale Disaggregated Storage. In
Proceedings of the 9th USENIX Conference on Hot Topics in Storage and
File Systems (Santa Clara, CA) (HotStorage ’17). USENIX Association,
Berkeley, CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=3154601.
3154603

[25] Anthony Liguori. 2018. Powering Next-Gen EC2 Instances – Deep
Dive into the Nitro System. https://www.youtube.com/watch?v=
e8DVmwj3OEs. Online; accessed 2019-07-07.

[26] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ran-
ganathan, Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Dis-
aggregated Memory for Expansion and Sharing in Blade Servers. In
Proceedings of the 2009 ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA ’09). ACM, 267–278.

[27] LIP6. 2018. Coccinelle: A Program Matching and Transformation
Tool for Systems Code. http://coccinelle.lip6.fr/. Online; accessed
2019-07-07.

[28] Martin Maas, Krste Asanović, and John Kubiatowicz. 2017. Return of
the Runtimes: Rethinking the Language Runtime System for the Cloud
3.0 Era. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems (HotOS ’17). ACM, Whistler, BC, Canada, 138–143.

[29] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-
mont. 2018. Welcome to Zombieland: Practical and Energy-efficient
Memory Disaggregation in a Datacenter. In Proceedings of the Thir-
teenth EuroSys Conference (Eurosys ’18). ACM, Porto, Portugal, 16:1–
16:12.

[30] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’18). USENIX Association,
Carlsbad, CA, USA, 69–87.

https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
https://www.youtube.com/watch?v=QdzV04T_kec
https://www.youtube.com/watch?v=QdzV04T_kec
https://doi.org/10.1145/3152434.3152447
http://www.dredbox.eu/
http://www.enzian.systems/
http://dl.acm.org/citation.cfm?id=3026877.3026897
http://dl.acm.org/citation.cfm?id=3026877.3026897
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1364/NETWORKS.2018.NeM3F.4
https://doi.org/10.1364/NETWORKS.2018.NeM3F.4
https://gvisor.dev
http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
https://arxiv.org/abs/1901.01161
https://doi.org/10.1109/MDAT.2017.2766559
https://www.youtube.com/watch?time_continue=125&v=3LVeEjsn8Ts
https://www.youtube.com/watch?time_continue=125&v=3LVeEjsn8Ts
https://www.intel.com/content/www/us/en/processors/page-modification-logging-vmm-white-paper.html
https://www.intel.com/content/www/us/en/processors/page-modification-logging-vmm-white-paper.html
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://doi.org/10.1145/1815961.1816010
http://dl.acm.org/citation.cfm?id=3154601.3154603
http://dl.acm.org/citation.cfm?id=3154601.3154603
https://www.youtube.com/watch?v=e8DVmwj3OEs
https://www.youtube.com/watch?v=e8DVmwj3OEs
http://coccinelle.lip6.fr/


APSys ’19, August 19–20, 2019, Hangzhou, China Alain Tchana and Renaud Lachaize

[31] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and HakimWeatherspoon.
2019. X-Containers: Breaking Down Barriers to Improve Performance
and Isolation of Cloud-Native Containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages andOperating Systems (ASPLOS ’19). ACM, Providence,
RI, USA, 121–135.

[32] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gre-
gory J. Sharp, and Sape J. Mullender. 1990. Experiences with the
Amoeba Distributed Operating System. Commun. ACM 33, 12 (Dec.
1990), 46–63. https://doi.org/10.1145/96267.96281

[33] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC ’18).

USENIX Association, Boston, MA, 133–146.
[34] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. 2014. COLORIS: A

Dynamic Cache Partitioning System Using Page Coloring. In Proceed-
ings of the 23rd International Conference on Parallel Architectures and
Compilation (Edmonton, AB, Canada) (PACT ’14). ACM, New York, NY,
USA, 381–392. https://doi.org/10.1145/2628071.2628104

[35] Xiantao Zhang, Xiao Zheng, Zhi Wang, Qi Li, Junkang Fu, Yang Zhang,
and Yibin Shen. 2019. Fast and Scalable VMM Live Upgrade in Large
Cloud Infrastructure. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19). ACM, Providence, RI, USA, 93–105.

https://doi.org/10.1145/96267.96281
https://doi.org/10.1145/2628071.2628104

	Abstract
	1 Introduction
	2 Data center disaggregation
	3 Related work
	4 The need for virtualization
	5 Challenges
	5.1 Which software infrastructure?
	5.2 Long-term challenges

	6 The NewVirt platform
	7 Distributed guest OSes
	8 Conclusion
	Acknowledgments
	References

