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Abstract
Boolean networks are discrete dynamical systems where each automaton has its own Boolean function
for computing its state according to the configuration of the network. The updating mode then
determines how the configuration of the network evolves over time. Many of updating modes from
the literature, including synchronous and asynchronous modes, can be defined as the composition
of elementary deterministic configuration updates, i.e., by functions mapping configurations of the
network. Nevertheless, alternative dynamics have been introduced using ad-hoc auxiliary objects,
such as that resulting from binary projections of Memory Boolean networks, or that resulting from
additional pseudo-states for Most Permissive Boolean networks. One may wonder whether these
latter dynamics can still be classified as updating modes of finite Boolean networks, or belong to a
different class of dynamical systems. In this paper, we study the extension of updating modes to the
composition of non-deterministic updates, i.e., mapping sets of finite configurations. We show that
the above dynamics can be expressed in this framework, enabling a better understanding of them as
updating modes of Boolean networks. More generally, we argue that non-deterministic updates pave
the way to a unifying framework for expressing complex updating modes, some of them enabling
transitions that cannot be computed with elementary and non-elementary deterministic updates.
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1 Introduction

Boolean networks (BNs) are formal dynamical systems composed of automata, each of them
having a Boolean state. A major difference between BNs and cellular automata (CAs) is that
each automaton of a BN follows its own rules for computing its next state depending on the
states of the other automata in the network. Consequently, whereas influences between cells
in a CA are structured homogeneously according to a cellular space, those between automata
in a BN are structured according to any directed graph. In this paper, only finite BNs are
considered, as it is generally the case in the literature, notably because BNs are mostly
viewed as both a real-world computational model and a real-world modeling framework.

The study of BNs led to fundamental results linking the network architecture (structure
of influences between automata) to the existence of fixed points and to the number of limit
cycles they can exhibit [1, 10, 4]. Notably, it is well known that such limit behaviors may
depend on the way automata update their state over time [3, 12, 2, 22]. This emphasizes the
importance of what is classically called the updating modes in the analyses of BNs.
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10:2 Non-Deterministic Updates of Boolean Networks

BNs are widely employed to model natural systems, with prominent applications in
biology. These applications inspired the definition of various updating modes aiming at
reflecting constraints related to the quantitative nature of the abstracted system, such as
reaction duration and influence thresholds. There is actually no consensus about one updating
mode that would be the most likely, the most representative of the biological reality. As a
consequence, the choice of this or that updating mode strongly depends on the problematics,
on the nature of the questions addressed. Thus, it remains essential to analyze the impact of
a wide range of updating modes with distinct features.

In this paper, we address the formalization of updating modes in the framework of BNs.
From a very general perspective, given a BN and one of its configurations, an updating mode
specify how to compute the possible next configurations (plural implying non-deterministic
systems).

A large majority of updating modes introduced so far can be expressed using deterministic
functions mapping the configurations of the network. This leads to elementary transitions,
as it is the case with synchronous (or parallel) and asynchronous [23] updating modes, which
may result in non-deterministic dynamics. These functions may also be composed, as in
block-sequential [25] and block-parallel [11] updating modes, generating non-elementary
transitions.

These compositions of deterministic updates, however, do not cover all the updating
modes introduced in the literature. Indeed, updating modes may also make use of parameters
that cannot a priori and intuitively be directly captured by these deterministic updates.
These parameters can represent kinds of delays or threshold effects of state changes. In this
paper, we focus on 3 examples of BN dynamics which have been recently introduced and
defined using ad-hoc formalizations:

Memory Boolean networks (MBNs) [14, 15] take into account some kind of delay for the
decrease of automata. They have been introduced by the means of a deterministic dynam-
ical system with non-binary configurations, whose updates are computed deterministically
from the BN and a memory vector, specifying the delay for each automaton.
Interval Boolean networks (IBNs) [7] account for a duration for updating an automaton.
The other automata can be updated until the former automaton eventually change of
state. They have been defined by an encoding as the fully-asynchronous updating of a
BN of dimension 2n. The dynamics of the original BN are then recovered by projection.
Most Permissive Boolean networks (MPBNs) [24] bring a formal abstraction of trajectories
of quantitative models which are compatible with the BN formalism: from an initial
configuration, if there is no trajectory where a given automaton is 1 (or 0), then, no
quantitative refinement of the model can increase (or decrease) the value of this automaton.
MPBNs have been defined by introducing additional states for automata to account for
their state change (increasing and decreasing). An automaton in one of these states can
be read non-deterministically as 0 or 1.

Overall, the definition of these BN dynamics involve either non-Boolean configurations,
projections of higher-dimension BN, or both. Importantly, they suggest that deterministic
updates are not expressive enough to capture specific dynamics. This is striking with IBNs
and MPBNs which can generate transitions that are neither elementary nor non-elementary
transitions, and thus predict trajectories that are impossible with the asynchronous updating
mode.

We show that these dynamics can all be expressed using Boolean configurations in a
simple generic framework, which extends the deterministic updates to non-deterministic
updates: functions mapping sets of configurations. In the case of MBNs, the obtained
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definition from the binary projections of their deterministic discrete dynamics actually help
to understand the generated dynamics: the transitions match with a particular subset of
elementary transitions, suggesting a simpler parameterization. In the case of IBNs and
MPBNs, the transitions extend the elementary and non-elementary transitions by considering
some delay for the state changes, and having different interpretation of how to “read” an
automaton in the course of state change. The obtained definitions suggest many variants for
generating sub-dynamics, similarly to the asynchronous mode which generates all elementary
transitions.

Thus, non-deterministic updates offer a unified yet simple framework for defining and
understanding BN updating modes with more expressivity than usual deterministic updates.
However, should any set update be considered as a BN updating mode? We propose an
argumentation for a reasonable updating mode in the last section, where we suggest that the
state change should always be justified by the application of a local function. This suggests
that the MP updating mode generates the largest set of transitions that fulfill this criterion.

Notations. The Boolean domain {0, 1} is denoted by B; the set {1, · · · , n} is denoted by
JnK. Given a finite domain A with a partial order ⪯, and a function h mapping elements
of A to A, for any k ∈ N>0, we write hk for h iterated k times. Whenever for any a ∈ A,
a ⪯ h(a), we write hω for the iteration of h until reaching a fixed point (in this paper, A is
often a power set with ⪯ being the subset relation).

2 Boolean networks and dynamics

A Boolean network (BN) of dimension n is specified by a function f : Bn → Bn mapping
Boolean vectors of dimension n. The components JnK of the BN are called automata. For
each automaton i ∈ JnK, fi : Bn → B is the i-th component of this function, that we call the
local function of automaton i. The 2n Boolean vectors of Bn are called the configurations of
the BN. In a configuration x ∈ Bn, xi is the state of automaton i.

Updating modes. Given a BN f of dimension n and one of its configurations x ∈ Bn,
an updating mode µ characterizes the possible evolutions of x with respect to f(x). The
dynamical system (f, µ) defines a binary transition relation between configurations of Bn

denoted by −→(f,µ) ⊆ Bn × Bn. This dynamical system can be represented by a directed
graph D(f,µ) = (Bn, −→(f,µ)). This graph is usually called the transition graph of (f, µ). The
reflexive and transitive closure of relation −→(f,µ), denoted by −→∗

(f,µ) can be defined as follows:
given two configurations x, y ∈ Bn, x −→∗

(f,µ) y if and only if x = y or there exists a path
from x to y in D(f,µ).

A deterministic updating mode ensures that, for any BN f of dimension n, each configur-
ation has at most one outgoing transition (∀x, y, z ∈ Bn, x −→(f,µ) y and x −→(f,µ) z only if
y = z). Otherwise, the updating mode is qualified as non-deterministic.

In the following, we consider the BN f to be fixed, and thus, for the sake of simplicity,
we omit the subscript f : the transition relation is denoted by −→µ and the transition graph
by Dµ.

Dynamical properties. A configuration x ∈ Bn is transient if there exists a configuration
y such that x −→∗

µ y and y ̸−→∗
µ x. Configurations that are not transient are called limit

configurations. Because n is finite, these configurations induce the terminal strongly connected
components of Dµ, called the limit sets of (f, µ). If there exists at least one path from a

AUTOMATA 2021



10:4 Non-Deterministic Updates of Boolean Networks

Table 1 Configurations, local functions ((fi)i∈J3K) and four updating functions (ϕ∅, ϕ1, ϕ{2,3},
and ϕJ3K) of Boolean network f presented in Example 2.

x = (x1, x2, x3) f1(x) f2(x) f3(x) ϕ∅(x) ϕ1(x) ϕ{2,3}(x) ϕJ3K(x) ≡ f(x)
(0, 0, 0) 1 0 1 (0, 0, 0) (1, 0, 0) (0, 0, 1) (1, 0, 1)
(0, 0, 1) 0 1 1 (0, 0, 1) (0, 0, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 0) 1 0 1 (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1)
(0, 1, 1) 0 1 1 (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 0) 1 0 0 (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 1) 0 0 0 (1, 0, 1) (0, 0, 1) (1, 0, 0) (0, 0, 0)
(1, 1, 0) 1 0 0 (1, 1, 0) (1, 1, 0) (1, 0, 0) (1, 0, 0)
(1, 1, 1) 0 0 0 (1, 1, 1) (0, 1, 1) (1, 0, 0) (0, 0, 0)

transient configuration to a limit set, this limit set is called an attractor of (f, µ) [8, 21].
The basin of attraction of an attractor A of (f, µ), denoted by B(A), is the sub-graph of
Dµ induced by the set of transient configurations x such that, for any limit configuration
y belonging to A, x −→∗

µ y. A limit set of cardinal 1, i.e. composed of a unique limit
configuration x is called a fixed point of (f, µ). A limit set of cardinal greater than 1 is called
a limit cycle of (f, µ).

3 Updating modes with deterministic updates

Elementary transitions

Let us consider a BN f of dimension n and one of its configurations x ∈ Bn. Whenever x and
f(x) differ by more than one component, one may define several ways to update x: either by
replacing it with f(x), i.e., applying simultaneously the local functions on every automata,
or by modifying the state of only a subset of automata. For each set of automata to update,
we obtain a deterministic function mapping configurations, that we refer to as an elementary
deterministic update:

▶ Definition 1. Given a BN f of dimension n and a set of automata W ⊆ JnK, ϕW : Bn → Bn

is an elementary deterministic update with

∀x ∈ Bn, ∀i ∈ JnK, ϕW (x)i =
{

fi(x) if i ∈ W ,
xi otherwise.

Whenever referring to singleton sets {i} with i ∈ JnK, we write ϕi instead of ϕ{i}. Notice
that ϕJnK = f .

▶ Example 2. Let us consider the BN f of dimension n = 3 with f(x) = f1(x) = ¬x3
f2(x) = ¬x1 ∧ x3
f3(x) = ¬x1

.

Table 1 shows four distinct updatings on its configurations. The first updating is ineffective
and consists in changing nothing. The second updating changes the state of automaton 1 by
application of ϕ1, the third one changes the states of both automata 2 and 3 by application
of ϕ{2,3}, and the fourth one changes the state of every automaton by application of ϕJ3K.

We can then define the notion of elementary transitions of a BN, that are the transitions
obtained by applying any elementary update on a non-empty subset of automata.
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Figure 1 Distinct possible block-sequential dynamics of BN f defined in Example 2: (left
panel) its parallel dynamics associated with ordered partition (J3K); (central panel) the block-
sequential dynamics associated with ({2, 3}, {1}); (right panel) the sequential dynamics associated
with ({3}, {1}, {2}).

▶ Definition 3. Given a BN f , its elementary transitions −→e ⊆ Bn × Bn are such that,
for all configurations x, y ∈ Bn, x −→e y if and only if there exists a non-empty subset of
automata W ⊆ JnK with y = ϕW (x).

Let us now define some classical deterministic and non-deterministic updating modes
from these elementary updates.

Examples of deterministic updating modes

The most direct updating mode is the application of f to the configuration x, resulting in
the configuration f(x), or, equivalently, ϕJnK(x):

▶ Definition 4. The synchronous (or parallel) updating mode of a BN f of dimension n

generates the transition relation →p ⊆ Bn × Bn such that, for all configurations x, y ∈ Bn,
x →p y if and only if y = ϕJnK(x).

Sequential updating modes are parameterized by a permutation of JnK, fixing an ordering
of elementary updates of single automata [13, 17, 9]. They can be generalized to block-
sequential updating modes [25, 3, 16], parameterized by a permutation of a partition of JnK:

▶ Definition 5. Given a BN f of dimension n and bs = (W1, · · · , Wp) an ordered partition
of JnK, the block-sequential updating mode generates the transition relation →bs ⊆ Bn × Bn

such that, for all configurations x, y ∈ Bn, x →bs y if and only if y = ϕWp
◦ · · · ϕW1(x).

Remark that the transitions of sequential and block-sequential modes may not be ele-
mentary. However, they always correspond to a path of elementary transitions: x →bs y only
if x →∗

e y.
Going further in generalization, one may consider deterministic updating modes as infinite

sequences of sets of automata, so that automata of a same subset execute their local function
in parallel while the subsets are iterated sequentially. Remark that any of these possible
deterministic updating modes will generate transitions corresponding to specific paths of
elementary transitions.

Examples of non-deterministic updating modes

It is important to notice that deterministic updates can lead to non-deterministic dynamics
by allowing different updates on a same configuration. The most obvious example is the
asynchronous mode1 consisting of all the elementary transitions.

1 The asynchronous mode is often referred to as general asynchronous in the systems biology modeling
community.

AUTOMATA 2021
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Figure 2 Fully-asynchronous (left) and asynchronous (right) dynamics of BN f defined in
Example 2.

▶ Definition 6. The asynchronous updating mode of a BN f generates the transition relation
→a ⊆ Bn × Bn as →a = →e.

One of the most usual non-deterministic updating modes of BNs is the fully-asynchronous
mode2, where only one automaton is updated in a transition. It is largely employed for
the analysis of models of biological systems, arguing it enables capturing (some) behaviors
caused by different time scale for automata updates.

▶ Definition 7. The fully-asynchronous updating mode of a BN f generates the transition
relation →fa ⊆ Bn × Bn such that, for all configurations x, y ∈ Bn: x →fa y if and only if
there exists i ∈ JnK with y = ϕi(x).

Figure 2 shows the dynamics generated by the fully-asynchronous and asynchronous
updating modes on the BN of Example 2.

4 Non-deterministic updates as set updates

The updates considered so far are deterministic, and can thus be defined as functions mapping
configurations, i.e., of the form ϕ : Bn → Bn. As we have seen above, deterministic updates
can generate non-deterministic updating modes, by allowing different updates to be applied
on a same configuration.

Let us now extend to non-deterministic updates, that we model by functions mapping
sets of configurations, i.e., of the form Φ : 2Bn → 2Bn . We define Φ as a map from sets
of configurations to sets of configurations for enabling iterations and compositions of non-
deterministic updates. Nevertheless, we assume that for any X ⊆ Bn, Φ(X) =

⋃
x∈X Φ({x}):

one can define Φ only from all singleton configuration set. This restriction ensures that, for
any X ⊆ Bn, each configuration in the image set y ∈ Φ(X) can be computed from a singleton
set {x} for some x ∈ Bn. In the following, we call such updates set updates.

Starting from a singleton configuration set {x}, the iteration of set updates delineates
the domains of configurations the system can evolve to. Thus, set updates naturally define
transition relations between configurations:

▶ Definition 8. Given a set update function Φ for BNs of dimension n, the generated
transition relation is given by δ : (2Bn → 2Bn) → 2Bn×Bn with δ(Φ) = {(x, y) | x ∈ Bn, y ∈
Φ({x})}.

2 The fully-asynchronous mode is usually referred to as asynchronous in the system biology modeling
community.
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In contrast with deterministic updates, non-deterministic updating modes can be charac-
terized directly by set updates. Indeed, non-deterministic updating modes allow “superposing”
alternative updates to generate different transitions from a single configuration x, although
each of them is computed with a deterministic update. For instance, with one update
ϕ where ϕ(x) = y and another update ϕ′ where ϕ′(x) = y′ ̸= y. Now, let us imagine
an updating mode superposing two set updates, Φ and Φ′ where, for some configurations
x ∈ Bn, Φ({x}) \ Φ′({x}) ̸= ∅. One can then build a single set update Φ∗ such that
Φ∗(X) = Φ(X) ∪ Φ′(X). It results that δ(Φ∗) = δ(Φ) ∪ δ(Φ′), thus the updating mode can
be assimilated to Φ∗.

Finally, notice that limit sets of the generated dynamics δ(Φ) can be characterized as the
⊆-smallest sets of configurations X ⊆ Bn such that Φ(X) = X.

5 Updating modes selecting elementary transitions

With deterministic updates as building blocks, we have seen that one can define non-
deterministic updating modes by superposing different update functions. The resulting
transition relation is then the union of the transition relation generated by each individual
update (each of them giving a deterministic dynamics). Set updates offer an alternative way
to formalize the resulting dynamics, by directly defining the set of out-going transitions from
a given configuration. As we will illustrate with the memory updating mode below, this
enables a fine-grained selection of the elementary transitions which may then depend on the
configuration.

5.1 Asynchronous and fully-asynchronous updating modes
As a first illustration of set updates and how they can characterize updating modes, consider
the following set update for BNs of dimension n:

Φe(X) = {ϕW (x) | x ∈ X, ∅ ≠ W ⊆ JnK}.

This set update generates exactly all the elementary transitions: δ(Φe) = →e. Thus, Φe
characterizes the asynchronous updating mode. Similarly, let us now consider the following
set update:

Φfa(X) = {ϕi(x) | x ∈ X, i ∈ JnK}.

Remark that δ(Φfa) =→fa, i.e., Φfa characterizes the fully-asynchronous updating mode.

5.2 Memory updating mode
Until now, all the updating modes that have been discussed depend on deterministic updates
that are context free, which leads to deal with memoryless dynamical systems. In [14, 15]
have been introduced another model of BNs, called Memory Boolean networks (MBNs).
The first objective of MBNs is to capture the biologically relevant gene-protein BN model
introduced in [18], that builds on the following principles:

automata are split in two types: a half models genes, the other half models their associated
one-to-one proteins;
each protein has its own decay time: the number of time steps during which it remains
present in the cell after having been produced by the punctual expression of its associated
gene.

AUTOMATA 2021



10:8 Non-Deterministic Updates of Boolean Networks

In their original definition given below, MBNs of dimension n are BNs of dimension
n parameterized with a vector M ∈ Nn

>0, setting the maximal delay (called memory) for
the degradation of each automaton. Then, an automaton is considered active (Boolean 1)
whenever its delay to degradation is not 0. Formally, MBN are defined as follows:

▶ Definition 9. A Memory Boolean network of dimension n is the couple of a BN f of
dimension n and of a memory vector M = (M1, . . . , Mn) ∈ Nn

>0. The set of its configurations
is defined as X(f,M) = {(x, d) ∈ Bn × Nn | ∀i ∈ JnK, di ∈ {0, . . . , Mi}, xi = 0 ⇐⇒ di =
0 and xi = 1 ⇐⇒ di ∈ {1, . . . , Mi}}. The dynamical system ((f, M), p) is defined by the
transition graph D((f,M),p), with p the parallel updating mode, made of transitions based on
updating function ϕ⋆ : X(f,M) → X(f,M) depending on the memories such that:

∀(x, d), (y, d′) ∈ X(f,M), (x, d) −→((f,M),p) (y, d′) ⇐⇒ (y, d′) = ϕ⋆
JnK(x, d),

where ∀i ∈ JnK, ϕ⋆
JnK(x, d)i = (yi, d′

i), with:

d′
i =


0 if fi(x) = 0 and di = 0,
di − 1 if fi(x) = 0 and di ≥ 1,
Mi if fi(x) = 1,

and yi =
{

1 if d′
i ≥ 1,

fi(x) if d′
i = 0.

From this initial definition, it is easy to see that the dynamics of a MBN is deterministic
and operates on discrete configurations that are not Boolean anymore. But we will see that
MBNs enable to develop a new updating mode, called the memory updating mode, that
operates directly on Boolean configurations.

First, let us define α(x) the set of memory configurations corresponding to any binary
configuration x ∈ Bn, and conversely, β(d) the binary configuration corresponding to a
memory configuration d ∈ Nn. Notice that ∀x ∈ Bn, ∀d ∈ α(x), β(d) = x.

α(x) = {d ∈ Nn | xi = 0 ⇔ di = 0, xi = 1 ⇔ di ∈ JMiK},
∀i ∈ JnK β(d)i = min{di, 1}.

It appears that X(f,M) = {(β(d), d) | d ∈ Nn, ∀i ∈ JnK, di ∈ {0, . . . , Mi}}. Thus one can
reformulate the original definition by considering the deterministic parallel update of memory
configurations d ∈ Nn, and replacing x with β(d): an automaton i ∈ JnK is set to state Mi

whenever its local function fi is evaluated to 1 on the corresponding binary configuration
β(d); otherwise, its state is decreased by one, unless it is already 0. In particular, one can
define the deterministic memory update ϕ∗

M : Nn → Nn such that, for each i ∈ JnK,

ϕ∗
M(d)i =


0 if fi(β(d)) = 0 and di = 0,
di − 1 if fi(β(d)) = 0 and di ≥ 0,
Mi if fi(β(d)) = 1.

Let us now extend the above definitions to sets:
∀X ⊆ Bn, A(X) =

⋃
x∈X α(x);

∀D ⊆ Nn, B(D) = {β(d) | d ∈ D};
∀D ⊆ Nn, Φ∗

M(D) = {ϕ∗
M(d) | d ∈ D}.

The memory set update can then be defined for any set of configurations X ⊆ Bn by first
generating the set of corresponding memory configurations, then applying the deterministic
update on them, and finally converting them back to binary configurations:

ΦM(X) = B ◦ Φ∗
M ◦ A(X).
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Figure 3 Memory dynamics with M = {1} (left), interval dynamics (center), and MP dynamics
(right) of the BN of Example 2. In these two latter, the elementary transitions are dotted and loops
are omitted.

With this formulation, one can see that the memory updating mode, being the projection
of MBN configurations on their binary part, lead to non-deterministic dynamics. Indeed,
whenever a configuration gets mapped to several possible memory configurations, and
whenever for two of these configurations d and d′, there is an automaton i ∈ JnK where
ϕM(d)i = 0 and ϕM(d′)i ≥ 1. This can occur if and only if Mi ≥ 2, xi = 1, and fi(x) = 0.
Thus, the memory updating mode of BNs can equivalently be parameterized by a set of
automata M = {i ∈ JnK | Mi ≥ 2} and defined as the following set update:

ΦM(X) = {ϕW (x) | x ∈ X, W ⊆ JnK, W ⊇ {i ∈ JnK | i /∈ M ∨ fi(x) = 1}}.

Remark that this definition no longer relies on memory configurations in Nn. Overall,
the memory updating mode of BNs can be understood as a particular set of elementary
transitions: those where automata not in M or automata that can change from state 0 to 1
are always updated, together with any subset of the others (automata in M that can change
from state 1 to 0): automata in M that are decreasing are updated asynchronously, while the
others are updated in parallel.

Figure 3(left) gives the dynamics generated by the interval updating mode on the BN of
Example 2 with M = {1}.

6 Updating modes going beyond (non-)elementary transitions

BNs are widely used to model dynamics of biological systems, notably implying gene regulation.
Gene regulation is a dynamical biological process that involves numerous mechanisms
and entities among which some of them, like RNAs and proteins, have specific influences
that depend on their concentration. In other terms, the regulation process in its whole
admits significant quantitative parts. The question arises then of how faithful are Boolean
dynamics with respect to the quantitative dynamics. It has been recently underlined in [24]
that the elementary and non-elementary transitions of BNs are not complete enough to
capture particular quantitative trajectories. With a fixed logic, and starting from similar
configurations, the quantitative system shows that an automaton can eventually get activated,
whereas the asynchronous dynamics of the BN shows it is impossible.

In this section, we address the set update reformulation of two recently introduced
dynamics of BNs which generate transitions that are neither elementary nor non-elementary:
they result in set updates Φ where, for some BNs of dimension n and for some configurations
x ∈ Bn, there is k ∈ N such that there exists y ∈ Φk({x}) whereas x ̸→∗

e y.
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6.1 Interval updating mode
From the concurrency theory, it is known that the execution of 1-bounded contextual Petri
nets corresponding to the asynchronous updating mode (known as steps semantics) may miss
some transitions that can be triggered when considering certain delay of state change [6, 5].
In [7] is proposed a translation of the interval semantics of Petri nets to BNs, showing it can
predict transitions that are neither elementary nor non-elementary transitions: configurations
that are not reachable with the asynchronous mode from a fixed initial configuration x

become reachable with Interval Boolean networks.
The main principle of the interval dynamics is to decompose the change of state of

an automaton, allowing interleaving the update of other automata. For instance, let us
assume that automaton i can change from state 0 to 1. In the interval dynamics, we register
that i will eventually change to state 1, and then allow the update of other automata, still
considering that i is in state 0. In [7], this is applied to any BN of dimension n by an
encoding with the fully-asynchronous dynamics of a BN of dimension 2n: each automaton is
split in a read and write automaton, where the write automaton register the next state of
the original automaton, and the read automaton keeps its current state and will eventually
copy the value of the write automaton. The dynamics of the original BN is then obtained by
projecting the configurations on the read automata.

We provide below an equivalent formulation as a composition of set updates. Essentially,
whenever an automaton i can change its state, we hold it and compute the possible state
changes of the automata different than i. Thus, during this evaluation, we have a growing
number of held automata, that we denote by L, waiting for their state to be updated. The
set update ΦInt,L extends a given set of configurations with the possible state change of
automata not in L. The function Φi/L(x) first computes all possible state changes by iterating
ΦInt,L∪{i} until a fixed point, and then apply the state change for the automaton i on all the
resulting configurations.

▶ Definition 10. The Interval set update ΦInt of a BN of dimension n is given by ΦInt = ΦInt,∅
where

ΦInt,L(X) = X ∪ {y ∈ Φi/L(x) | x ∈ X, i ∈ JnK, i /∈ L, fi(x) ̸= xi},

Φi/L(x) = {yi | y ∈ Φω
Int,L∪{i}({x})}.

The interval updating mode preserves the fixed points of f : for any configuration x ∈ Bn,
ΦInt({x}) = {x} if and only if f(x) = x. Moreover, one can prove that it includes all the
elementary transitions: for any configuration x ∈ Bn, Φe({x}) ⊆ ΦInt({x}).

▶ Example 11. Figure 3 shows the transitions generated by the interval updating mode on
the BN of Example 2. Notice that there is a path from 000 to 111, which does not exist
in the asynchronous dynamics (Figure 2). Indeed, let us partially compute ΦInt,∅({000}) =
{000} ∪ Φ1/∅(000) ∪ Φ3/∅(000).

Let us focus on the interval update of automaton 1 with Φ1/∅(000), which requires com-
puting all the iterations of ΦInt,{1}({000}). The first iteration gives ΦInt,{1}({000}) =
{000} ∪ Φ3/{1}(000) = {000, 001}, then Φ2

Int,{1}({000}) = {000, 001} ∪ Φ2/{1}(001) =
{000, 001, 011} = Φω

Int,{1}({000}).
Finally, we get Φ1/∅(000) = {100, 101, 111}. Thus, 111 ∈ ΦInt({000}).

6.2 Most Permissive updating mode
Most Permissive Boolean networks (MPBNs) have been designed to capture all automata
updates that could occur in any quantitative refinement of the BN. We will come back more
formally to this notion later in this section.
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The main feature of MPBNs is to abstract all the possible interaction thresholds between
automata. Consider the case whenever the state of an automaton i is used to compute the
state of two distinct automata j and k, and assume that i is increasing from 0: during its
increase, there are times when i may be high enough for trigger a state change of j but
not (yet) high enough for k. This can be illustrated on a concrete biological example, the
so-called incoherent feed-forward loop of type 3 [20]: a BN f of dimension 3 with

f1(x) = 1 f2(x) = x1 f3(x) = ¬x1 ∧ x2.

Starting from the configuration 000, the asynchronous updating mode predicts only the
following non-reflexive transitions: 000 →a 100 →a 110. Notice that in this case, the
interval updating mode results in the same transitions. However, it has been observed
experimentally [27] and in quantitative models [19, 26] that depending on reaction kinetics,
one can actually activate transiently the automata 3. Essentially, the idea is that during
the increase of the state of automaton 1, there is period of time where 1 is high enough so 2
can consider it active (x1 true) but 3 still considers it inactive (x1 false). Then, the state of
automaton 2 can increase, and so do the state of automaton 3. This activation of 3 cannot be
predicted with BN updating modes defined so far, whereas the logic encoded by f is correct.

Without introducing any parameter, MPBNs capture these additional dynamics by ac-
counting for all possible thresholds ordering, for all updates that can happen between a switch
of a Boolean state. In some sense, the MP updating mode abstracts both the quantitative
domain of automata and the duration of state changes. Their original definition [24] is based
on the introduction pseudo dynamic states, namely increasing and decreasing. An automaton
can change from 0 to increasing whenever it can interpret the state of the other automata
so that its local function is satisfied. Once in increasing state, it can change to the state 1
without any condition, or to the decreasing state whenever it can interpret the state of other
automata so that its local function is not satisfied. Whenever an automaton is in a dynamic
state, the automata can freely interpret its state as either 0 or 1. Remark that the possible
interpretations of the MP configurations always result in a hypercube (a set of automata
fixed to a Boolean value, and the others free).

Here, we show that the MP dynamics can be expressed in a more standard way by the
means of composition of set updates. A first stage consists in widening all the elementary
set updates to compute all the possible interpretations of automata changing of state. The
widening is defined using the function ∇ : 2Bn → 2Bn which computes the vertices of the
smallest hypercube containing the given set of configurations. For instance, ∇({01, 10}) =
{00, 01, 10, 11}. Given a set of automata W , the widening set update ΦW,∇ : 2Bn → 2Bn

applies this operator on the results of the elementary set update, or equivalently with the
fully-asynchronous set update, on the automata of W (Subsection 5.1). This widening is
re-iterated until a fixed point is reached. Then, a narrowing ΛW : 2Bn → 2Bn filters the
computed configurations X to retain only those where the states of automata in W can be
computed with f from X.

▶ Definition 12. The Most Permissive set update ΦMP of a BN of dimension n is given by

ΦMP(X) =
⋃

W ⊆JnK

ΛW ◦ Φω
W,∇(X),

where, for any X ⊆ Bn and any W ⊆ JnK:

∇(X) = {x ∈ Bn | ∀i ∈ JnK, ∃y ∈ X : xi = yi}, (1)
ΦW,∇(X) = ∇(X ∪ {ϕi(x) | x ∈ X, i ∈ W}), (2)

ΛW (X) = {x ∈ X | ∀i ∈ W, ∃y ∈ X : xi = fi(y)}. (3)
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▶ Example 13. Figure 3 shows the dynamics generated by the MP updating mode on the
BN of Example 2. With the BN f of the incoherent feed-forward loop introduced at the
beginning of Subsection 6.2 page 10:11, we obtain:

Φ{1,2,3},∇({000}) = ∇({000, 100}) = {000, 100},
Φ2

{1,2,3},∇({000}) = ∇({000, 100} ∪ {110}) = {000, 100, 010, 110},
Φ3

{1,2,3},∇({000}) = ∇({000, 1000, 010, 110} ∪ {011}) = Bn,
Λ{1,2,3}(Bn) = {100, 101, 110, 111}.

Thus, 111 ∈ ΦMP({000}), whereas 000 ̸→∗
e 111 and 111 /∈ ΦInt({000}).

Let us now list some basic properties of the MP updating mode:
1. MP preserves the fixed points of f : for any configuration x ∈ Bn, f(x) = x if and only if

ΦMP(x) = {x}.
2. MP subsumes elementary transitions: →e ⊆ δ(ΦMP).
3. MP transition relation is transitive and reflexive: ΦMP = Φ2

MP.
4. (by 2 and 3) MP transition relation subsumes non-elementary transitions: →∗

e ⊆ δ(ΦMP).
5. (by 4 and the example) there exist BNs f such that the MP transition relation is strictly

larger than non-elementary transitions, i.e., there exist x, y ∈ Bn such that y ∈ ΦMP({x})
but x ̸→∗

e y.

In [24], it has been demonstrated that MP dynamics of a BN f forms a correct abstraction
of the dynamics of any quantitative model being a refinement of f . A quantitative model F

can be defined as a function mapping discrete or continuous configurations to the derivative
of the state of automata. Then, F is a refinement of f if and only if the derivative of
automaton i is strictly positive (resp. negative) in a given quantitative configuration z only
if there is a binarization z̃ of z so that fi(z̃) = 1 (resp. 0). It has also been proven to be
minimal for the abstraction of asynchronous discrete models. Moreover, the complexity for
deciding the existence of a path between two configurations as well as deciding whether a
configuration belongs to a limit set is respectively in PNP and in coNPcoNP in general and in
P and in coNP for locally monotonic BNs (each local function is monotonic with respect to
a specific component-wise ordering of configurations), in contrast with the other updating
modes where these problems are PSPACE-complete.

7 Discussion

By extending to non-deterministic updates modeled as set updates, we can reformulate
in a unified manner a range of BN dynamics introduced in the literature with ad-hoc
definitions, and for which the usual deterministic updates seem not expressive enough. These
reformulations bring a better understanding and comparison of dynamics as more classical
BN updating modes. Moreover, they allow envisioning new families of updating modes
as variations of the one presented here. For instance, the given MP set update allows to
readily define restrictions of it: similarly to the block-sequential updating mode, one could
parameterize the MP set update to only consider particular sequences of sets of automata
to update. One could also consider different narrowing operators and different manners to
compose them with the widening, with the goal of reducing the set of generated transitions.

On the one hand, these set updates foster the definitions of totally new kinds of updating
modes. On the other hand, they raise the question of a potential upper limit on which
transitions could be considered as valid, or at least reasonable.



L. Paulevé and S. Sené 10:13

On reasonable set updates

Of course, from a purely theoretical standpoint, any set update which is mathematically
correct is reasonable but, if we consider set updates in a context of modeling, some constraints
need to be taken in account. This second standpoint is the one on which is based the
following discussion. Indeed, as evoked in the introduction of this paper, BNs are a classical
mathematical model in systems biology. They are notably widely used to model genetic
regulation networks, in which their use rests for instance on the fact that their limit sets
model real observable “structures” such as differentiated cellular types (fixed points), or
specific biological paces (limit cycles). In this sense, a basic criterion would be that an
updating mode for a BN f is admissible only if the fixed points of f are fixed points of the
generated dynamics as well. This criterion would allow capturing the fundamental property
of fixed point stability of dynamical system theory. For instance, let us consider the set
update Φ⊤(X) = Bn: clearly, the set of fixed points of the generated dynamical system is
always empty, and thus do not include those of f whenever f has at least one fixed point.
Therefore, such a set update does not appear satisfying.

Now, let us discuss about set updates which would give sets larger than MP for some
singleton configuration set {x}. First, what about defining a widening operator larger than
∇? For any set of automata W and for any configuration x, remark that Φω

W,∇({x}) = Y

is the smallest hypercube containing x verifying for each automata i ∈ W that for any
configuration y ∈ Y , if fi(y) ̸= xi, then there exists a configuration z ∈ Y with zi ̸= xi.
Thus, an automaton in W is either fixed to its state in x, or it has been computed with
its local function from at least one configuration from a smaller hypercube. Therefore, a
widening operator ∇′ verifying for some X ⊆ Bn, ∇′(X) ⊋ ∇(X) implies that the state of
at least one configuration is not computed using f on X. Now, what about a less stringent
narrowing operator. Let us consider a configuration y ∈ ΦW,∇({x}) = Y for some set of
automata W , but y /∈ ΛW (Y ). This implies that there exists an automaton i ∈ W such that
∀z ∈ Y , yi ̸= fi(z), i.e., yi cannot be computed by fi from X. Overall, a set update giving
configuration sets strictly larger than the MP update implies that for some configurations,
the state of at least one automaton is not computed using its local function.

Simulations by deterministic updates

A perspective of the work presented in this paper focuses on simulations of BNs evolving
with non-deterministic updates by BNs evolving with deterministic updates. A first natural
way is by following a classical determinization of the dynamics. Indeed, one can encode any
set of configurations in Bn as one configuration in B2n . Let us consider such an encoding
c : 2Bn → B2n where, for all x ∈ Bn, c(X)x = 1 if x ∈ X, otherwise c(X)x = 0 (we slightly
abuse notations here, by specifying a vector index by its binary representation). Now, it
is clear that for any set update Φ : 2Bn → 2Bn of a BN f of dimension n, one can define a
BN g such that for all sets of configurations X ⊆ Bn, g(c(X)) = c(Φ(X)). This encoding is
complete in the sense that any transition generated by Φ is simulated in (g, p). But these
simulations are nothing else but a brute-force encoding in which we get rid of the transition
relation by increasing exponentially the state space. Moreover, with this deterministic
encoding, the structure of the transition relation of (f, µ = Φ) is lost, which make much more
difficult characterizing dynamical features of (f, µ) such as its limit sets for instance.

Actually, a fundamental matter here lies in the concept of simulation at stake here:
we are interested in intrinsic simulations which go far beyond the classical concepts of
encoding or simulation. Indeed, intrinsic simulations aim at conserving dynamical structures
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in addition to operated computations. So, one of the first question to answer would consist
in defining formally different kinds of intrinsic simulations. Nevertheless, firstly, consider the
following intrinsic simulation: a dynamical system (f, µ) simulates another (g, µ′) if D(g,µ′) is
a subgraph of D(f,µ). With this rather simple definition, it is direct to state that, with a and
M the asynchronous and memory updating modes respectively, for any BN f , (f, a) simulates
(f, M). Some natural questions related to BNs updated with memory are the following:

Are there BNs whose dynamics obtained according to M remains deterministic, whatever
M?
If so, what are their properties and what are the equivalent deterministic updating modes?

To go further, consider the MP updating mode. It is direct that (f, µ) does not simulate
(f, MP), except for very particular f . Let us now consider a more general intrinsic simulation:
a dynamical system (f, µ) simulates another (g, µ′) if D(g,µ′) is a graph obtained from D(f,µ)
thanks to edge deletions, and vertex shortcuts. A lot of promising questions arise from this,
in particular related to M and MP updating modes, among which for instance:

Let per be a deterministic periodic updating mode. How can (f, M) be simulated by
(g, per)? The answer is known for per = p [14], but it seems pertinent to find a general-
ization to deterministic periodic updating modes, and even more general deterministic
updating modes.
Intuitively, any (f, MP) might be simulated by (g, a), where f and g are BNs and the
dimension of g is greater than that of f . But how many automata need to be added to g

depending on the dimension of f?
All answers, even partial or negative, will bring a better understanding of updating modes
and BNs, which would lead to pertinent further development in both BN theory and their
application in systems biology.
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