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Abstract6

Boolean networks are discrete dynamical systems where each automaton has its own Boolean function for7

computing its state according to the configuration of the network. The updating mode then determines how8

the configuration of the network evolves over time. Many of updating modes from the literature, including9

synchronous and asynchronous modes, can be defined as the composition of elementary deterministic10

configuration updates, i.e., by functions mapping configurations of the network. Nevertheless, alternative11

dynamics have been introduced using ad-hoc auxiliary objects, such as that resulting from binary projections12

of Memory Boolean networks, or that resulting from additional pseudo-states for Most Permissive Boolean13

networks. One may wonder whether these latter dynamics can still be classified as updating modes of finite14

Boolean networks, or belong to a different class of dynamical systems. In this paper, we study the extension of15

updating modes to the composition of non-deterministic updates, i.e., mapping sets of finite configurations.16

We show that the above dynamics can be expressed in this framework, enabling a better understanding of17

them as updating modes of Boolean networks. More generally, we argue that non-deterministic updates pave18

the way to a unifying framework for expressing complex updating modes, some of them enabling transitions19

that cannot be computed with elementary and non-elementary deterministic updates.20
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1 Introduction28

Boolean networks (BNs) are formal dynamical systems composed of automata, each of them29

having a Boolean state. A major difference between BNs and cellular automata (CAs) is that each30

automaton of a BN follows its own rules for computing its next state depending on the states31

of the other automata in the network. Consequently, whereas influences between cells in a CA32

are structured homogeneously according a cellular space, those between automata in a BN are33

structured according to any directed graph. In this paper, only finite BNs are considered, as it is34

generally the case in the literature, notably because BNs are mostly viewed as both a real-world35

computational model and a real-world modeling framework.36

The study of BNs led to fundamental results linking the network architecture (structure of37

influences between automata) to the existence of fixed points and to the number of limit cycles38

they can exhibit [1, 10, 4]. Notably, it is well known that such limit behaviors may depend on the39

way automata update their state over time [3, 12, 2, 22]. This emphasizes the importance of what40

is classically called the updating modes in the analyses of BNs.41

BNs are widely employed to model natural systems, with prominent applications in biology.42

These applications inspired the definition of various updating modes aiming at reflecting con-43

straints related to the quantitative nature of the abstracted system, such as reaction duration and44

influence thresholds. There is actually no consensus about one updating modes that would be45
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2 Non-deterministic updates of Boolean networks

the most likely, the most representative of the biological reality. As a consequence, the choice of46

this or that updating mode strongly depends on the problematics, on the nature of the questions47

addressed. Thus, it remains essential to analyze the impact of a wide range of updating modes48

with distinct features.49

In this paper, we address the formalization of updating modes in the framework of BNs. From50

a very general perspective, given a BN and one of its configurations, an updating mode specify51

how to compute the possible next configurations (plural implying non-deterministic systems).52

A large majority of updating modes introduced so far can be expressed using deterministic53

functions mapping the configurations of the network. This leads to elementary transitions, as it is54

the case with synchronous (or parallel) and asynchronous [23] updating modes, which may result55

in non-deterministic dynamics. These functions may also be composed, as in block-sequential [25]56

and block-parallel [11] updating modes, generating non-elementary transitions.57

These compositions of deterministic updates, however, do not cover all the updating modes58

introduced in the literature. Indeed, updating modes may also make use of parameters that cannot59

a priori and intuitively be directly captured by these deterministic updates. These parameters can60

represent kinds of delays or threshold effects of state changes. In this paper, we focus on 3 examples61

of BN dynamics which have been recently introduced and defined using ad-hoc formalizations:62

Memory Boolean networks (MBNs) [14, 15] take into account some kind of delay for the decrease63

of automata. They have been introduced by the means of a deterministic dynamical system64

with non-binary configurations, whose updates are computed deterministically from the BN65

and a memory vector, specifying the delay for each automaton.66

Interval Boolean networks (IBNs) [7] account for a duration for updating an automaton. The67

other automata can be updated until the former automaton eventually change of state. They68

have been defined by an encoding as the fully-asynchronous updating of a BN of dimension69

2n. The dynamics of the original BN are then recovered by projection.70

Most Permissive Boolean networks (MPBNs) [24] bring a formal abstraction of trajectories of71

quantitative models which are compatible with the BN: from an initial configuration, if there72

is no trajectory where a given automaton is 1 (or 0), then, no quantitative refinement of the73

model can increase (or decrease) the value of this automaton. MPBNs have been defined by74

introducing additional states for automata to account for their state change (increasing and75

decreasing). An automaton in one of these states can be read non-deterministically as 0 or 1.76

Overall, the definition of these BN dynamics involve either non-Boolean configurations, projec-77

tions of higher-dimension BN, or both. Importantly, they suggest that deterministic updates are78

not expressive enough to capture specific dynamics. This is striking with IBNs and MPBNs which79

can generate transitions that are neither elementary nor non-elementary transitions, and thus80

predict trajectories that are impossible with the asynchronous updating mode.81

We show that these dynamics can all be expressed using Boolean configurations in a simple82

generic framework, which extends the deterministic updates to non-deterministic updates: func-83

tions mapping sets of configurations. In the case of MBNs, the obtained definition from the binary84

projections of their deterministic discrete dynamics actually help to understand the generated85

dynamics: the transitions match with a particular subset of elementary transitions, suggesting a86

simpler parameterization. In the case of IBNs and MPBNs, the transitions extend the elementary87

and non-elementary transitions by considering some delay for the state changes, and having88

different interpretation of how to “read” an automaton in the course of state change. The obtained89

definitions suggest many variants for generating sub-dynamics, similarly to the asynchronous90

mode which generates all elementary transitions.91

Thus, non-deterministic updates offer a unified yet simple framework for defining and under-92

standing BN updating modes with more expressivity than usual deterministic updates. However,93
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should any set update be considered as a BN updating mode? We propose an argumentation for94

a reasonable updating mode in the last section, where we suggest that the state change should95

always be justified by the application of a local function. This suggests that the MP updating mode96

generates the largest set of transitions that fulfill this criterion.97

Notations The Boolean domain {0,1} is denoted by B; the set {1, · · · ,n} is denoted by JnK. Given98

a finite domain A with a partial order ⪯, and a function h mapping elements of A to A, for any99

k ∈N>0, we write hk for h iterated k times. Whenever for any a ∈ A, a ⪯ h(a), we write hω for the100

iteration of h until reaching a fixed point (in this paper, A is often a power set with ⪯ being the101

subset relation).102

2 Boolean networks and dynamics103

A Boolean network (BN) of dimension n is specified by a function f :Bn →Bn mapping Boolean104

vectors of dimension n. The components JnK of the BN are called automata. For each automaton105

i ∈ JnK, fi :Bn →B is the i -th component of this function, that we call the local function of auto-106

maton i . The 2n Boolean vectors of Bn are called the configurations of the BN. In a configuration107

x ∈Bn , xi is the state of automaton i .108

Updating modes Given a BN f of dimension n and one of its configurations x ∈Bn , an updating109

mode µ characterizes the possible evolutions of x with respect to f (x). The dynamical system ( f ,µ)110

defines a binary transition relation between configurations of Bn denoted by −→( f ,µ) ⊆ Bn ×Bn .111

This dynamical system can be represented by a directed graph D( f ,µ) = (Bn ,−→( f ,µ)). This graph is112

usually called the transition graph of ( f ,µ). The reflexive and transitive closure of relation −→( f ,µ),113

denoted by −→∗
( f ,µ) can be defined as follows: given two configurations x, y ∈Bn , x −→∗

( f ,µ) y if and114

only if x = y or there exists a path from x to y in D( f ,µ).115

A deterministic updating mode ensures that, for any BN f of dimension n, each configuration116

has at most one outgoing transition (∀x, y, z ∈Bn , x −→( f ,µ) y and x −→( f ,µ) z only if y = z). Otherwise,117

the updating mode is qualified as non-deterministic.118

In the following, we consider the BN f to be fixed, and thus, for the sake of simplicity, we omit119

the subscript f : the transition relation is denoted by −→µ and the transition graph by Dµ.120

Dynamical properties A configuration x ∈Bn is transient if there exists a configuration y such121

that x −→∗
µ y and y ̸−→∗

µ x. Configurations that are not transient are called limit configurations.122

Because n is finite, these configurations induce the terminal strongly connected components of123

Dµ, called the limit sets of ( f ,µ). If there exists at least one path from a transient configuration to a124

limit set, this limit set is called an attractor of ( f ,µ) [8, 21]. The basin of attraction of an attractor A125

of ( f ,µ), denoted by B(A ), is the sub-graph of Dµ induced by the set of transient configurations126

x such that, for any limit configuration y belonging to A , x −→∗
µ y . A limit set of cardinal 1, i.e.127

composed of a unique limit configuration x is called a fixed point of ( f ,µ). A limit set of cardinal128

greater than 1 is called a limit cycle of ( f ,µ).129

3 Updating modes with deterministic updates130

Elementary transitions131

Let us consider a BN f of dimension n and one of its configurations x ∈Bn . Whenever x and f (x)132

differ by more than one component, one may define several ways to update x: either by replacing it133
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Table 1 Configurations, local functions (
(

fi
)

i∈J3K) and four updating functions (φ;, φ1, φ{2,3}, and φJ3K)
of Boolean network f presented in Example 2.

x = (x1, x2, x3) f1(x) f2(x) f3(x) φ;(x) φ1(x) φ{2,3}(x) φJ3K(x) ≡ f (x)

(0,0,0) 1 0 1 (0,0,0) (1,0,0) (0,0,1) (1,0,1)

(0,0,1) 0 1 1 (0,0,1) (0,0,1) (0,1,1) (0,1,1)

(0,1,0) 1 0 1 (0,1,0) (1,1,0) (0,0,1) (1,0,1)

(0,1,1) 0 1 1 (0,1,1) (0,1,1) (0,1,1) (0,1,1)

(1,0,0) 1 0 0 (1,0,0) (1,0,0) (1,0,0) (1,0,0)

(1,0,1) 0 0 0 (1,0,1) (0,0,1) (1,0,0) (0,0,0)

(1,1,0) 1 0 0 (1,1,0) (1,1,0) (1,0,0) (1,0,0)

(1,1,1) 0 0 0 (1,1,1) (0,1,1) (1,0,0) (0,0,0)

with f (x), i.e., applying simultaneously the local functions on every automata, or by modifying the134

state of only a subset of automata. For each set of automata to update, we obtain a deterministic135

function mapping configurations, that we refer to as an elementary deterministic update:136

Ï Definition 1. Given a BN f of dimension n and a set of automata W ⊆ JnK, φW :Bn →Bn is an137

elementary deterministic update with138

∀x ∈Bn ,∀i ∈ JnK, φW (x)i =
{

fi (x) if i ∈W ,

xi otherwise.
139

Whenever referring to singleton sets {i } with i ∈ JnK, we write φi instead of φ{i }. Notice that140

φJnK = f .141

Ï Example 2. Let us consider the BN f of dimension n = 3 with f (x) =

 f1(x) =¬x3

f2(x) =¬x1 ∧x3

f3(x) =¬x1

.142

Table 1 shows four distinct updatings on its configurations. The first updating is ineffective143

and consists in changing nothing. The second updating changes the state of automaton 1 by144

application of φ1, the third one changes the states of both automata 2 and 3 by application of145

φ{2,3}, and the fourth one changes the state of every automaton by application of φJ3K.146

We can then define the notion of elementary transitions of a BN, that are the transitions147

obtained by applying any elementary update on a non-empty subset of automata.148

Ï Definition 3. Given a BN f , its elementary transitions −→e ⊆ Bn ×Bn are such that, for all149

configurations x, y ∈Bn , x −→e y if and only if there exists a non-empty subset of automata W ⊆ JnK150

with y =φW (x).151

Let us now define some classical deterministic and non-deterministic updating modes from152

these elementary updates.153

Examples of deterministic updating modes154

The most direct updating mode is the application of f to the configuration x, resulting in the155

configuration f (x), or, equivalently, φJnK(x):156

Ï Definition 4. The synchronous (or parallel) updating mode of a BN f of dimension n generates157

the transition relation →p ⊆ Bn ×Bn such that, for all configurations x, y ∈Bn , x →p y if and only if158

y =φJnK(x).159
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Figure 1 Distinct possible block-sequential dynamics of BN f defined in Example 2: (left panel) its
parallel dynamics associated with ordered partition (J3K); (central panel) the block-sequential dynamics
associated with ({2,3}, {1}); (right panel) the sequential dynamics associated with ({3}, {1}, {2}).
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Figure 2 Fully-asynchronous (left) and asynchronous (right) dynamics of BN f defined in Example 2.

Sequential updating modes are parameterized by a permutation of JnK, fixing an ordering of160

elementary updates of single automata [13, 17, 9]. They can be generalized to block-sequential161

updating modes [25, 3, 16], parameterized by a permutation of a partition of JnK:162

Ï Definition 5. Given a BN f of dimension n and bs = (W1, · · · ,Wp ) an ordered partition of JnK,163

the block-sequential updating mode generates the transition relation →bs ⊆ Bn ×Bn such that, for164

all configurations x, y ∈Bn , x →bs y if and only if y =φWp ◦ · · ·φW1 (x).165

Remark that the transitions of sequential and block-sequential modes may not be elementary.166

However, they always correspond to a path of elementary transitions: x →bs y only if x →∗
e y .167

Going further in generalization, one may consider deterministic updating modes as infinite168

sequences of sets of automata, so that automata of a same subset execute their local function in169

parallel while the subsets are iterated sequentially. Remark that any of these possible deterministic170

updating modes will generate transitions corresponding to specific paths of elementary transitions.171

Examples of non-deterministic updating modes172

It is important to notice that deterministic updates can lead to non-deterministic dynamics by173

allowing different updates on a same configuration. The most obvious example is the asynchronous174

mode1 consisting of all the elementary transitions.175

Ï Definition 6. The asynchronous updating mode of a BN f generates the transition relation176

→a ⊆ Bn ×Bn as →a =→e.177

One of the most usual non-deterministic updating modes of BNs is the fully-asynchronous178

mode2, where only one automaton is updated in a transition. It is largely employed for the analysis179

1 The asynchronous mode is often referred to as general asynchronous in the systems biology modeling community.
2 The fully-asynchronous mode is usually referred to as asynchronous in the system biology modeling community.
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of models of biological systems, arguing it enables capturing (some) behaviors caused by different180

time scale for automata updates.181

Ï Definition 7. The fully-asynchronous updating mode of a BN f generates the transition relation182

→fa ⊆ Bn ×Bn such that, for all configurations x, y ∈Bn : x →fa y if and only if there exists i ∈ JnK183

with y =φi (x).184

Figure 2 shows the dynamics generated by the fully-asynchronous and asynchronous updating185

modes on the BN of Example 2.186

4 Non-deterministic updates as set updates187

The updates considered so far are deterministic, and can thus be defined as functions mapping188

configurations, i.e., of the form φ : Bn → Bn . As we have seen above, deterministic updates can189

generate non-deterministic updating modes, by allowing different updates to be applied on a190

same configuration.191

Let us now extend to non-deterministic updates, that we model by functions mapping sets of192

configurations, i.e., of the form Φ : 2B
n → 2B

n
. We define Φ as a map from sets of configurations193

to sets of configurations for enabling iterations and compositions of non-deterministic updates.194

Nevertheless, we assume that for any X ⊆Bn , Φ(X ) =⋃
x∈X Φ({x}): one can define Φ only from all195

singleton configuration set. This restriction ensures that, for any X ⊆Bn , each configuration in the196

image set y ∈Φ(X ) can be computed from a singleton set {x} for some x ∈Bn . In the following, we197

call such updates set updates.198

Starting from a singleton configuration set {x}, the iteration of set updates delineate the199

domains of configurations the system can evolve to. Thus, set updates naturally define transition200

relations between configurations:201

Ï Definition 8. Given a set update function Φ for BNs of dimension n, the generated transition202

relation is given by δ : (2B
n → 2B

n
) → 2B

n×Bn
with δ(Φ) = {(x, y) | x ∈Bn , y ∈Φ({x})}.203

In contrast with deterministic updates, non-deterministic updating modes can be charac-204

terized directly by set updates. Indeed, non-deterministic updating modes allow “superposing”205

alternative updates to generate different transitions from a single configuration x, although each206

of them is computed with a deterministic update. For instance, with one update φ where φ(x) = y207

and another update φ′ where φ′(x) = y ′ ̸= y . Now, let us imagine an updating mode superposing208

two set updates,Φ andΦ′ where, for some configurations x ∈Bn ,Φ({x})\Φ′({x}) ̸= ;. One can then209

build a single set update Φ∗ such that Φ∗(X ) =Φ(X )∪Φ′(X ). It results that δ(Φ∗) = δ(Φ)∪δ(Φ′),210

thus the updating mode can be assimilated to Φ∗.211

Finally, notice that limit sets of the generated dynamics δ(Φ) can be characterized as the212

⊆-smallest sets of configurations X ⊆Bn such that Φ(X ) = X .213

5 Updating modes selecting elementary transitions214

With deterministic updates as building blocks, we have seen that one can define non-deterministic215

updating modes by superposing different update functions. The resulting transition relation216

is then the union of the transition relation generated by each individual update (each of them217

giving a deterministic dynamics). Set updates offer an alternative way to formalize the resulting218

dynamics, by directly defining the set of out-going transitions from a given configuration. As we219

will illustrate with the memory updating mode below, this enables a fine-grained selection of the220

elementary transitions which may then depend on the configuration.221
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5.1 Asynchronous and fully-asynchronous updating modes222

As a first illustration of set updates and how they can characterize updating modes, consider the223

following set update for BNs of dimension n:224

Φe(X ) = {φW (x) | x ∈ X ,; ̸=W ⊆ JnK}.225

This set update generates exactly all the elementary transitions: δ(Φe) =→e. Thus,Φe characterizes226

the asynchronous updating mode. Similarly, let us now consider the following set update:227

Φfa(X ) = {φi (x) | x ∈ X , i ∈ JnK}.228

Remark that δ(Φfa) =→fa, i.e., Φfa characterizes the fully-asynchronous updating mode.229

5.2 Memory updating mode230

Until now, all the updating modes that have been discussed depend on deterministic updates that231

are context free, which leads to deal with memoryless dynamical systems. In [14, 15] have been232

introduced another model of BNs, called Memory Boolean networks (MBNs). The first objective of233

MBNs is to capture the biologically relevant gene-protein BN model introduced in [18], that builds234

on the following principles:235

automata are split in two types: a half models genes, the other half models their associated236

one-to-one proteins;237

each protein has its own decay time: the number of time steps during which it remains present238

in the cell after having been produced by the punctual expression of its associated gene.239

In their original definition given below, MBNs of dimension n are BNs of dimension n para-240

meterized with a vector M ∈Nn
>0, setting the maximal delay (called memory) for the degradation241

of each automaton. Then, an automaton is considered active (Boolean 1) whenever its delay to242

degradation is not 0. Formally, MBN are defined as follows:243

Ï Definition 9. A Memory Boolean network of dimension n is the couple of a BN f of dimension n244

and of a memory vector M= (M1, . . . ,Mn) ∈Nn
>0. The set of its configurations is defined as X( f ,M) =245

{(x,d) ∈ Bn ×Nn | ∀i ∈ JnK, di ∈ {0, . . . ,Mi }, xi = 0 ⇐⇒ di = 0 and xi = 1 ⇐⇒ di ∈ {1, . . . ,Mi }}.246

The dynamical system (( f ,M),p) is defined by the transition graph D(( f ,M),p), with p the parallel247

updating mode, made of transitions based on updating function φ⋆ : X( f ,M) → X( f ,M) depending on248

the memories such that:249

∀(x,d), (y,d ′) ∈ X( f ,M), (x,d) −→(( f ,M),p) (y,d ′) ⇐⇒ (y,d ′) =φ⋆JnK(x,d),250

where ∀i ∈ JnK, φ⋆JnK(x,d)i = (yi ,d ′
i ), with:251

d ′
i =


0 if fi (x) = 0 and di = 0,

di −1 if fi (x) = 0 and di ≥ 1,

Mi if fi (x) = 1,

and yi =
{

1 if d ′
i ≥ 1,

fi (x) if d ′
i = 0.

252

From this initial definition, it is easy to see that the dynamics of a MBN is deterministic and253

operates on discrete configurations that are not Boolean anymore. But we will see that MBNs254

enable to develop a new updating mode, called the memory updating mode, that operates directly255

on Boolean configurations.256
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First, let us define α(x) the set of memory configurations corresponding to any binary con-257

figuration x ∈ Bn , and conversely, β(d) the binary configuration corresponding to a memory258

configuration d ∈Nn . Notice that ∀x ∈Bn , ∀d ∈α(x), β(d) = x.259

α(x) = {d ∈Nn | xi = 0 ⇔ di = 0, xi = 1 ⇔ di ∈ JMi K}260

∀i ∈ JnK β(d)i = min{di ,1}.261
262

It appears that X( f ,M) = {(β(d),d) | d ∈Nn ,∀i ∈ JnK,di ∈ {0, . . . , Mi }}. Thus one can reformulate263

the original definition by considering the deterministic parallel update of memory configurations264

d ∈ Nn , and replacing x with β(d): an automaton i ∈ JnK is set to state Mi whenever its local265

function fi is evaluated to 1 on the corresponding binary configuration β(x); otherwise, its state is266

decreased by one, unless it is already 0. In particular, one can define the deterministic memory267

update φ∗
M :Nn →Nn such that, for each i ∈ JnK,268

φ∗
M(d)i =


0 if fi (β(d)) = 0 and di = 0,

di −1 if fi (β(d)) = 0 and di ≥ 0,

Mi if fi (β(d)) = 1.

269

Let us now extend the above definitions to sets:270

∀X ⊆Bn , A(X ) =⋃
x∈X α(x);271

∀D ⊆Nn , B(D) = {β(d) | d ∈ D};272

∀D ⊆Nn ,Φ∗
M(D) = {φ∗

M(d) | d ∈ D}.273

The memory set update can then be defined for any set of configurations X ⊆ Bn by first274

generating the set of corresponding memory configurations, then applying the deterministic275

update on them, and finally converting them back to binary configurations:276

ΦM(X ) = B ◦Φ∗
M ◦ A(X ).277

With this formulation, one can see that the memory updating mode, being the projection of278

MBN configurations on their binary part, lead to non-deterministic dynamics. Indeed, whenever279

a configuration gets mapped to several possible memory configurations, and whenever for two of280

these configurations d and d ′, there is an automaton i ∈ JnK where φM(d)i = 0 and φM(d ′)i ≥ 1.281

This can occur if and only if Mi ≥ 2, xi = 1, and fi (x) = 0. Thus, the memory updating mode of BNs282

can equivalently be parameterized by a set of automata M= {i ∈ JnK |Mi ≥ 2} and defined as the283

following set update:284

ΦM(X ) = {φW (x) | x ∈ X ,W ⊆ JnK,W ⊇ {i ∈ JnK | i ∉M∨ fi (x) = 1}}.285

Remark that this definition no longer relies on memory configurations in Nn . Overall, the memory286

updating mode of BNs can be understood as a particular set of elementary transitions: those where287

automata not in M or automata that can change from state 0 to 1 are always updated, together288

with any subset of the others (automata in M that can change from state 1 to 0): automata in M289

that are decreasing are updated asynchronously, while the others are update in parallel.290

Figure 3(left) gives the dynamics generated by the interval updating mode on the BN of291

Example 2 with M= {1}.292

6 Updating modes going beyond (non-)elementary transitions293

BNs are widely used to model dynamics of biological systems, notably implying gene regulation.294

Gene regulation is a dynamical biological process that involves numerous mechanisms and295
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Figure 3 Memory dynamics with M= {1} (left), interval dynamics (center), and MP dynamics (right) of
the BN of Example 2. In these two latter, the elementary transitions are dotted and loops are omitted.

entities among which some of them, like RNAs and proteins, have specific influences that depend296

on their concentration. In other terms, the regulation process in its whole admits significant297

quantitative parts. The question arises then of how faithful are Boolean dynamics with respect298

to the quantitative dynamics. It has been recently underlined in [24] that the elementary and299

non-elementary transitions of BNs are not complete enough to capture particular quantitative300

trajectories. With a fixed logic, and starting from similar configurations, the quantitative system301

shows that an automaton can eventually get activated, whereas the asynchronous dynamics of the302

BN shows it is impossible.303

In this section, we address the set update reformulation of two recently introduced dynamics304

of BNs which generate transitions that are neither elementary nor non-elementary: they result in305

set updates Φ where, for some BNs of dimension n and for some configurations x ∈Bn , there is306

k ∈N such that there exists y ∈Φk ({x}) whereas x ̸→∗
e y .307

6.1 Interval updating mode308

From the concurrency theory, it is known that the execution of 1-bounded contextual Petri nets309

corresponding to the asynchronous updating mode (known as steps semantics) may miss some310

transitions that can be triggered when considering certain delay of state change [6, 5]. In [7]311

is proposed a translation of the interval semantics of Petri nets to BNs, showing it can predict312

transitions that are neither elementary nor non-elementary transitions: configurations that are313

not reachable with the asynchronous mode from a fixed initial configuration x become reachable314

with Interval Boolean networks.315

The main principle of the interval dynamics is to decompose the change of state of an auto-316

maton, allowing interleaving the update of other automata. For instance, let us assume that317

automaton i can change from state 0 to 1. In the interval dynamics, we register that i will eventu-318

ally change to state 1, and then allow the update of other automata, still considering that i is in319

state 0. In [7], this is applied to any BN of dimension n by an encoding with the fully-asynchronous320

dynamics of a BN of dimension 2n: each automaton is split in a read and write automaton, where321

the write automaton register the next state of the original automaton, and the read automaton322

keeps its current state and will eventually copy the value of the write automaton. The dynamics of323

the original BN is then obtained by projecting the configurations on the read automata.324

We provide here below an equivalent formulation as a composition of set updates. Essentially,325

whenever an automaton i can change of state, we hold it and compute the possible state changes326

of the automata different than i . Thus, during this evaluation, we have a growing number of held327

automata, that we denote by L, waiting for their state to be updated. The set update ΦInt,L extends328

a given set of configurations with the possible state change of automata not in L. The function329

Φi /L(x) first computes all possible state changes by iterating ΦInt,L∪{i } until a fixed point, and then330
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apply the state change for the automaton i on all the resulting configurations.331

Ï Definition 10. The Interval set update ΦInt of a BN of dimension n is given by ΦInt = ΦInt,;332

where333

ΦInt,L(X ) = X ∪ {y ∈Φi /L(x) | x ∈ X , i ∈ JnK, i ∉ L, fi (x) ̸= xi }334

Φi /L(x) = {y i | y ∈ΦωInt,L∪{i }({x})}335

The interval updating mode preserves the fixed points of f : for any configuration x ∈Bn ,ΦInt({x}) =336

{x} if and only if f (x) = x. Moreover, one can prove that it includes all the elementary transitions:337

for any configuration x ∈Bn , Φe({x}) ⊆ΦInt({x}).338

Ï Example 11. Figure 3 shows the transitions generated by the interval updating mode on the BN339

of Example 2. Notice that there is a path from 000 to 111, which does not exist in the asynchronous340

dynamics (Figure 2). Indeed, let us partially compute ΦInt,;({000}) = {000}∪Φ1/;(000)∪Φ3/;(000).341

Let us focus on the interval update of automaton 1 with Φ1/;(000), which requires computing342

all the iterations of ΦInt,{1}({000}). The first iteration gives ΦInt,{1}({000}) = {000}∪Φ3/{1}(000) =343

{000,001}, then Φ2
Int,{1}({000}) = {000,001}∪Φ2/{1}(001) = {000,001,011} =ΦωInt,{1}({000}).344

Finally, we get Φ1/;(000) = {100,101,111}. Thus, 111 ∈ΦInt({000}).345

6.2 Most Permissive updating mode346

Most Permissive Boolean networks (MPBNs) have been designed to capture all automata updates347

that could occur in any quantitative refinement of the BN. We will come back more formally to348

this notion later in this section.349

The main feature of MPBNs is to abstract all the possible interaction thresholds between350

automata. Consider the case whenever the state of an automaton i is used to compute the state of351

two distinct automata j and k, and assume that i is increasing from 0: during its increase, there352

are times when i may be high enough for trigger a state change of j but not (yet) high enough for353

k. This can be illustrated on a concrete biological example, the so-called Incoherent Feed-forward354

loop of type 3 [20]: a BN f of dimension 3 with355

f1(x) = 1 f2(x) = x1 f3(x) =¬x1 ∧x2.356

Starting from the configuration 000, the asynchronous updating mode predict only the following357

non-reflexive transitions: 000 →a 100 →a 110. Notice that in this case, the interval updating358

mode results in the same transitions. However, it has been observed experimentally [27] and359

in quantitative models [19, 26] that depending on reaction kinetics, one can actually activate360

transiently the automata 3. Essentially, the idea is that during the increase of the state of automaton361

1, there is period of time where 1 is high enough so 2 can consider it active (x1 true) but 3 still362

considers it inactive (x1 false). Then, the state of automaton 2 can increase, and so do the state363

of automaton 3. This activation of 3 cannot be predicted with BN updating modes defined so far,364

whereas the logic encoded by f is correct.365

Without introducing any parameter, MPBNs capture these additional dynamics by accounting366

for all possible thresholds ordering, for all updates that can happen between a switch of a Boolean367

state. In some sense, the MP updating mode abstracts both the quantitative domain of automata368

and the duration of state changes. Their original definition [24] is based on the introduction369

pseudo dynamic states, namely increasing and decreasing. An automaton can change from 0 to370

increasing whenever it can interpret the state of the other automata so that its local function is371

satisfied. Once in increasing state, it can change to the state 1 without any condition, or to the372

decreasing state whenever it can interpret the state of other automata so that is local function is373
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not satisfied. Whenever an automaton is in a dynamic state, the automata can freely interpret its374

state as either 0 or 1. Remark that the possible interpretations of the MP configurations always375

result in a hypercube (a set of automata fixed to a Boolean value, and the others free).376

Here, we show that the MP dynamics can be expressed in a more standard way by the means377

of composition of set updates. A first stage consists in widening all the elementary set updates to378

compute all the possible interpretations of automata changing of state. The widening is defined379

using the function ∇ : 2B
n → 2B

n
which computes the vertices of the smallest hypercube containing380

the given set of configurations. For instance, ∇({01,10}) = {00,01,10,11}. Given a set of automata381

W , the widening set updateΦW,∇ : 2B
n → 2B

n
applies this operator on the results of the elementary382

set update, or equivalently with the fully-asynchronous set update, on the automata of W (Sub-383

section 5.1). This widening is re-iterated until a fixed point. Then, a narrowing ΛW : 2B
n → 2B

n
384

filters the computed configurations X to retain only those where the states of automata in W can385

be computed with f from X .386

Ï Definition 12. The Most Permissive set update ΦMP of a BN of dimension n is given by387

ΦMP(X ) = ⋃
W ⊆JnK

ΛW ◦ΦωW,∇(X )388

where, for any X ⊆Bn and any W ⊆ JnK:389

∇(X ) = {x ∈Bn | ∀i ∈ JnK,∃y ∈ X : xi = yi }, (1)390

ΦW,∇(X ) = ∇(X ∪ {φi (x) | x ∈ X , i ∈W }), (2)391

ΛW (X ) = {x ∈ X | ∀i ∈W,∃y ∈ X : xi = fi (y)}. (3)392

Ï Example 13. Figure 3 shows the dynamics generated by the MP updating mode on the BN of393

Example 2. With the BN network f introduced at the beginning of this section, we obtain:394

Φ{1,2,3},∇({000}) = ∇({000,100}) = {000,100}395

Φ2
{1,2,3},∇({000}) = ∇({000,100}∪ {110}) = {000,100,010,110}396

Φ3
{1,2,3},∇({000}) = ∇({000,1000,010,110}∪ {011}) =Bn

397

Λ{1,2,3}(B
n) = {100,101,110,111}398

Thus, 111 ∈ΦMP({000}), whereas 000 ̸→∗
e 111 and 111 ∉ΦInt({000}).399

Let us now list some basic properties of the MP updating mode:400

1. MP preserves the fixed points of f : for any configuration x ∈ Bn , f (x) = x if and only if401

ΦMP(x) = {x}.402

2. MP subsumes elementary transitions: →e⊆ δ(ΦMP).403

3. MP transition relation is transitive and reflexive: ΦMP =Φ2
MP.404

4. (by 2 and 3) MP transition relation subsumes non-elementary transitions: →∗
e ⊆ δ(ΦMP).405

5. (by 4 and the example) there exist BNs f such that the MP transition relation is strictly larger406

than non-elementary transitions, i.e., there exist x, y ∈Bn such that y ∈ΦMP({x}) but x ̸→∗
e y .407

In [24], it has been demonstrated that MP dynamics of a BN f form a correct abstraction of408

the dynamics of any quantitative model being a refinement of f . A quantitative model F can be409

defined as a function mapping discrete or continuous configurations to the derivative of the state of410

automata. Then, F is a refinement of f if and only if the derivative of automaton i is strictly positive411

(resp. negative) in a given quantitative configuration z only if there is a binarization z̃ of z so that412

fi (z̃) = 1 (resp. 0). It has also been proven to be minimal for the abstraction of asynchronous413

discrete models. Moreover, the complexity for deciding the existence of a path between two414
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configurations as well as deciding whether a configuration belongs to a limit set is respectively415

in PNP and in coNPcoNP in general and in P and in coNP for locally monotonic BNs (each local416

function is monotonic with respect to a specific component-wise ordering of configurations), in417

contrast with the other updating modes where these problems are PSPACE-complete.418

7 Discussion419

By extending to non-deterministic updates modeled as set updates, we can reformulate in a unified420

manner a range of BN dynamics introduced in the literature with ad-hoc definitions, and for which421

the usual deterministic updates seem not expressive enough. These reformulations bring a better422

understanding and comparison of dynamics as more classical BN updating modes. Moreover,423

they allow envisioning new families of updating modes as variations of the one presented here.424

For instance, the given MP set update allows to readily define restrictions of it: similarly to the425

block-sequential updating mode, one could parameterize the MP set update to only consider426

particular sequences of sets of automata to update. One could also consider different narrowing427

operators and different manners to compose them with the widening, with the goal of reducing428

the set of generated transitions.429

On the one hand, these set updates foster the definitions of totally new kind of updating modes.430

On the other hand, they raise the question of a potential upper limit on which transitions could be431

considered as valid, or at least reasonable.432

On reasonable set updates433

Of course, from a purely theoretical standpoint, any set updates which is mathematically correct is434

reasonable but, if we consider set updates in a context of modeling, some constraints need to be435

taken in account. This second standpoint is the one on which is based the following discussion.436

Indeed, as evoked in the introduction of this paper, BNs are a classical mathematical model in437

systems biology. They are notably widely used to model genetic regulation networks, in which438

their use rests for instance on the fact that their limit sets model real observable “structures” such439

as differentiated cellular types (fixed points), or specific biological paces (limit cycles). In this440

sense, a basic criterion would be that an updating mode for a BN f is admissible only if the fixed441

points of f are fixed points of the generated dynamics as well. This criterion would allow capturing442

the fundamental property of fixed point stability of dynamical system theory. For instance, let us443

consider the set update Φ⊤(X ) = Bn : clearly, the set of fixed points of the generated dynamical444

system is always empty, and thus do not include those of f whenever f has at least one fixed point.445

Therefore, such a set update does not appear satisfying.446

Now, let us discuss about set updates which would give sets larger than MP for some singleton447

configuration set {x}. First, what about defining a widening operator larger than ∇? For any set448

of automata W and for any configuration x, remark that ΦωW,∇({x}) = Y is the smallest hypercube449

containing x verifying for each automata i ∈W that for any configuration y ∈ Y , if fi (y) ̸= xi , then450

there exists a configuration z ∈ Y with zi ̸= xi . Thus, an automaton in W is either fixed to its state451

in x, or it has been computed with its local function from at least one configuration from a smaller452

hypercube. Therefore, a widening operator ∇′ verifying for some X ⊆ Bn , ∇′(X ) ⊋∇(X ) implies453

that the state of at least one configuration is not computed using f on X . Now, what about a less454

stringent narrowing operator. Let us consider a configuration y ∈ΦW,∇({x}) = Y for some set of455

automata W , but y ∉ΛW (Y ). This implies that there exists an automaton i ∈W such that ∀z ∈ Y ,456

yi ̸= fi (z), i.e., yi cannot be computed by fi from X . Overall, a set update giving configuration sets457

strictly larger than the MP update implies that for some configurations, the state of at least one458

automaton is not computed using its local function.459
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Simulations by deterministic updates460

A perspective of the work presented in this paper focuses on simulations of BNs evolving with461

non-deterministic updates by BNs evolving with deterministic updates. A first natural way is462

by following a classical determinization of the dynamics. Indeed, one can encode any set of463

configurations in Bn as one configuration in B2n
. Let us consider such an encoding c : 2B

n →B2n
464

where, for all x ∈Bn , c(X )x = 1 if x ∈ X , otherwise c(X )x = 0 (we slightly abuse notations here, by465

specifying a vector index by its binary representation). Now, it is clear that for any set update466

Φ : 2B
n → 2B

n
of a BN f of dimension n, one can define a BN g such that for all sets of configurations467

X ⊆Bn , g (c(X )) = c(Φ(X )). This encoding is complete in the sense that any transition generated by468

Φ is simulated in (g ,p). But these simulations are nothing else but a brute-force encoding in which469

we get rid of the transition relation by increasing exponentially the state space. Moreover, with this470

deterministic encoding, the structure of the transition relation of ( f ,µ=Φ) is lost, which make471

much more difficult characterizing dynamical features of ( f ,µ) such as its limit sets for instance.472

Actually, a fundamental matter here lies in the concept of simulation at stake here: we are473

interested in intrinsic simulations which go far beyond the classical concepts of encoding or474

simulation. Indeed, intrinsic simulations aim at conserving dynamical structures in addition475

to operated computations. So, one of the first question to answer would consist in defining476

formally different kinds of intrinsic simulations. Nevertheless, firstly, consider the following477

intrinsic simulation: a dynamical system ( f ,µ) simulates another (g ,µ′) if D(g ,µ′) is a subgraph of478

D( f ,µ). With this rather simple definition, it is direct to state that, with a and M the asynchronous479

and memory updating modes respectively, for any BN f , ( f ,a) simulates ( f ,M). Some natural480

questions related to BNs updated with memory are the following:481

Are there BNs whose dynamics obtained according to M remains deterministic, whatever M?482

If so, what are their properties and what are the equivalent deterministic updating modes?483

To go further, consider the MP updating mode. It is direct that ( f ,µ) does not simulate ( f ,MP),484

except for very particular f . Let us now consider a more general intrinsic simulation: a dynamical485

system ( f ,µ) simulates another (g ,µ′) if D(g ,µ′) is a graph obtained from D( f ,µ) thanks to edge486

deletions, and vertex shortcuts. A lot of promising questions arise from this, in particular related487

to M and MP updating modes, among which for instance:488

Let per be a deterministic periodic updating mode. How can ( f ,M) be simulated by (g ,per)?489

The answer is known for per= p [14], but it seems pertinent to find a generalization to determ-490

inistic periodic updating modes, and even more general deterministic updating modes.491

Intuitively, any ( f ,MP) might be simulated by (g ,a), where f and g are BNs and the dimension492

of g is greater than that of f . But how many automata need to be added to g depending on the493

dimension of f ?494

All answers, even partial or negative, will bring a better understanding of updating modes and495

BNs, which would lead to pertinent further development in both BN theory and their application496

in systems biology.497
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