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Threshold Autoregressive Model Blind Identification
based on array clustering

Jean-Marc Le Caillec

IMT Atlnatique UMR CNRS 6285 Lab-STICC, Technople Brest Iroise CS 83818 29238
Brest Cedex 3

Abstract

In this paper, we propose a new algorithm to estimate all the parameters of a

Self Exited Threshold AutoRegressive (SETAR) model from an observed time

series. The aim of this algorithm is to relax all the hypotheses concerning the

SETAR model for instance, the knowledge (or assumption) of the number of

regimes, the switching variables, as well as of the switching function. For this,

we reverse the usual framework of SETAR model identification of the previous

papers, by first identifying the AR models using array clustering (instead of the

switching variables and function) and second the switching conditions (instead of

the AR models). The proposed algorithm is a pipeline of well-known algorithms

in image/data processing allowing us to deal with the statistical non-stationarity

of the observed time series. We pay a special attention on the results of each step

over the possible discrepancies over the following step. Since we do not assume

any SETAR model property, asymptotical properties of the identification results

are difficult to derive. Thus, we validate our approach on several experiment

sets. In order to assess the performance of our algorithm, we introduce global

metrics and ancillary metrics to validate each step of the proposed algorithm.

Keywords: SETAR model, blind identification, SVM

1. Introduction

The space model or dynamic equation is a key point in the wide field of the

signal processing/time series analysis to understand the (physical/physiological/financial)
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mechanisms generating an observed signal or time series. In some cases, a non-

linear/nonstationary state model is necessary to include all the signal/time series

features (see [1, 2, 3, 4] for nonlinear, nonstationary or long memory random

time series among the numerous possible dynamic equation models or statistical

properties of the time series). Self Exited Threshold AutoRegressive (SETAR

or simply TAR, although a discussion on the difference between these two mod-

elling is given in [5]) models, since their introduction by Howell Tong in [6],

have been paid attention in the nonlinear/nonstationary time series modelling

or signal processing domains. The stability/ergodicity/stationarity conditions

of such switching models have been studied in several papers. Indeed, in the

papers referred in this introduction, stationarity stands for the system stability

(probabilistic meaning) leading to some confusion with the statistical meaning.

In fact, the output of such models is non stationary in the statistical meaning,

since for instance the local time series variance depends on the active regime as

discussed again below. In particular, in pioneering papers, Petrucelli [7, 8] has

shown that SETAR models based on AR models with one root on or outside

the unit circle can be stable for models of order 1 while obviously a sole AR

model is not. The probailistic meaning of stationarity is derived from Markov

chain approaches, which have been explicitly tackled in [8, 9, 10] for SETAR

models with two AR models of order 1 and generalized to multivariate (AR

order greater than 1) approach in [11] and multi-model (more than 2 AR mod-

els) in [12, 13, 14, 15, 16]. The SETAR models identification remains an open

question although it exists some relevant contributions but under some restric-

tive assumptions on the model structure or on the statistical properties of the

innovation. The first group of papers dealing with SETAR model identification

is based over the sequential estimation of the SETAR model, that is first the

switching variables and conditions and second the AR model estimates (order

and parameters) with the underlying hypothesis that the number of regimes is

known. In the original paper, Tong and Lim propose an algorithm searching

first the switching variable (or more accurately the lag) based on the quantile

of times series ([6] section 8). In [7], Petruccelli proposes a least square ap-

proach limited to a 2 AR model of order 1. In Chan [21], the author proved

the consistency of these least squares estimates of the AR model coefficients

and the as well as that of the lag (i.e. time series past value) driven the regime

switching by finally assuming that this lag is known. This proposed method

can be inconsistent when the innovation/residual variance is not equal for the

two regimes. Several papers have proposed a Bayesian approach and then a
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Reference Known number Known AR One switching Known Same innovation Gaussian
of regimes orders variable delay variance innovation

[6] Yes(2) No Yes No No No
[8] Yes(2) Yes Yes Yes Yes No
[7] Yes(2) Yes Yes Yes No No
[16] Yes(2) No Yes No No No
[21] Yes(2) No Yes No Yes and No No
[25] Yes(k) No Yes No No No
[26] Yes(2) No No No No No
[23] Yes (k) No Yes No No Yes
[22] Yes(2) No Yes Yes Yes Yes

Table 1: SETAR identification algorithm and underlying assumptions. Papers are ranked by
years .

Maximum Likehood derivation of the AR coefficients. For instance, in [6], the

identification process is based under the assumption of 2 regimes and Gaussian

innovation (see also [22]). Some papers are focused on a particular point of

the SETAR identification such as the threshold governing the switching [23] or

the number of regimes [24]. A summary of this topic of SETAR modelling,

statistical properties and identification of the underlying assumption of these

aforementioned methods can be found for instance in chapter 3 of [3] and a

sum up of the underlying hypotheses for SETAR identification is given in ta-

ble 1 (for some papers). As seen in this table, all the papers assume a known

number of regimes. However, even if some papers propose a generic value of

regimes (i.e. k), they do not propose a process to select the optimal number of

regimes. The aforementioned papers, devoted to SETAR modelling and iden-

tification, can be divided into two categories that is theoretical and empirical

papers. The theoretical papers manage to derive some interesting theorems

but under some (very) restrictive hypotheses that cannot be easily verified by

a practitioner through hypothesis testing for instance. This paper belongs to

the second category since we propose a computational approach to identify the

SETAR model, but asymptotic properties are difficult to prove since we relax all

the assumptions on the SETAR model. It belongs to the emerging trend of iden-

tifying/estimating models with nonstationary output through array clustering

reducing the necessary knowledge of the system modelling (see [27] for instance).

For this reason, in section 5, we test several SETAR models (AR models and

switching variables/conditions) combined with several values of the algorithm

hyperparameters. For the identification purpose, we reverse the usual process

(detailed above) by first identifying “patterns” among the time series samples
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assuming that they belong to a same regime and then estimating the switching

region and variables. In fact, our algorithm is based on a pipeline of well-known

clustering/estimation/classification algorithms. Thus, in what follows, we have

detailed the basics of each algorithm in order to understand the effects on the

performance of each step over the following one. In section 2, we detail the

SETAR model as well as the key points of this model identification/validation.

In section 3, we focus on the first point of the SETAR identification (AR model

identification), while the second point (switching variables and condition) is de-

veloped in section 4. Numerical results are given in section 5, with details on

the experiments and performance metrics in the first two subsections.

2. Self-Exited Threshold AutoRegressive model Identification

We consider a switching regime model driven by thresholds that are hard

limits (unlike Smooth Threshold AutoRegressive, STAR, models see [28] for

instance). Assuming R regimes, this model can be written as:

Y (n) =

R∑
r=1

( pr∑
i=1

ariY (n− i) + er(n)
)
I
(
g(Y (n− i1), · · · , Y (n− ik)) ∈ Br

)
(1)

where ari is the ith coefficient of the rth regime autoregressive model of order pr

and we denote the array Ar = [ar1, · · · , arpr ], I() being the indicator function and

g(Y (n − i1), · · · , Y (n − ik)) is the condition governing the switching between

the different regimes, Br being disjoint sets. In particular, model eq. (1) allows

er, the zero mean innovation/residual, to follow different laws and possibly to

exhibit different skewness and variance depending on the regime. (i1, . . . , ik) are

k unknowns delays (k being not known either) indexing the switching variables,

(i.e. past lags). In what follows, we assume that g() can be a multivariate output

function (i.e. IRk → IRk′ , k
′ ≤ k, as in the case of the nested SETAR model case

[29] for instance). Asymptotical properties of model of eq. (1) are generally diffi-

cult to establish without introducing restricting assumptions. A trivial stability

condition is that all the AR models have roots inside the unit circle. Another

sufficient condition for SETAR stability in eq. (1) is that
∑pr
i=1 |ari | < 1 ([17]

Lemma 3.1, [12], [21], [16]). However, this condition is not necessary as proved

by the examples by Petrucelli. Thus, SETAR models can be built upon non

stable AR models [18, 19] and can be extended to other heteroskedastic models

(such as GARCH models [20]). In this paper we consider SETAR models based

on AR models having possibly a root on or outside the unit circle (random walk
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[18], [19]) and thus the output of models of eq. (1) is non stationary [3] (sta-

tistical meaning), possibly non Gaussian and obviously this model is nonlinear.

In particular SETAR models can include ARIMA models having single or mul-

tiple zeros on the unit circle (that produce well-known non stationary output

[30]), but also AR models with zeros outside the unit circle, these models being

not useful by themselves, since they lead to strongly divergent/explosive time

series when used alone. Moreover, nonlinear autoregressive models (see [31] for

instance) could be included in our algorithm, but it would strongly increase the

computational complexity. The more general approach for identifying SETAR

models can be divided into four main points and a fifth optional point.

• The first involves estimating the number of regimes R in eq. (1).

• The second is to estimate the AR model parameters for each regime, (i.e.

ari for i ∈ 1, · · · , pr and r ∈ 1, · · · , R).

• The third is to determine which variables drive the switching of regimes

that is the lags i1, · · · ik in eq. (1).

• Obviously the fourth purpose is to estimate the structure of the function

g() involved in the switching regime in eq. (1).

• A last step is a validation step of the estimated model but as seen below.

For this last point, our algorithm being based upon a recursive minimization of

the residuals, approaches verifying the residual whiteness and their minimum

variance are not well suited. In our case, a cross validation approach has been

developed for model validation, thus separating the time series into estimation

basis of N samples and validation basis of Nv samples, the total time series

length being NT = N+Nv. For the results of section 5, we set N = 3
4NT (usual

value for cross validation). In the next two sections, we detail the two main

parts of our algorithm, first the AR models estimate and second the switching

variables/condition.

3. Number of regimes and AR parameters estimation

As stated in the introduction, a data processing point of view can be adopted

to find similar “patterns” in the observed signal/time series in order to retrieve

signal sample sequence belonging to a same regime. Thus, the first step involves

gathering the time series lags into arrays of length d + 1 (the value of this
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parameter is discussed at the end of the section), that is Yd(n) = (Y (n), Y (n−
1), . . . , Y (n − d)). According to the model of definition (1), each array has to

be labelled according to the regime generating the first array component that

is Y (n). This label, denoted l(n) is an integer between in {1, · · · , R}, R being

unknown, but assumed to be lower than a value denoted Rmax. Similarly, the

length d, i.e. the AR model order, is assumed to lay within the set {1, · · · , dmax},
with the underlying assumption that all the (AR) orders are lower or equal to

dmax. For the sake of consistency with the frontier estimate, we only form

Yd(n) for n = 1, ..., N − dmax (although we could have formed N − d arrays).

Moreover, we also assume that all the switching lags i1, · · · , ik are lower or equal

to dmax as seen in section 5. Our algorithm aims to recursively label all the

array Yd(n) (section 3.2) with an estimated AR model (section 3.1), the process

being repeated for unlabeled arrays until that the number of unlabeled arrays

Nu is below a threshold.

3.1. Estimating one AR model

As previously stated, this step takes for input the unlabeled arrays. At

the beginning of our algorithm all the arrays being unlabeled, we have Nu =

N − dmax. From the image processing point of view, the problem of identifying

an AR model generating Y (n), that is the first component of Yd(n) is similar

of finding R subspaces linearly binding the components of Yd(n) as in eq. (1).

Our problem is close to the problem of finding a plane within a point cloud

for which a wide literature is available such as the RANdom SAmples Concen-

sus (RANSAC) algorithm and its improved version [32], [33]. The idea of the

RANSAC algorithm (and our algorithm) is to recursively estimate the model

and discarding the outliers (points being not within the “margin of tolerance”)

until to find a stable solution (that is a “consensus”). Since the RANSAC is an

iterative process the starting point of this algorithm requires a seed, randomly

chosen as seen in the next point. However, our problem of finding a subspace,

in which arrays Yd(n) laid, is more complex than the RANSAC approach, since

we have to find several subspaces/planes crossing at the origin since er(n) is

zero mean in eq. (1). In order to not find consensus around the origin (when

randomly choosing the seed as in the RANSAC algorithm), we have searched a

seed as “far” as possible from the origin i.e. the arrays Yd(n) with the highest

L2 norm. In other words, we estimate a “local” standar deviation (L2-norm)

of time series samples contained in of Yd(n) and we select Ns arrays with the

highest norm/standard deviation. This number is defined as Ns = NuPse. Sim-

6



ulations have shown that Pse does not have any effects on the algorithm results

presented in section 5 and for this reason it was set to 0.1. The idea behind

this seed initialization is, since the AR models have different variance output

and since the L2 norm is a local estimate of the standard deviation, the arrays

with the largest norm are assumed to be a sequence of the output producing

the largest AR output variance (possibly a non-stable AR model).

Once these Ns being selected, d arrays Yd(n) are required to estimate the pr

AR model parameters (under the hypothesis that d = pr and all these d arrays

belong to a same regime, that is the first component is generated with the same

regime), thus verifying Yd(n)T (1 Ar) = er(n). The parameters are obtained

by Ordinary Least Squares (OLS) solution.

Ãid = −MT (M.MT )−1Z with M =


Y (n1 − 1) · · · Y (n1 − d)

Y (n2 − 1) · · · Y (n2 − d)
...

. . .
...

Y (nd − 1) · · · Y (nd − d)

 and Z =


Y (n1)

Y (n2)
...

Y (nd)


(2)

where (n1, · · · , nd) ∈ {1, · · · , Ns}d are integers verifying ni 6= nj (for the sake of

inversion of M.MT ). Then, we obtain Na =
(
Ns
d

)
estimates denoted Ãid in eq.

(2) with i = {1, · · · , Na}. Except the intrinsic variance of the OLS estimates,

the error on the Ãid estimates is also induced :

• First, by a set of arrays Yd(n1), · · · ,Yd(nd) not all belonging to the same

regime. Thus, in this case, arrays Ãid are randomly spread through the

space of dimension d, while when the arrays in the OLS of eq. (2) belong to

the same regime, Ãid is close to the parameters of the AR model generating

this first component of Yd(n1), · · · ,Yd(nd). Thus, the next step involves

detecting clusters (using a clustering algorithm) of Ãid as seen below.

• Second, by the bad conditioning of matrix M.MT when several arrays

Yd(n1), · · · ,Yd(nd) are close to each other (when n1, · · · , nd are close

lags for instance). Then, the matrix M.MT is close to be non invertible

and leads to outlier Ãid estimates. These outliers disturb the convergence

of the clustering algorithm since the L2 norm is involved in the objective

function of the Fuzzy-C means algorithm (see below eq. 3). Thus, these

outliers have to be discarded before performing the clustering algorithm

The clustering is performed using a Fuzzy-C mean algorithm since we have to

find a centroid within the Ãid estimates, the number of these arrays close to this
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centroid having to be the highest possible. The choice of a fuzzy approach avoids

hard decisions during the clustering that can be fairly not robust for points

randomly and continuously spread through the space IRd as stated above. To

discard the outliers, the arrays Ãid are ranked according to their increasing L2

norm, their rank being denoted r(i). The idea is that the norm of Ãid growths

linearly for AR coefficients estimated with well-conditioned matrix whereas the

outliers exhibit strong departure from this “smooth” growing (badly conditioned

matrices with small eigenvalues). In order to define a criterion to consider an

array as an outlier, first a linear regression of the array norm, between the

smallest array, i.e. r(i) = 1, and the median array r(i) = Na/2 (in order to keep

at least the half of the estimated arrays). Thus, we estimate the norm residual,

for 1 ≤ r(i) ≤ Na/2, defined as the difference between the array norm and the

linear regression :

ζ(r(i)) = ||Ãr(i)d || −
r(i)− 1

Na/2− 1

(
||ÃNa/2d || − ||Ã1

d||
)
− ||Ã1

d|| (3)

The norm residual variance is estimated as:

σ̂2
ζ =

Na/2∑
r(i)=1

ζ2(r(i))−
( Na/2∑
r(i)=1

ζ(r(i))
)2

(4)

For possibly outlier arrays, having a norm higher than the median array, i.e.

Na/2 < r(i) ≤ Na, we also calculate the norm residual as in eq. (3). The

arrays, verifying |ζ(r(i))| > 3σ̂ζ , are declared to be outliers and are not con-

sidered as Fuzzy-C mean algorithm input. This threshold of 3σ̂ζ is derived

from the Gaussian distribution and corresponds to the 5-95% quantile. Thus,

we perform the Fuzzy-C mean clustering on the N̄a (Na/2 ≤ N̄a < Na) re-

maining arrays and obviously, N̄a depends on d. The Fuzzy-C mean algorithm

aims to recursively calculate the parameters minimizing the objective function

argmin
cj ,ωi,j

Nc∑
j=1

N̄a∑
i=1

ωmi,j ||Ãid − cj || where cj is a centroid, Nc the maximum number

of centroids (in what follows we set Nc = 3, the value of this parameter having

not any effects over the algorithm results) and m a sharpness parameter, (the

value of this parameter has to be discussed) strictly greater than 1. ωi,j is the

belonging measure of estimate Ãid to cluster j defined as :

ωi,j =

(
Nc∑
k=1

||Ãid − cj ||
||Ãid − ck||

)−2/(m−1)

(5)
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Under the restriction m > 1 we observe that ωi,j is within [0, 1]. Obviously,

when an array has a belonging measure close to 1, it means that the array is

close to the centroid. The centroid is updated using

cj =

N̄a∑
i=1

ωmi,jÃ
i
d/

Nc∑
k=1

ωmi,k (6)

As previously mentioned, our problem is to detect whether it exists a homoge-

neous subset around a centroid. For this, we estimate the rate of arrays verifying

ωi,j > TB , TB being a threshold to be also set. When a high number of arrays

verifies this property, it means that a cluster exists and its centroid is (possibly)

the AR coefficients of one of the regimes of eq. (1). After testing all the values,

d = {1, · · · , dmax}, we obtain Nc.dmax rates, for the Nc centroids obtained for

the tested values of d. The centroid with the highest rate of arrays is identified

as the AR coefficients of one of the regimes (in particular the order pr is given

by the dimension of the centroid). A sum up of this section is given in algo. 1.

input : Nu unlabeled arrays Yd(n)
output: rth AR model coefficients
for d← 1 to dmax do

Select the Ns = Nu.Pse arrays with the highest norms;
for n1 ← 1 to Ns,i2 ← 1 to Ns, n2 6= n1,...,nd ← 1 to Ns,
nd 6= n1,..., nd 6= nd−1 do

Ãid ← OrdinaryLeastSquare (Yd(n1), ...,Yd(nd))
end

r(i)← Rank (Ãid) /* L2 norm*/;
for r(i)← 1 to Na/2 do

Select (Ã
r(i)
d );

ζ(r(i))← ResidualEstimation (Ã
r(i)
d );

end
σ̂ζ ← StdEstimation (ζ(1), · · · , ζ(Na/2));
for r(i)← Na/2 + 1 to Na/2 do

ζ(r(i))← ResidualEstimation (Ã
r(i)
d );

if |ζ(r(i))| < 3σ̂ζ then

Select (Ã
r(i)
d );

end

end

Cd1 , ..., C
d
Nc
, Rd1, ..., R

d
Nc
← FuzzyCmeans (Ã1

d, ..., Ã
N̄a
d , Tb,m),

end

Return Ar = Cdj with the highest Rdj for d = 1, ..., dmax and j = 1, ..., Nc
Algorithm 1: One AR model estimation
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3.2. Labelling the arrays

To identify the arrays fitting the AR model estimated in the previous point,

we estimate the residuals, that is the difference between Y (n) and its estimated

value using AR model. After estimating the residual pdf (using a Kernel Density

Estimate, KDE, method [34]), we focus our attention on the pdf mode (maxi-

mum) the closest to zero. In fact, a residual close to 0 means that the estimated

AR model fits the array Yd(n) and inversely a discrepancy between the AR

model and the array can lead to a residual outlier (pdf tails). Since there is

not any hypothesis concerning the innovation law, as stated in introduction, a

method to identify the outlying residuals (and thus the arrays that do not fit

the model) has to be designed.

For this, the slopes on each side on the central mode are estimated. A lin-

Figure 1: Example of array labelling according to their residual value (green double arrow)
Exponential innovation (right) Gaussian innovation (left)

ear regression is performed over a sliding window of (five points in our case).

The windows (for each side) leading to the smallest Mean Square Error for the

regression give the slope of the two sides of the central mode (obviously the

slopes can be different when the innovation is skewed for instance, see section

5). The crossing of the two slopes with the x-axis gives the two thresholds (see

figure 1). When the residuals are within the two thresholds (x+, x−) range, the

corresponding array is labelled according to this currently estimated AR model.

The section is summed in algo (2)

3.3. Estimating the SETAR model

Obviously to fully estimate the SETAR model, the two previous points have

to be repeated until that the number of not labelled arrays Nu is below a

threshold given by (N − dmax)Pst with Pst the rate of unlabeled arrays (see

table 2) or the number of regimes reaches Rmax. As detailed in section 5, this
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input : The rth estimated AR model (denoted Ar)
output: Labeled/unlabeled time series lags
for n← 1 to Nu do

ζ(n)← ResidualEstimation (Yd(n), Ar);
end

f̂ζ(x)← PdfEstimate (ζ(n));
Detect xm the pdf mode the closet to x = 0;

while
df̂ζ(x)
dx < 0 and x > xm do

MSE+(x)=SlopeEstimation (f̂ζ(x), f̂ζ(x+ ∆x)),x++;
end
Select the slope with the minimal MSE+(x) and calculate its crossing
x+ with the x-axis.;

Same for x < xm, the x-axis crossing being denoted x− ;
for n← 1 to Nu do

if x− < ζ(n) < x+ then
l(n) = r

end

end
Algorithm 2: Array labelling

parameter has some effects on the final algorithm results. In fact, a too large

value of Pst can stop the SETAR identification process without identifying all

the regimes while a too low value leads to identify additional and spurious AR

systems. Obviously, the recursive identification of the AR models can lead to

re-identify previously identified AR models. In order to really identify a new

AR model, a similarity criterion between the currently estimated AR model and

the previously identified ones is calculated as :

||Ai −Ar|| ≤ K
||Ai||+ ||Ar||

2
(7)

where Ai is a previously identified AR model and Ar, the currently estimated

AR model (center of the selected centroid) and K a constant that we have

chosen equal to K = 0.2 in section 5 (other values have also been tested as

briefly discussed in this section). If the criterion (7) is verified, then the two AR

models are merged, the labelled arrays derived under the redundant AR model

are re-labelled with i.

3.4. Relabeling the arrays

When all the AR models are assumed to be identified i.e. Nu ≤ (N −
dmax)Pst, all the arrays are finally relabeled according to the estimated AR

11



models leading to the smallest residuals. This last step of relabeling ensures

first that each array is bound to its closest AR model among all the identified

AR models (correction of possible mislabeling) and second to label the remaining

unlabeled arrays of the estimation basis. The labelling is also performed over

the validation basis to validate the estimated SETAR model as seen in section

4.2.

input : Time series samples
output: The AR models and the switching condition
Separate the times series into the estimation base and the validation
base Nu = N − dmax Nu the number of unlabeled arrays, r=1;

while Nu > NPst do
Ar →OneARModelEstimation (Y (1), .., Y (n), l(1), .., l(n)) /* algo 1
*/;
ArrayLabelling (Y (1), .., Y (n), l(1), .., l(n), Ar)/* algo 2 */;
for i← 1 to r − 1 do

if eq (7) is verified for Ai and Ar then
Ar = Ai and all the lag labels equal to r are set to i ;

else
r++;

end

end

end
Relabel all the arrays Yd(n) according to the estimated AR model

Algorithm 3: General Overview

4. Switching variables and function identification and model valida-
tion

4.1. Switching variables and function

The second step has to identify the variables (lags) involved in the switching

of regimes as well as the function governing this switching g() and finally vali-

dating the estimated model. After the (final) labelling of the previous section,

we have to find one or several frontiers separating the labelled arrays Ydmax(n)

(in what follows we simply denote Y(n)). We consider Ydmax(n), since we

search the indices i1, · · · , ik involved in the switching condition, that are possi-

bly higher than the AR orders. A useful tool for this kind of separation problem

is the Support Vector machine (SVM) approach. We first consider the case when

only one frontier has to be found between only two identified AR models and

discuss the more general case at the end of the section. The regime labels l(n)
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are re-indexed to 1 and -1. The SVM aims to define a frontier that is to classify

argmin
W,b,ε(n)

1

2
WTW + P

N−dmax∑
n=1

ε(n) subject l(n)
(
WTΦ

(
Y(n)

)
+ b
)
≥ 1− ε(n) ε(n) ≥ 0

(8)

In this cost function, P is a penalty parameter and ε(n) a random variable

allowing mislabeling (as in our case see section 5). W is the array describing

the frontiers that is the weight of the components of array Y(n) involved in

the switching, better said the lags i1, · · · , ik (a null weight induces that the

variable does not have any effects on the regime switching). b a ”bias” giving the

threshold for the switching, thus defining the set Bi in eq. (1). Φ() is nonlinear

transform allowing to design complex (nonlinear) frontier shapes. In fact, if Φ()

is the identity, then the problem of separating the arrays according to their label

is linearly separable (the usual cases in the aforementioned papers on SETAR

identification). But more complex shapes (circles or ellipses) can be estimated as

seen in section 5. Since in practice, eq. (8) is minimized using its dual problem,

the key point for the frontier shape, is the SVM kernel defined as K(n, p) =

Φ(Y(n)).ΦT (Y(p)). The kernel function has to be chosen before performing

the SVM classification and thus the drawback of our approach is “to guess” the

shape of g() (and thus that of K(, )). Two kernels have been tested, a linear

kernel and a Radial Basis Function (RBF) kernel, the finally selected kernel

(and frontier) being validated by the highest rate of well labelled arrays over

the cross validation basis as seen in section 4.2. This process is straightforwardly

generalized to a higher number (than 2) of AR models by recursively estimating

the frontiers between one label against all the others. Once this first frontier

is retrieved, the process is repeated, selecting one remaining label against all

the others. Thus, the areas/subspaces defined by the estimated frontier(s) are

labelled according to the corresponding array label. This label is used in the

validation step as seen in the subsection.

4.2. Model validation

After determining the frontiers, we estimate the rate of well classified arrays

over the validation basis, that is the array label is the same as that of the

area/subspace within it lays (using the estimated frontiers of section 4 and the

array labelling of section 3.4). Obviously the estimated model is validated when

this rate/probability is higher than a given threshold (confidence level in the

13



Notation Name Tested values

Pse Rate of points in the seed 10 %
m C Fuzzy Sharpness 1.05 and 1.5
Nc Number of clusters 3
TB Belonging measure threshold 0.7 and 0.9
Rmax Maximum of regime number 4
dmax Maximum AR order 3 and 4
Pst Rate of unlabeled Yd(n) arrays 5 %, 2%

Table 2: Hyperparameter definition and tested values

hypothesis testing framework). We discuss the value of this threshold in the

section 5.

5. Numerical simulations and results

In this section, we detail the results obtained on simulated SETAR models.

As stated in section 2, the performance can be derived first with regards to

the algorithm hypermeters and second to the parameters of the SETAR model

generating the observed time series. In order to completely detail these results,

we have devoted a first subsection to the SETAR model experiment definition, a

second to the algorithm performance metrics, the algorithm performance anal-

ysis being exposed in a third subsection.

5.1. Experiment definition

In table 3, we have displayed the AR model parameters of three SETAR mod-

els. The first regime of model 1 and model 2 and the second regime of model

3 have one real root outside the unit circle (unstable regime). For each experi-

ment, we have simulated 1000 time series of NT = 1024 samples (thus N = 768

and Nv = 256). Results presented in this section are statistics of the results of

our algorithm obtained over these 1000 time series. We have performed several

sets of SETAR identification experiments in order to analyze the hypermeters

effects dmax, TB , m Pst (as seen in table 2). The SETAR model parameters

have obviously some effects on the algorithm performance (although this point

is barely tackled in the papers devoted to the SETAR identification). Thus,

we have also estimated the performance algorithm with different thresholds val-

ues, switching variables and governing switching condition g(), innovation er(n)

variance and skewness (table 4). In this table, the last two/three columns give

the estimated mean rate (over the 1000 times series) of samples generated by

each regime. The details of the different experiments are :
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Regime a1 a2 a3

Model 1
1 1.3 -0.9 1.3
2 -1.6 0.9 0

Model 2
1 1.3 0.9 0
2 -1. 0.7 0

Model 3
1 -1.6 0.9 0
2 1.3 -0.7 1
3 1 0.4 0

Table 3: AR coefficients of tested SETAR models

-For the three models, exp 1 is a standard model, with a governing function

g(Y (n− n1), · · · , Y (n− ndmax)) simply equal to Y (n− n1), a Gaussian innova-

tion variance equal to 0.5 (usual variance in the aforementioned papers) and a

threshold value (see subsets B1, B2, B3 in table 4) inducing that all the regimes

are significantly present (for model 1, it was not possible to find a threshold in

order to have a higher rate than 33 % for the first regime). This experiment can

be considered as a benchmark (optimal conditions) for the other experiments

exposed in the next points. In exp 2, the switching threshold is shifted and

one regime overwhelms the other(s) as seen in the last columns of table 4. The

aim of this second experiment is to estimate the capability of our algorithm to

estimate a SETAR model having a behavior close to an AR model.

-With the same switching condition, we simulated (exp 3 and 4) time series

with an innovation/residue variance of 0.1 and 1 in order to estimate the effects

of this parameter on our algorithm. In fact, a high variance hides the linear

(AR) structure between the times series samples and then turns the identifica-

tion model difficult while a small innovation variance “gathers” arrays Yd(n)

around the origin whatever the regime and thus disturb the seed initialization

(see section 3.1). Similarly, the innovation skewness leads to time series sample

outliers that also disturb the seed initialization. Thus, in exp 7, we have tested

an innovation with a (centered) exponential distribution of variance and skew-

ness equal to 0.5 and 2 respectively.

-We also tested a model with an innovation variance depending on the regime

exp 8 and 9 (for model 1 and 2). The first (resp. second) number in the column

variance indicates the variance of the first (resp. second) regime.

-In the previously described experiments the switching condition is g(Y (n −
n1), · · · , Y (n − ndmax)) = Y (n − n1) below or above a threshold. We have

tested more complex linear functions (that is a separable problem for the SVM

kernel see section 4), g(Y (n−n1), · · · , Y (n−ndmax)) = Y (n−n1)+0.4Y (n−n3)
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Model Exp. B1 B2 B3 σ2
e Law % of 1 % of 2 % of 3

1

1 (−∞,−4) [−4,+∞) - 0.5 N 33 67 -
2 (−∞, 2) [2,+∞) - 0.5 N 12 88 -
3 (−∞,−4) [−4,+∞) - 1 N 33 67 -
4 (−∞,−4) [−4,+∞) - 0.1 N 33 67 -
5 (−∞,−4) [−4,+∞) - 0.5 N 29 70 -
6 [0, 20) [20,+∞) - 0.5 N 22 78 -
7 (−∞,−4) [−4,+∞) - 0.5 E 38 62 -
8 (−∞, 2) [2,+∞) - 0.5/1 N 33 67 -
9 (−∞, 2) [2,+∞) - 1/0.5 N 33 67 -

2

1 (−∞, 5) [5,+∞) - 0.5 N 49 51 -
2 (−∞, 1) [1,+∞) - 0.5 N 17 83 -
3 (−∞, 5) [5,+∞) - 1 N 48 52 -
4 (−∞, 5) [5,+∞) - 0.1 N 48 52 -
5 (−∞, 0.5) [0.5,+∞) - 0.5 N 49 51 -
6 [0, 5) [5,+∞) - 0.5 N 29 71 -
7 (−∞,−5) [−5,+∞) - 0.5 E 49 51 -
8 (−∞, 5) [5,+∞) - 0.5/1 N 50 50 -
9 (−∞, 5) [5,+∞) - 1/0.5 N 50 50 -

3

1 (−∞,−0.5) [5,+∞) [−0.5, 5) 0.5 N. 37 32 31
2 (−∞,−0.5) [0,+∞) [−0.5, 0) 0.5 N 14 75 11
3 (−∞,−0.5) [5,+∞) [−0.5, 5) 1 N 31 43 26
4 (−∞,−0.5) [5,+∞) [−0.5, 5) 0.1 N 31 35 35
5 [0, 2) [2, 18) [18,+∞) 0.5 N 14 51 35
6 (−∞,−0.5) [5,+∞) [−0.5, 5) 0.5 E 33 43 24
7 Nested (see section 5.1) 0.5 N 31 48 21

Table 4: SETAR model switching functions and variables. N stands for normal and E for
centered exponential.

for model 1 and g(Y (n − n1), · · · , Y (n − ndmax)) = −Y (n − n1) + Y (n − n3)

for model 2 in experiment 5. In these cases, the separation problem is always

linear and thus a linear kernel K(., .) is well suited (see section 4). A nonlinear

switching variable (non separable problem) g(Y (n − n1), · · · , Y (n − ndmax)) =

Y 2(n − n1) + Y 2(n − n2) has been used for experiment 6 of model 1 and 2

and 5 of model 3, as seen on the sets B1, B2, B3 is table 4 are only defined

on IR+. A RBF kernel is optimal for this second kind of nonlinear switching

condition. Finally, in the three regime model case, a nested switching condition

has also been tested. The switching condition is that the regime 1 is selected

when Y (n − n1) < −13, the selection between regime 2 and 3 being based on

Y (n− n2) (Y (n− n2) > −3 for regime 2 and Y (n− n2) ≤ −3 for regime 3).

Except the SETAR model parameters and the algorithm hyperparameters, we

also inspected the time series length effects. For this we have tested shorter

time series lengths of NT = 512 and NT = 256 samples. For the algorithm

hyperparameters, we have paid a special attention on the dmax effects, since

this parameter gives the dimension of the space, within it the AR models have

to be retrieved. The higher this parameter, the higher the probability of a false

AR model identification.
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Model Exp.
Pst = 5% Pst = 2%

m = 1.05 m = 1.5 m = 1.05 m = 1.5
TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9

1

1 57/53 57/53 49/42 45/37 87/77 87/77 79/59 72/49
2 59/57 59/57 58/55 52/50 75/55 74/54 74/53 68/46
3 43/39 42/39 42/36 38/32 82/72 81/71 77/62 73/56
4 25/22 24/21 26/24 24/22 49/40 49/40 53/43 48/38
5 48/48 48/47 48/48 46/46 66/61 65/60 64/57 61/53
6 55/53 55/53 42/39 22/18 70/59 69/58 55/39 32/17
7 50/47 50/47 47/38 42/30 80/71 80/70 73/55 65/44
8 65/60 65/60 56/48 49/42 87/75 88/75 77/55 70/47
9 67/63 67/62 56/48 50/42 89/76 88/75 78/54 72/45

2

1 99/92 100/92 100/92 99/84 99/80 100/79 100/77 99/64
2 25/11 24/10 31/6 28/3 26/4 26/4 32/2 29/1
3 97/51 97/50 96/57 94/44 97/34 97/32 96/37 95/25
4 99/96 99/96 100/96 100/91 99/88 99/88 100/85 100/76
5 59/8 59/8 71/15 56/10 63/3 63/3 75/6 60/3
6 4/2 4/2 4/1 2/0 6/2 5/2 5/0 2/0
7 91/22 91/22 96/43 95/34 92/15 92/16 97/29 96/22
8 99/83 99/82 99/86 99/76 99/64 99/63 99/65 99/50
9 99/85 99/84 99/87 99/75 99/64 99/64 99/69 99/51

3

1 61/57 61/57 49/40 38/28 70/59 70/58 59/42 49/30
2 0 0 0 0 0 0 0 0
3 31/28 32/28 29/27 24/20 44/33 44/33 41/30 33/21
4 52/50 53/50 46/39 38/31 67/61 66/60 65/49 54/37
5 0 0 0 0 0 0 0 0
6 22/21 22/21 19/17 15/14 36/30 35/29 31/24 27/19
7 37/33 36/32 21/15 14/8 48/30 47/29 32/14 24/7

Table 5: Rate (%) of time series for which the AR models have been retrieved among possible
spurious AR models (first number) and exactly been retrieved (second number)

Model Exp.
Pst = 5% Pst = 2%

m = 1.05 m = 1.5 m = 1.05 m = 1.5
TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9

1

1 49/48 48/48 40/39 36/35 72/71 71/70 57/55 48/45
2 9/9 10/10 9/9 8/8 9/9 9/9 9/9 7/7
3 36/35 35/35 34/33 29/29 65/64 65/64 59/57 52/51
4 18/18 18/18 21/21 19/19 31/31 31/30 35/35 32/31
5 48/48 47/47 48/48 46/46 64/60 63/60 61/57 58/53
6 48/47 48/46 36/35 18/16 59/51 58/51 45/35 24/15
7 32/30 33/31 33/27 29/21 42/38 42/37 44/34 42/27
8 61/59 60/58 50/47 43/41 75/73 75/73 58/54 50/46
9 62/61 62/61 50/47 44/42 76/74 75/73 58/53 49/44

2

1 91/91 91/91 91/91 83/83 78/78 78/78 75/75 63/63
2 1/0 1/0 1/0 1/0 2/0 2/0 2/0 2/0
3 2/2 2/1 2/1 2/1 1/1 1/1 2/1 2/0
4 92/92 92/92 90/89 86/86 85/85 85/85 79/79 71/71
5 7/0 6/0 4/0 2/0 5/0 4/0 3/0 3/0
6 1/1 1/1 1/0 0/0 2/1 2/1 2/0 1/0
7 52/0 52/0 22/0 23/0 53/0 53/0 24/0 26/0
8 74/74 73/73 79/77 70/68 59/59 57/57 59/57 46/44
9 77/77 77/77 80/78 70/68 58/58 58/58 65/63 48/45

3

1 49/46 50/47 38/34 28/23 52/47 53/48 40/34 32/25
3 16/14 17/14 18/15 14/11 21/17 21/16 21/15 16/9
4 22/22 23/22 20/16 14/12 28/28 29/29 24/20 17/14
6 17/17 17/16 15/14 13/12 30/26 29/25 25/20 21/16
7 32/31 31/30 18/15 11/8 34/28 33/27 22/13 16/7

Table 6: Rate (%) of time series for which the frontier(s) has(ve) been retrieved among possible
spurious frontiers (first number) and exactly been retrieved (second number)
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5.2. Performance Metrics

As the proposed algorithm, the performances metrics can be divided into

three subgroups (and tables), detailed in the next three subsections, the first two

being devoted to the model identification, AR models and switching conditions,

and the third to the model validation.

5.2.1. AR model estimates and labelling performance

In order to estimate the AR model identification performance, we develop

three metrics, having not the same importance.

-The first metric (table 5) is the rate of time series for which all the AR mod-

els have been identified, among possible spurious AR models, first number, or

exactly, second number. As previously stated, an AR model is declared to be

identified when the similarity criterion (between an estimated AR model and

a true AR model) is verified (see eq. 7). Obviously, we consider this second

number as the key performance metric (the maximum of the results is in grey

cell in table 5).The second metric is the (absolute) bias and standard deviation

of the AR coefficient estimates. Finally, we have estimated the number of well

labelled arrays on the estimation basis, this metric being a key feature for the

frontier estimation step. These last two metrics being only estimated over time

series for which all the AR regimes have been retrieved, thus they are positively

biased. Moreover, due to the amount of results for the AR coefficient bias and

variance, we only briefly mention the results of the second metric when bringing

some information.

5.2.2. Switching variables and conditions estimate

For the switching condition g(), we have to distinguish the case of the linearly

separated case (almost all the experiments) and the nonlinear case (exp 6 for

model 1 and 2 and 5 for model 3), the results of the two cases being given in

table 6. For the linearly separated case (linear kernel), in order to compare the

true frontier coefficients with the estimated one, we first gather W and b into

a vector, that is F = [W, b]. W gives the weight of each past variable in the

switching and b is the threshold value between B1, B2 and possibly B3 (table 4).

As seen section 5.1, we have W = [1, 0, 0] when dmax = 3 in almost all the cases

except exp 5 for which W = [1, 0, 0.4] (model 1) and W = [−1, 0, 1] (model 2).

We have to add a last coefficient equal to 0 when dmax = 4. For the nested model

3 (exp 7). We have a first frontier W = [1, 0, 0] with b = −13 and obviously a

second W = [0, 1, 0] with b = −3. Thus, F defines the hyperplane separating the
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regimes and we denote F̂ = [Ŵ , b̂], the estimate provided by the SVM assuming

a linear kernel (see section 4). However, F is defined except a multiplicative

coefficient and in order to numerically compare the frontier coefficient estimates

with the true ones, we normalized the estimate by a multiplicative factor α̂

found by regressing Ŵ over W , i.e. α̂ = argmin
α
||W − αŴ ||. We use W and

Ŵ instead of F and F̂ , since as seen in table 4, the values of b can be much

higher than those of the coefficients of W and thus a linear regression based

on the linear regression value between b and b̂ and would lead to artificially

good results. After denormalizing, the closeness of the estimated frontiers (to

the true one) is estimating using criterion (7) replacing Ai and Ar by F and

F̂ (respectively). As for the AR model, a main performance metric and an

ancillary one are estimated. These two metrics are first the rate of time series

for which the frontier(s) is (are) retrieved (table 6), estimated only for time

series for the AR regimes have been retrieved, with possible false AR model

first number or exactly second number). The second metric is the bias and

standard deviation of the frontier coefficients. For the same reason as for the

AR model coefficients, they are not fully detailed.

For the non linearly separated case, the SVM algorithm with an RBF kernel

identifies input arrays that define the frontiers between the labels, these arrays

approximating a circle. Thus, we have focused our attention on the circle radius

as a performance metric. In fact, the circle radius gives the switching threshold

(see table 4). For exp 6 for model 1 and 2 and exp 5 for model 3, as a performance

metric, we have estimated the rate of time series (given in table 6) for which

the estimated radius is the within the range of the true value more or less 20 %

similarly to criterion (7).

5.2.3. Model Validation metric

As stated in section 1, a cross validation approach has been chosen. In the

results given below, we chosen a level of 90% of well classified arrays (over the

validation basis) to validate the SETAR model (according to the AR models

and frontiers estimated over the estimation basis). In the hypothesis testing

framework, this rate corresponds to a p-value equal to 0.1. In table 7, we

have gathered three error probabilities (rates), that is the rate of rejecting the

validation, although the SETAR model has been correctly estimated (AR models

and frontiers), the second is the rate of accepting the model although the model

is not correctly identified and finally the rate of validating the SETAR model

although it has been identified with a wrong frontier shape (that is an RBF
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Model Exp.
Pst = 5% Pst = 2%

m = 1.05 m = 1.5 m = 1.05 m = 1.5
TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9

1

1 0/12/0 0/12/0 0/18/0 0/19/0 0/13/0 0/13/0 0/18/0 0/22/1
2 0/65/0 0/65/0 0/64/0 0/60/0 0/74/0 0/74/0 0/76/0 0/74/0
3 0/12/0 0/13/0 0/13/0 0/17/0 0/15/0 0/15/0 0/16/1 0/19/0
4 0/12/0 0/12/0 0/11/0 0/13/0 0/21/1 0/21/1 0/17/1 0/19/1
5 0/5/0 0/5/0 0/5/0 0/6/0 0/16/0 0/17/0 0/16/0 0/20/0
6 46/6/0 45/7/0 34/9/0 16/14/0 51/14/0 50/15/0 33/22/0 15/24/0
7 0/21/0 0/21/0 0/19/1 0/23/1 0/40/1 0/39/2 0/32/2 0/34/3
8 0/8/0 0/9/0 0/16/0 0/21/0 0/11/0 0/11/0 0/19/0 0/22/0
9 0/8/0 0/10/0 0/17/0 0/22/0 0/10/0 0/11/0 0/18/1 0/24/1

2

1 11/4/4 11/3/4 11/3/4 11/6/8 9/9/11 11/9/11 10/11/12 8/14/18
2 5/15/0 5/15/0 3/14/1 1/15/1 2/11/0 2/12/0 1/13/0 0/13/1
3 6/19/12 6/20/13 6/17/11 5/21/16 4/21/17 4/21/17 4/22/17 3/26/22
4 18/1/1 18/1/1 23/1/2 22/3/4 16/5/6 17/4/6 21/4/8 18/8/13
5 -/0/0 -/0/0 -/1/0 1/1/0 -/0/0 -/0/0 -/0/0 -/0/0
6 2/2/0 2/2/0 1/3/0 0/1/0 2/4/0 2/3/0 0/4/0 0/2/0
7 3/32/6 2/30/5 7/23/7 5/29/8 1/31/7 2/31/5 5/26/11 3/30/11
8 7/8/7 7/8/7 6/6/6 6/10/11 5/14/16 6/12/17 6/13/17 3/17/24
9 7/7/6 8/7/7 7/4/4 6/8/10 6/14/15 6/14/15 6/9/12 4/16/20

3

1 46/0/0 47/0/0 34/0/0 23/0/0 47/0/0 48/0/0 34/0/0 25/0/0
2 0/83/0 0/82/0 0/82/0 0/82/0 0/86/0 0/85/0 0/85/0 0/84/0
3 0/83/0 0/83/0 0/81/0 0/84/0 0/81/0 0/82/0 0/82/0 0/87/0
4 0/76/0 0/76/0 0/82/0 0/87/0 0/71/0 0/70/0 0/79/0 0/85/0
6 17/0/0 16/0/0 14/0/0 12/0/0 26/0/0 25/0/0 20/0/0 16/0/0
7 31/0/0 30/0/0 15/0/0 8/0/0 28/0/0 27/0/0 13/0/0 7/0/0

Table 7: Rate (%) of rejecting although correctly identified SETAR model, (first number), of
validating a wrongly identified model and finally to validate the SETAR model with a wrong
kernel (a linear kernel instead of an RBF kernel and inversely)

model for a linearly separated case and inversely). Obviously, the probability of

validating a correctly identified model is the complement to 1 of the first error

probability.

5.3. Result analysis

In order to provide a complete analysis of our results, we have divided this

section into a subsection dealing with the SETAR parameter effects and another

to the algorithm hyperparameter effects, but we begin with a subsection devoted

to the general remarks on our algorithm results.

5.3.1. General remarks

A first remark on the algorithm is that for all the times series, the order

of identification of the AR models is always the same. For model 1 and 2, the

second AR model, the stable one, is firstly identified. A possible reason is that

similar array patterns occur more frequently for stable regimes. Similarly, the

first regime is firstly identified for model 3, whilst there is not a special order

for the last two regime identification.

However, for model 1 and 2, the bias (between 0.01 and 0.1) and the standard
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deviation (between 0.02 and 0.6) are generally higher for the coefficients of the

second (stable) AR model. A possible reason is that, the OLS of eq. (2) is

more frequently performed with arrays generated by different regimes at the

beginning of the algorithm, thus inducing slight departures of the AR coeffi-

cient estimates (from true ones) and thus a higher variance of the extracted

centroid (AR model coefficients). Once a first set of arrays has been labelled

and discarded for the following AR model estimation, the OLS is calculated over

more homogeneous sets and the centroid (AR coefficients) variance is reduced.

However, this observation is not retrieved for model 3, for which the bias and the

standard deviation is the lowest for the first identified AR model. The AR coef-

ficient bias and variance depend on the experiment and on the SETAR model.

Obviously the more complex is the experiment/model, the higher are the bias

and the variance. For instance, the bias and the variance are the highest in the

case of exp 6 (nonlinear switching condition) for model 1 and 2 and for all the

experiments of model 3 (compare to the other two SETAR models).

The ancillary metric of the well-classified arrays is about 98% for model 1 (all

experiments). We also obtain this rate for model 2, except a decrease to 92% for

exp 2, 88% for exp 5 and 93% for exp 6. For model 3, the rates are between 90%

and 96%, due to this last model complexity. For this reason, a validation rate of

90% of well classified arrays over the validation basis is a realistic value. How-

ever, this validation rate could be adjusted to the number of identified regimes

since obviously the rate of well classified arrays decreases with the number of

regimes.

The bias (after normalization) of the frontier coefficients F̂ (see section 5.2.2)

is about 0.1-0.5 and the standard deviation between 0.03 and 0.15 for the first

model, without any differences between the experiment results. For the second

model, the bias and the standard deviation are between 0.03 and 0.3 (the high-

est values being obtained for b̂ as for model 1). Model 3, with a bias (between

0.01 and 0.6) and a standard deviation (between 0.02 and 0.4) has higher fron-

tier coefficient deviations than the first two models. Concerning the validation

metrics table 7, we observe that the first two types of error, rejecting a correctly

identified model and validating a wrong model (but with the good SVM ker-

nel shape) are the highest probability errors. In particular the validation of an

identified SETAR model with a wrong SVM kernel is null (model 1 and 3) or

almost null (model 2). This result validates our approach of choosing a priori

kernel/frontier shape and then validating this choice a posteriori
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5.3.2. SETAR model effects

In this second subsection, we consider the effects of the SETAR model pa-

rameters.

The first experiment is a standard SETAR model, similar to those simulated

in the aforementioned papers on SETAR identification. We can observe that

the proposed algorithm leads to fairly satisfactory results (according the lack

of hypotheses on the SETAR model in our algorithm) since we have up to 71%

(model 1) and 91% (model 2) of well identified SETAR models (table 6 second

number). Obviously, results for model 3 are less good with a highest rate of

48%. Intermediary results (concerning only the AR model identification table

5) are much higher than these rates since the AR models are retrieved up to

87%, 100% and 70% for model 1, 2, 3 respectively, thus showing that the main

discrepancy lies in the frontiers retrieving step (SVM algorithm). For this first

experiment, when all the AR models have been retrieved, we have about 98-99%

of well labelled arrays (over the estimation basis) for model 1 and 2 and 92%

for model 3 (with a standard deviation about 1% over the 1000 times series).

It means, that even if spurious AR models are identified, there are very few

arrays labelled with these spurious systems (over the two bases). The valida-

tion metrics (table 7) are slightly different for the three models. For model 1,

the highest error probability is that of validating a false model. As previously

stated, when a false AR model is retrieved, they are few sample arrays labelled

with this spurious AR model and then the model is validated although the SE-

TAR model is not exactly identified since the weight of the spurious AR model

is weak. The second model shows more possible sources of errors. In particular,

the rate of rejection of well identified SETAR models is about 10% of the time

series (while it is null for model 1) and is the highest error probability (possibly

due to closer residuals, the two AR model having the same order). For the three

AR model (all experiments), the highest error probability (about 80%) is the

error of rejecting a well identified model due to the higher number of regimes

that increases the possibility of mislabeling over the cross validation basis.

The overwhelming of one regime (over the other(s)) disturbs the SETAR model

estimates of our algorithm (but it could also disturb the algorithms proposed in

papers of table 1 that have not been tested on this difficult case). For instance,

the maximum rate of AR model retrieval is 59% (model 1) and 25 % (model

2), exp 2 table 5, but with a final SETAR identification, rate of 10.1% (model

1) and 0% (model 2), exp 2 table 6. For model 3, our algorithm did not re-
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trieve the three AR models (this SETAR model is not discussed below). When

the algorithm aims to identify an AR model with arrays corresponding to the

non dominant regime, for which few sample arrays are available, it generally

identifies one or several spurious AR models, leading to these weak results, in

particular for model 2. The rate of well classified arrays remains close to the op-

timal for model 1 but decreases to 92% model 2, this discrepancy explaining the

final weak results of SETAR identification for this model. Moreover, we observe

that the overwhelming of one regime also disturb the frontier estimate (compare

model 1 exp 2 in table 5 and 6) since we have to find a frontier for a class with

few samples (i.e. labelled with the non dominant regime). In this case, the bias

and the standard deviation are multiplied by 2 or 3 for the frontier coefficients

with regards to exp 1. The highest probability error is the validation of a false

model (60 % for model 1 best result). In fact, the rate of well labelled arrays

corresponds to the dominant regime rate, which is close to the acceptation level,

this inducing a model validation even if the second (non dominant) AR model

is not retrieved.

As expected the innovation variance has some effects over the SETAR identifi-

cation results. A higher innovation variance (of 1) dwindles the rate of the AR

retrieval for model 2 and 3 and thus also decreases the rate of the SETAR model

identification (exp 3 tables 5 and 6). This decreasing is less sensitive for model

1. Although the bias and standard deviation of the AR coefficients are close to

those of exp 1 for the three models, the rate of well classified arrays downs to

96% (model 2) and 90% (model 3), but remains unchanged for model 1 (98%).

These slightly lower rates induce a higher frontier coefficient estimate variance

and have a strong effect on the optimal results (compared exp 1 and exp 3 for

these two models in table 6). As expected, the probability of false validation

increases for model 2 and 3 due to the higher innovation/residual variance, with

limited effects for model 1 as previously stated. On the other side, a small inno-

vation variance (of 0.1) increases the performance of our algorithm for model 2

and 3 for the AR model retrieval, but finally decreases the SETAR identification

rate for model 3 (see exp 4). In this three AR model case, this dwindling is ex-

plained by the fact that the samples arrays being closer, this turns the frontiers

estimate more difficult when two frontiers have to be retrieved (only 43 %). For

model 1, it seems that the AR identification is also more difficult, thus leading

to a lower SETAR identification rate (see table 6 exp 4) although the rate of

well classified arrays over the estimation basis remains unchanged (98%). The

small innovation variance has few effects on the validation performance since
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we retrieve close results to those of exp 1 for model 1 (although the rate of well

estimated SETAR models is about 39 %) but it increases the probability of false

rejection for model 2 and strongly increases the false acceptation for model 3.

The innovation skewness (exp 7 for model 1 and 2 and exp 6 for model 3)

has some effects on the identification results. For model 2, the rate of exactly

identified SETAR models is divided by 2 with regards to the AR retrieval rate

(compare exp 7 model 2 in tables 5 and 6) as well as for model 3. In fact, the

rate of time series for which all the AR models (among spurious ones) have been

retrieved is twice the rate of time series for which only the true AR models are

identified (see exp 7 in table 5). For model 1, the AR retrieval rate is unchanged

(compare exp 1 and 7 in table 5) while the SETAR model identification rate

is divided by 2, (compare exp 1 and 7 in table 6). In this case, the rate of

well labelled arrays in the experiments 1 and 7 remains close (about 98%) and

the reason of the low performance of the frontier retrieval is owned to a higher

variance of the mislabeled array location (induced by the innovation skewness).

By loosening the array closeness constraint, K = 0.4 instead of 0.2 in criterion

(7) for frontier validation, the SETAR identification rate fairly increases. Sim-

ilar conclusions to those of model 1 can be drawn for model 3 (exp 6). The

validation metrics are unchanged for model 1 and 2 (with regards to exp 1) and

the false rejection probability decreases for model 3.

The switching condition also interferes on the SETAR identification results (exp

5), even if the rates of each regime are well balanced similarly to exp 1. For

model 1, we observe a slight decrease (70% to 60%) of the identified AR model

rate, but without any effects on the final SETAR identification rate (compare

exp 5 in table 5 and 6 for model 1). For this model, the AR coefficient bias

and standard deviation, the well labelled array rate, the frontier coefficient bias

and standard deviation and the validation metrics remain close to those of exp

1 (and thus our algorithm is efficient to retrieve models with more complex

switching condition than those based only on one past lag). On the other side,

for model 2, the AR models are identified for 71% of the time series, but the rate

of time series without spurious AR models decreases to 16% and the correctly

estimated SETAR model rate is almost null. Moreover, for this model, this

experiment exhibits a higher bias of the AR coefficients, a weaker well-labelled

array rate (88%) and a higher bias and standard deviation of the frontier coef-

ficients, leading to a nearly null SETAR model identification rate. A possible

reason is that the arrays of a same regime are closer than in exp 1, since the

switching variable is a linear combination of time series past values as well as
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the predicted time series value Y (n), thus reducing the possible range value of

Y (n) and finally inducing that the arrays Yd(n) are closer. This closeness leads

to a bad matrix conditioning in the OLS (eq. 2) and then a higher spreading of

Ãid and turning the centroid/AR coefficient extraction more difficult.

The nonlinear switching condition also leads to different results depending on

the model. For model 1, the AR retrieval rate as well as the final SETAR identi-

fication are fairly good (59% and 51% respectively), papers of table 1 being not

able to identify this SETAR model. On the other side, these two rates are close

to null for model 2 and 3 (for the reason that switching variable and predicted

value are more linked). For model 1, we observe that our validation metric never

validates a model estimated with a linear kernel (see exp 6 in table 6) for the

nonlinear switching condition. However, we observe a strong probability of false

rejection for model 1 (the results for model 2 being not meaningful).

For the non equal innovation variance of the two regimes, for model 1 and 2

(exp 8 and 9), we do not observe any significant dwindle of the results for the

AR retrieval rate (compared to exp 1) as well as for the well labelled array rate.

In particular, the order of the AR model identification (first the stable model)

is unchanged for these two SETAR models whatever the innovation variance is.

However, the SETAR identification rate decreases about 15% for model 2 and

3, slightly increases for model 1 (not significantly). A deeper insight shows that

the reason of this decrease for model 2 lies in the SVM step, since the frontier

coefficient bias and variance are twice those of exp 1. In fact, the arrays are

more gathered (small innovation variance) for one regime and spreader (high

variance) for the other, inducing that an accurate frontier estimate is more dif-

ficult.

Finally, the nested SETAR model (exp 7 model 3) also leads to fairly good

results, since we obtain a rate of 33% AR model retrieval and 31% of SETAR

identification, thus showing that this kind of model can be identified by our

algorithm (unlike the algorithms listed in table 1). However, for this model, AR

bias and variance of the second and third AR model are higher than in other

experiments with model 3. Moreover, this experiment exhibits the highest rate

of well-classified arrays (96%) and the lowest bias and variance for the frontier

coefficients. In this experiment, the highest error probability is to validate a

false model, but as for the other experiments of model 3 as previously stated.
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Model Exp.
Pst = 5% Pst = 2%

m = 1.05 m = 1.5 m = 1.05 m = 1.5
TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9

1

1 87/89 86/89 70/80 62/73 80/50 80/50 64/43 56/39
2 75/90 75/90 75/89 68/86 65/46 64/46 63/43 59/41
3 84/88 84/88 71/83 63/77 76/52 76/53 67/48 61/44
4 63/83 63/83 60/82 54/77 60/59 60/59 63/55 57/51
5 62/77 62/77 61/75 60/73 60/34 60/34 59/36 57/34
6 71/61 70/60 48/56 29/45 56/28 53/28 41/29 23/22
7 84/89 83/89 70/80 59/72 76/56 76/56 64/49 55/44
8 90/91 90/91 74/76 66/68 79/51 79/51 65/38 56/34
9 88/92 88/92 73/78 65/66 80/50 80/51 65/41 56/34

2

1 93/77 93/76 90/89 79/82 77/48 78/47 77/57 64/52
2 13/7 13/8 11/14 7/11 5/3 5/3 4/7 2/5
3 60/42 59/41 58/58 44/44 46/24 45/24 46/35 34/27
4 97/81 97/81 92/93 87/89 83/49 83/49 84/63 78/60
5 9/7 9/7 11/9 8/5 2/2 2/1 2/2 1/1
6 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
7 41/43 39/43 54/56 40/42 25/21 24/19 38/23 24/16
8 81/62 80/61 82/81 68/69 62/38 61/38 66/50 53/42
9 85/64 84/63 80/79 69/68 66/39 66/38 65/49 53/41

3

1 71/29 70/28 45/22 32/17 65/19 64/19 41/14 30/12
3 57/40 56/39 44/28 34/22 38/21 38/21 29/15 22/11
4 64/19 64/18 65/18 54/14 58/12 59/11 57/10 46/8
6 50/40 50/40 38/30 31/24 46/23 46/22 36/20 29/16
7 23/22 23/22 32/46 27/30 25/11 24/10 34/25 27/18

Table 8: Rate of time series for which all the AR models exactly retrieved for NT = 512 (first
number) and NT = 256 (second number)

Model Exp.
Pst = 5% Pst = 2%

m = 1.05 m = 1.5 m = 1.05 m = 1.5
TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9 TB = 0.7 TB = 0.9

1

1 57/57 56/56 45/44 42/40 83/81 83/80 66/63 59/56
2 68/68 67/67 68/67 64/63 72/66 72/65 74/64 69/59
3 40/40 39/39 39/39 36/36 68/66 66/64 64/63 59/57
4 15/15 14/14 22/22 21/21 31/29 32/29 39/36 34/32
5 41/41 41/41 48/47 49/48 55/52 55/53 66/62 66/61
6 55/54 54/53 41/40 19/19 62/56 61/55 47/40 22/17
7 47/46 47/46 48/44 44/39 72/67 72/67 73/66 63/57
8 64/64 63/63 53/53 49/49 81/79 81/79 67/64 62/58
9 62/62 63/63 55/55 50/50 81/81 82/82 67/65 58/56

2

1 99/95 99/95 99/94 98/84 99/84 99/85 99/83 98/66
2 11/7 12/8 10/6 10/3 11/2 12/2 11/2 10/1
3 87/57 86/56 92/59 89/50 87/35 86/35 92/41 89/32
4 99/98 99/98 100/99 100/94 99/88 99/88 100/90 100/82
5 28/9 29/9 37/12 34/7 28/3 29/2 37/6 34/4
6 3/3 3/3 0/0 0/0 3/3 3/3 1/1 0/0
7 39/22 38/20 66/44 57/36 39/13 38/15 66/30 57/26
8 96/84 97/84 97/92 97/83 96/65 97/64 97/68 97/56
9 97/86 97/86 98/87 97/78 97/69 97/69 98/74 97/58

3

1 60/60 60/60 45/43 37/35 65/61 65/60 52/45 44/38
3 27/27 26/26 25/25 18/18 36/34 35/33 31/27 24/21
4 49/48 48/48 38/37 30/29 63/60 64/61 52/49 37/35
6 23/23 21/21 17/17 15/15 34/32 33/32 28/27 23/22
7 39/39 37/37 21/21 14/14 39/36 37/34 21/16 14/11

Table 9: Same as table 5 for dmax = 4
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5.3.3. Hyperparameters effects

For the sake of consistency, we only compare the AR model retrieval rate

for the different experiments, concerning the time series length (table 8) and

the dmax value (table 9), the final results of SETAR identification leading to

close conclusions. Comparing tables 5, 6 and 7, we observe that there are few

differences for the optimal hyperparameter sets for the AR model and frontier

retrieval rate as well as the model validation metric (when possible). From the

results of table 5 and 6, we observe that Pst = 5% leads to the best results for

model 2 while Pst = 2% is the optimal value for model 1 and 3. As stated in

the previous subsection, model 2 leads to closer residuals for the two AR models

and a too strict stopping condition leads to a false AR model identification. In

particular, for this model we observe that the exact AR model retrieval rate

is divided by 2 with regards to AR model retrieval showing thus, that in this

case, spurious AR models are frequently identified. The threshold TB = 0.7

seems to be an optimal belonging measure to detect a possible centroid (i.e.

an AR model). When TB = 0.9 provides the best results, they are very close

to those obtained with TB = 0.7. The sharpness parameter m value is more

questionable since a value of m = 1.05 gives the best results for almost all the

cases, but for some experiments for model 2, we observe that the optimal results

occur for m = 1.5. Thus, the two values have to be tested and the estimated

model leading to highest well labelled array rate over the validation basis has

to be selected. However, as seen in the next point the optimal hyperparameter

set depends on the time series length.

The times series length has obviously some effects on the SETAR model identi-

fication even if we cannot derive any statistical properties (i.e. estimate consis-

tency) since we are in the scope of non-stationary time series. Comparing tables

5 and 8 shows that the optimal hyperparameter set is always the same for large

times series. In this case almost the optimal results are provided for parameters

Pst = 5%. Obviously for small times series when few samples remain to be

labelled, in particular when Pst = 2%, spurious and very inaccurate AR models

can be identified from these few samples. In more details, for model 1 and 3,

the results are identical, even better for small times series than for NT = 1024

(few cases, exp 2 for instance). In this experiment the number of arrays, on

which the centroids are estimated, increases exponentially with the time series

length (see section 3.1). On the other side model 2 shows strong improvements

of the AR retrieval results for increasing time series length.
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Comparing tables 5 and 9 shows that the dmax parameter has few effects on the

results when increasing from 3 to 4. The variations are not significant except

in some cases. It has some negative effects for exp 3,4,5 of model 1 for which

the rate decreases between 6% and 9% for the exact AR model retrieval. For

model 2, exp 5 shows a strong dwindling of the AR retrieval (71% for dmax = 3

and 37% for dmax = 4) but the exact SETAR identification rate remains close

for the two dmax values. We retrieve this case for exp 7 (96% to 66%) with

close final results (43 % and 44 %). For model 3, the results are close for the

two dmax values. In some cases, better results are obtained for dmax = 4 for

instance for exp 2 of model 1 with an increase of 10% of the final results. Thus,

as previously stated, the dmax parameter has few effects on the results but in-

duces an exponentially increasing computational load. This is a drawback of

our approach since it limits the AR order as well as the times series lags involved

in the regime switching.

6. Conclusion

We have proposed a new paradigm/algorithm in order to identify SETAR
models by first identifying the AR models using array clustering algorithm and
secondly the switching conditions. This inversion allows us to relax the all the
hypotheses on the SETAR model (number of regimes, switching conditions ...).
Our approach does not allow deriving any asymptotical property, since for in-
stance we consider stable and unstable AR models in the SETAR model. Thus,
we validated our algorithm on several experiment sets. The results show the
capability of our algorithm to identify fairly complex models (i.e. with more
than two AR models) with possibly non Gaussian innovation and so on. The al-
gorithm hyperparameters have few effects on the results, since as predicable, the
dwindling of the identification results is owned to the SETAR model complex-
ity. However, a limiting parameter is the solution space (maximal) dimension
for computational load reason.
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