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ABSTRACT

We present a fuzzy logic approach allowing the identification of minerals from reflectance spectra acquired by
hyperspectral sensors in the VNIR and SWIR ranges. The fuzzy logic system is based on a human reasoning. It
compares the positions of the main and secondary absorptions of the unknown spectrum (spectral characteristics
estimated beforehand) with those of a reference database (derived from mineralogical knowledge). The proposed
solution is first evaluated on laboratory spectra. It is then applied to airborne HySpex and satellite-borne
PRISMA images acquired during a dedicated campaign over two quarries in France. This demonstrates the
relevance of the method to automatically identify minerals in different mineralogical contexts and in the presence
of mixtures.

Keywords: Mineral reflectance spectra, Hyperspectral images, HySpex, PRISMA, Identification procedure,
Fuzzy logic

1. INTRODUCTION

1.1 Mineralogy and hyperspectral imagery

Spectroscopy in the solar reflective domain (VNIR (Visible Near-Infrared) [400− 1300] nm and SWIR (Short-
Wave InfraRed) [1300− 2500] nm) is a powerful tool to analyze the physico-chemical properties of minerals.1

Indeed, minerals exhibit characteristic spectral features that can be used to identify and characterize them. In
particular, the positions of the main and secondary absorptions depend mainly on their chemical composition.
Most of the time, a mineral can be identified based on its main absorptions while its secondary absorptions
may disappear as a function of physico-chemical properties or in the presence of mixtures with other materi-
als/minerals. Note also that, for minerals belonging to the same mineralogical group, main absorptions can have
quite similar position and shape due to their close chemical composition, and secondary absorptions can then
be used to discriminate between them. Figure 1 shows reflectance spectra of kaolinite, which exibits narrow and
deep absorptions in the SWIR, and of nontronite, which exibits large absorptions in the VNIR and narrow and
deep absorptions in the SWIR, from the USGS (US Geological Survey) spectral library.2 The overall shape of
the reflectance spectrum, also called continuum, changes with surface conditions (e.g. roughness, humidity), so
that an identification based on a comparison of a spectrum with an extensive database using a metric generally
fails. A solution may then consist in developing a mineral identification procedure based on the positions of the
main and secondary absorptions.

Thanks to the development of new airborne and satellite-borne sensors (e.g. Airborne Visible-InfraRed Imag-
ing Spectrometer - Next Generation (AVIRIS-NG),3 HySpex sensors, such as Mjölnir (https://www.hyspex.
com), ”PRecursore IperSpettrale della Missione Applicativa” (PRISMA),4 Environmental Mapping and Analysis
Program (EnMAP)5), an increased number of hyperspectral images, where each pixel is a reflectance spectrum,
is acquired over large areas of mineralogical interest so that detailed spectral analysis can be performed. Thus,
in order to map the physico-chemical properties of the observed surface, an automatic mineral identification
procedure is more and more necessary. Moreover, due to the relatively low spatial resolution of the images used
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Figure 1: Kaolinite (red) and nontronite (blue) reflectance spectra from USGS spectral library. Spectral masks
(grey areas) corresponds to atmospheric water vapor absorption bands and can not be used to identify minerals
from airborne or satellite-borne images.

in this study (∼ 5 m for HySpex and ∼ 30 m for PRISMA), spectral mixtures with other materials/minerals
may appear.

In previous studies,6,7,8 the authors have developed an automatic deconvolution procedure for mineral re-
flectance spectra, which estimates the number N of absorptions (main and secondary) and their associated
parameters. An absorption is then considered as a modified Gaussian which can be described by four parameters
(an amplitude s, a position µ, a width σ and an asymmetry k). Also, the procedure computes the uncertainties
on the parameters from the noise covariance matrix, either calculated knowing the sensor characteristics or es-
timated from the data.9 Applied to various spectra (synthetic and laboratory data, hyperspectral images), the
procedure retrieves the positions of the main and secondary absorptions with errors less than 5 nm, even in noisy
cases.8

The main objective of this study is to propose an automatic mineral identification procedure based on the
estimated positions of the main and secondary absorptions of the unknown spectrum. The procedure has to
deal with an unknown number of estimated positions and has to take into account the uncertainties of the
deconvolution procedure. Moreover, as main and secondary absorptions do not have the same importance in the
identification of a mineral, their respective weights have to be adjusted. Mineral spectral mixtures also have to
be handled.

1.2 Identification based on a human reasoning

An expert approach, as the one proposed in the GMEX10 (Guides for Mineral EXploration) works as follows.
The expert first compares the main absorptions of the unknown spectrum to a database in order to identify
either the mineral or at least the group to which it belongs. Then, he uses the secondary absorptions to increase
the confidence. Three cases can then arise for the expert: 1) only one mineral is unambiguously identified from
the spectrum, 2) the spectrum is a mixture of two or more minerals and 3) the spectrum corresponds to several
minerals with similar absorptions. A way to compare effectively the positions of an unknown spectrum to the
positions of the spectra in the reference database is to use a coincidence measure defined by the expert.

A way to mathematically represent a human reasoning is to use fuzzy logic, a powerful tool introduced in the
1960s11 to obtain conclusions from vague, ambiguous or impressive data. For any statement, as input of a fuzzy
logic system, a degree of truth is defined, named a membership function. Then, a set of If-Then rules are given
by an expert or extracted from numerical data. Thus, their first part (i.e. the antecedent) defines the conditions
and the second part (i.e. the consequent) defines the corresponding action.

Fuzzy logic has already been applied to mineral reflectance spectra by comparing the full spectrum to a
reference library12,13 but not in the way we propose here using only the positions of the absorption features.
We rely on the work of Perez-Pueyo et al. in Raman spectroscopy where the authors use a two-step procedure



to identify pigments based on their peak positions in the spectra.14 Their solution is composed of two fuzzy
logic systems, one for the selection of pigment candidates among a database and one for the computation of an
identification score. As output, each selected pigment has an identification score as long as at least one of its
peak positions is retrieved. Note that in this solution, main and secondary absorptions have the same weight.
Also, an interpretation is necessary to fully analyze the identification score and to handle spectral mixtures.

In the following, we propose a mineral identification procedure based on fuzzy logic. The full procedure
is described in section 2 before being validated on synthetic data in section 3 and applied to spectra from
hyperspectral images in section 4.

2. MINERAL IDENTIFICATION PROCEDURE

2.1 Overview

The procedure is composed of three steps (figure 2). First, the coincidence between the estimated absorption
positions µe of the unknown spectrum and the positions µd of the minerals in the database is evaluated (Coinci-
dence step). It consists in the computation of a similarity degree S and a percentage of matched positions Mpos,
taking into account the uncertainties on the estimated positions σµe , for main and secondary absorptions. Then,
a fuzzy logic system, based on S and Mpos, is designed to identify the mineral, with respect to the database
(Identification step). An identification score Idscore is thus obtained for each mineral of the database. Finally, a
solution to discriminate between minerals belonging to the same mineralogical group or being part of a mixture,
based on Idscore, is proposed (Dicrimination step). In the following, we detail these three steps and we describe
the database used.

Figure 2: Flowchart of the identification procedure.

2.2 Coincidence step

Here, we assess the closeness between the positions µe and µd by computing a similarity degree S and a percentage
of matched positions Mpos for main and secondary absorptions. For this, we define a coincidence function f ,
represented in figure 3. It is a sum of Gaussians, whose centers are µe and widths σµe

(i.e. their respective
uncertainties), expressed as:

f (x) =

N∑
i

exp

(
(x− µei)

2

2σ2
µei

)
, if f (x) > 1 then f (x) = 1. (1)

In the case where two Gaussians are close enough and overlap, the coincidence function maximum is set to
1. Thus, the similarity degree S ∈ [0− 1] is the maximum of f , evaluated for each database position µd.
Choosing the maximum operator allows to reproduce the approach of an expert who looks for the absorptions
well positioned and does not care, at first, for other absorptions. Other similarity degrees should be used such
as the minimum or the mean but they are less effective as they suppose that all the mineral absorption positions
are retrieved with a high coincidence value.



Figure 3: Example of coincidence function with four estimated absorptions.

Then, the percentage of matched positions Mpos ∈ [0− 100] % between µe and µd is computed as expressed
by:

Mpos =
Nµs

Nµd

∗ 100. (2)

Nµd
is the total number of database positions for a mineral while Nµs is the number of database positions for a

mineral whose coincidence function evaluation is superior to a threshold (here 0.1). The percentage of matched
positions is complementary to the similarity degree, which depends only on one position, as it deals with all the
database positions.

In the following, we note the similarity degree and the percentage of matched positions for main absorptions
with the superscript m and the ones for secondary absorptions with the superscript s.

2.3 Identification step

Based on the coincidence results, we define a fuzzy logic system (figure 4) to identify the minerals. It reproduces
an expert reasoning who searches, among the database, for the minerals corresponding to the coincidence results.
Also, it gives a higher weight in the decision to main absorptions than to secondary absorptions.

Figure 4: Fuzzy logic system.

The membership functions associated to S andMpos are represented in figures 4.a and 4.b for main absorptions
and in figures 4.c and 4.d for secondary absorptions. The similarity degree is either Low or High and the
percentage of matched positions can be Low, Medium or High. As secondary positions are not sufficient to identify
a mineral, higher confidence results are necessary to ensure that they correspond to the database secondary
positions. It is translated in the fuzzy logic system by a shift of their membership functions.

As output of the fuzzy logic system, we define an identification score Idscore ∈ [0− 10], where 0 is the case
of a mineral with S = 0 and Mpos = 0% for both main and secondary positions and 10 is the case with S = 1



and Mpos = 100%. Its membership functions, represented in figure 4.e, are Low, Medium Low (noted M-Low),
Medium High (noted M-High) and High. They ensure several possibilities of interpretation.

Finally, the set of If-Then rules, defined in table 1, translates the expert reasoning into the fuzzy logic system.
It thus gives more importance to main positions than to secondary positions. Thus, if main positions are retrieved
with High confidence results, Idscore is High and secondary positions increase the confidence on the result. Then,
in the case where only secondary positions are retrieved with High confidence results, Idscore is Low. These rules
imply that secondary positions alone are not sufficient to identify a mineral.

Table 1: Set of If-Then rules for minerals with main and secondary absorptions.

Sm Mm
pos Ss Ms

pos Idscore

High High High High / Medium High

High High High Low Medium High

High High Low High / Medium High

High High Low Low Medium High

High Medium High High High

High Medium High Medium / Low Medium High

High Medium Low High High

High Medium Low Medium / Low Medium High

High Low High High / Medium Medium High

High Low High Low Medium Low

High Low Low High / Medium Medium High

High Low Low Low Medium Low

Low High High High Medium High

Low High High Medium / Low Medium Low

Low High Low High Medium High

Low High Low Medium / Low Medium Low

Low Medium High High / Medium Medium Low

Low Medium High Low Low

Low Medium Low High / Medium Medium Low

Low Medium Low Low Low

Low Low High High Medium Low

Low Low High Medium / Low Low

Low Low Low High Medium Low

Low Low Low Medium / Low Low

In some cases, mineral reflectance spectra do not have secondary absorptions and the fuzzy logic system has
only two inputs. For these cases, the set of rules is given in table 2.

To solve this fuzzy logic system, we use a Mamdani fuzzy inference system15 with the minimum operator as
”and method”, the product operator as ”implication method”, the maximum operator as ”aggregation method”
and the centroid deffuzifer. Note also that a normalization is necessary to obtain an identification score between
0 and 10.

2.4 Discrimination step

The discrimination step is applied when several minerals are identified in the unknown spectrum at the previous
step. It is a common problem as several minerals can have similar main absorptions or can be part of a spectral
mixture.



Table 2: Set of If-Then rules for minerals without secondary absorptions.

Sm Mm
pos Idscore

High High High

High Medium Medium High

High Low Medium Low

Low High Medium High

Low Medium Medium Low

Low Low Low

First of all, all the main absorption positions have to be retrieved to identify the mineral. Thus, minerals
with Mpos < 100% for main absorptions are removed. Then, if only one mineral has a percentage of matched
positions equal to 100%, it is unambiguously identified. Finally, when two or more minerals have Mpos = 100%,
the spectrum either corresponds to a mixture or to several minerals with similar absorptions. To discriminate
between both cases, we compute the maximum distance between the positions of each remaining mineral in
the database. If this maximum distance is greater than a threshold (here 10 nm), the unknown spectrum is a
mixture, otherwise it corresponds to several minerals with similar absorptions.

2.5 Mineral positions database

The mineral positions database is a key element of the mineral identification procedure. It is created based on
expert knowledge and separates main and secondary absorption positions. The database used in this study is
given in table 3.

Table 3: Mineral positions database.

Mineral - Group Main absorptions (nm) Secondary absorptions (nm)

Alunite - Sulphate 1760, 2165 2324

Buddingtonite - NH4-Mineral 2013, 2112 /

Calcite - Carbonate 2342 2156

Chlorite - Chlorite 750, 928, 1130, 2248, 2340 /

Dolomite - Carbonate 2324 2140

Gibbsite - Al-hydroxyde 2268 2356

Goethite - Fe-hydroxyde 660, 960 500

Gypsum - Sulphate 1750 1538, 2215

Hematite - Fe-oxyde 875 660

Illite - Mica 2204, 2347, 2440 /

Jarosite - Sulphate 435, 2206, 2269 952, 1849

Kaolinite - Phyllosilicate 2162, 2206 2312, 2355, 2380

Montmorillonite - Smectite 2217 /

Muscovite - Mica 2204, 2342, 2435 /

Nontronite - Smectite 660, 960, 2283 2378

Talc - Mg-phyllosilicate 2288, 2390 2075, 2135, 2175, 2466

The absorption positions given in the database are theoretical values. Thus, depending on the measurement
conditions or the physico-chemical properties of the mineral, they may vary slightly (no more than 20 nm for
tested SWIR absorptions). These variations are included in the uncertainties on the estimated positions σµe

to
be taken into account in the coincidence step.



3. VALIDATION ON SYNTHETIC DATA

3.1 Synthetic data description

The proposed mineral identification procedure is validated on three unknown spectra whose positions are given
in table 4. The total uncertainty on the positions is set to σµe

= 5 nm. Each spectrum corresponds to a
specific case to discriminate (unique mineral, mineral mixture and minerals with similar absorptions). Spectrum
1 corresponds to an unique mineral, montmorillonite. Its three absorptions correspond to the montmorillonite
main absorption and to two out of three kaolinite secondary absorptions. Other minerals can be retrieved but
without all their main absorptions. The absorption positions for unknown spectrum 2 were selected to correspond
to a mixture of alunite and kaolinite, where kaolinite positions are fixed at their exact values in the database.
Also, alunite secondary absorption is not present. Absorptions of spectrum 3 correspond to muscovite main
absorptions. However, illite, a mineral belonging to the same mineralogical group as muscovite, exhibits the
same absorptions but slightly shifted. The mineral identification procedure has then to identify the unknown
spectrum between muscovite and illite.

Table 4: Synthetic absorption positions of three spectra used for the validation.

Case µe (nm)

spectrum 1 2212, 2310, 2380

spectrum 2 1760, 2162, 2206, 2312, 2380

spectrum 3 2204, 2342, 2435

3.2 Montmorillonite identification

Results for spectrum 1 are summarized in table 5. First of all, as montmorillonite is the only mineral to have
Mm
pos = 100% for main absorptions, it is identified with Idscore = 8.23. We notice that its main absorption is

retrieved with a similarity degree of 0.61 as the position at 2212 nm of the unknown spectrum is shifted from the
montmorillonite database position at 2217 nm. Then, kaolinite and nontronite secondary absorption positions
are all retrieved with a high similarity degree (0.96) but their identification scores are relatively small (5.61 for
kaolinite and 3.27 for nontronite) as their main absorptions are not retrieved. Finally, a part of the absorptions
of gypsum, illite, jarosite muscovite and talc are also retrieved.

Table 5: Mineral identification procedure results for spectrum 1.

Mineral Sm / Mm
pos Ss / Ms

pos Idscore Class

Gypsum 0 / 0 0.83 / 50 0.09 Not identified

Illite 0.28 / 33 - 3.07 Not identified

Jarosite 0.49 / 33 0 / 0 3.91 Not identified

Kaolinite 0.49 / 50 0.96 / 66 5.61 Not identified

Montmorillonite 0.61 / 100 - 8.23 Identified

Muscovite 0.28 / 33 - 3.07 Not identified

Nontronite 0 / 0 0.96 / 100 3.27 Not identified

Talc 0.14 / 50 0 / 0 1.58 Not identified

3.3 Alunite-kaolinite mixture

Results for spectrum 2 are summarized in table 6. Spectrum 2 is here identified as a mixture of three minerals:
alunite, gypsum and kaolinite, as Mm

pos = 100% for their main absorption positions. The main absorptions of
gypsum, which belongs to the same mineralogical group as alunite, is retrieved but shifted (Sm = 0.14) and its



secondary absorptions are partially retrieved. Thus, gypsum is identified as part of the mixture but its Idscore
is relatively small (Idscore = 4.26). Then, alunite main absorptions are retrieved with a high similarity degree
(0.92) but not its secondary absorptions. Thus, its Idscore is lower than the one of kaolinite for which main
and secondary absorptions are all retrieved at their exact positions in the database. In this case, we retrieved
the alunite-kaolinite mixture with a strong predominance (from an Idscore point of view) of kaolinite and the
possibility of a minor contribution of gypsum.

Table 6: Mineral identification procedure results for spectrum 2.

Mineral Sm / Mm
pos Ss / Ms

pos Idscore Class

Alunite 0.92 / 100 0 / 0 6.68 Mixture

Calcite 0 / 0 0.49 / 100 3.28 Not identified

Gypsum 0.14 / 100 0.19 / 50 4.26 Mixture

Illite 0.92 / 33 - 5.16 Not identified

Jarosite 1 / 33 0 / 0 5.31 Not identified

Kaolinite 1 / 100 1 / 100 10 Mixture

Muscovite 0.92 / 33 - 5.16 Not identified

Nontronite 0 / 0 0.96 / 100 3.28 Not identified

Talc 0.14 / 50 0 / 0 1.58 Not identified

3.4 Illite-muscovite discrimination

Results for spectrum 3 are summarized in table 7. Three minerals have a percentage of matched positions equal
to 100%: calcite, illite and muscovite. However, the positions of their main absorptions in the database are close
and we identify the mineral with the higher Idscore. Thus, muscovite is identified as its Idscore is equal to 10.

The case of calcite is particular as it has an unique main absorption position at 2342 nm which is close to
positions of other minerals. This example emphasizes the importance of sorting main and secondary absorptions
correctly from the start while building the reference database. Thus, false identification of calcite, as well as
montmorillonite and other minerals with an unique main absorption, is possible. To avoid this risk of false
identification, a first solution is to use expert knowledge based on the geological mineralogical context. Another
solution can be to include other absorptions parameters (i.e. amplitude, width and asymmetry) to improve the
identification score.

Table 7: Mineral identification procedure results for spectrum 3.

Mineral Sm / Mm
pos Ss / Ms

pos Idscore Class

Calcite 0.99 / 100 0 / 0 7.06 Similar absorptions

Chlorite 0.92 / 20 0 / 0 4.59 Not identified

Illite 0.74 / 100 - 8.67 Similar absorptions

Jarosite 0.92 / 33 0 / 0 5.16 Not identified

Kaolinite 0.92 / 50 0 / 0 6.56 Not identified

Muscovite 1 / 100 - 10 Similar absorptions

4. APPLICATION TO AIRBORNE AND SATELLITE-BORNE IMAGES

4.1 Data description

The procedure is applied to airborne HySpex and satellite-borne PRISMA images acquired during a dedicated
campaign over two quarries in France (figure 5). Three minerals of interest can be observed: gypsum, calcite



(Cherves-Richemont) and kaolinite (Chevanceaux). They are used in the production of plasterboard or as aggre-
gates (Cherves-Richemont) and refractory ceramics (Chevanceaux). HySpex images were acquired in September
2019, with a 0.5 m and a 1.0 m spatial resolution for the VNIR and SWIR respectively. The number of bands
were respectively 160 and 162 for the VNIR and SWIR with a ∼ 4 nm and ∼ 7 nm spectral resolution. In this
study, only SWIR images are used. Images were atmospherically corrected using ATCOR4.16 To improve the
signal-to-noise ratio, reflectance images were spatially downsampled to 5 m. PRISMA image, only available on
Chevanceaux, were acquired in September 2020, with a 30 m spatial resolution. There are 234 bands with a
spectral resolution of ∼ 10 nm. The image was atmospherically corrected using ATCOR2/3.16 Samples were
collected at the time of HySpex image acquisition in order to create a spectral database gathering the various
spectral signatures observed in the quarries. An ASD FieldSpec R©FR3 was used to this end for the laboratory
measurements.

(a) (b) (c)

Figure 5: HySpex image (a) acquired over the Cherves-Richemont quarry. HySpex (b) and PRISMA (c) images
acquired over the Chevanceaux quarry. The stars indicate the positions in the images of the spectra used in this
study.

In the following, a deconvolution procedure8 was applied to spectra selected from the images in order to
estimate their absorption positions. The noise covariance was estimated using HYSIME.9

The proposed mineral identification procedure is applied to a gyspum-calcite mixture for Cherves-Richemont
and results for kaolinite on HySpex and PRISMA images are compared for Chevanceaux.

4.2 Gypsum and calcite spectral mixture

On the Cherves-Richemont HySpex image, gypsum and calcite are the two predominant observable minerals. As
a reminder, gypsum (in red in figure 6) exhibits one main absorption at 1750 nm and two secondary absorptions
at 1538 and 2215 nm whereas calcite (in blue in figure 6) exhibits one main absorption at 2342 nm and one
secondary absorption at 2156 nm. However, near the roads and the plant area, gypsum and calcite can be
mixed. The resulting spectrum (in green in figure 6) exhibits the main absorptions of both minerals.

Results are given in table 8 for the three spectra. First, gypsum spectrum is classified as a mixture of gypsum
and montmorillonite. Here, the identification of montmorillonite is not relevant as its unique main absorption
is close to the gypsum secondary absorption at 2215 nm. Then, calcite spectrum is classified as a mixture of
calcite and dolomite with Idscore slightly higher for calcite. Indeed, the absorptions of calcite and dolomite are
close as they belong to the same mineralogical group and the estimated positions at 2333 nm is between their
main positions. Finally, for the mixture spectrum, five minerals are identified: alunite, calcite, dolomite, gypsum
and montmorillonite. The presence of alunite is due to an overestimation of the number of absorptions in the
deconvolution procedure while dolomite and montmorillonite were already present for ”pure” gypsum and calcite
spectra. Finally, the spectrum is identified as a gypsum-calcite mixture. A possible solution to avoid the false
identification of montmorillonite, dolomite and alunite could be to use the other absorption parameters (i.e.



Figure 6: Gypsum (red), calcite (blue) and gypsum-calcite mixture (green) from HySpex image over Cherves-
Richemont. Estimated positions are represented as vertical dashed lines with the corresponding colors.

amplitude, width and asymmetry) to improve the mineral identification procedure by giving more informations
on the unknown spectrum.

Table 8: Results of the mineral identification procedure for the three selected spectra.

Mineral Gypsum Calcite Gypsum - Calcite mixture

- Idscore / Class Idscore / Class Idscore / Class

Alunite 3.56 / Not identified 3.28 / Not identified 7.44 / Mixture

Calcite 5.35 / Mixture 6.03 / Mixture

Dolomite 5.33 / Mixture 4.70 / Mixture

Gypsum 7.72 / Mixture 6.76 / Mixture

Montmorillonite 8.25 / Mixture 9.77 / Mixture

4.3 Kaolinite identification on HySpex and PRISMA images

As a reminder, kaolinite has two main absorptions at 2162 and 2206 nm, the doublet, and three secondary
absorptions at 2312, 2355 and 2380 nm. Note that for HySpex images, the absorption at 2380 nm is out of the
spectral range of the sensor. Four spectra are selected, two from the HySpex image and two from the PRISMA
image (figure 7). For each, kaolinite is easily identifiable based on its doublet but secondary absorptions are not
distinguishable for the PRISMA image. Note also, the presence of a very weak absorption at 2260 nm, probably
due to the presence of gibbsite (it is retrieved with PRISMA but the signal is very close to the noise level).

(a) (b)

Figure 7: Kaolinite spectra from (a) Hyspex and (b) PRISMA images. Estimated positions are represented as
vertical dashed lines with the corresponding colors.



Results are given in table 9 for the four spectra. First of all, the presence of montmorillonite is not relevant
but can be explained by the fact that its unique main position is close to the kaolinite position at 2206 nm.
Likewise, for HySpex spectra, the unique main position of dolomite is close to the kaolinite secondary position
at 2317 nm. Nontronite is also identified in spectrum 1 from PRISMA image as its unique main position in
the SWIR is close to the gibbsite position at 2260 nm. Then, kaolinite is retrieved for the four selected spectra
with an Idscore higher for HySpex than for PRISMA as secondary positions were not estimated for PRISMA.
Moreover, gibbsite is identified in two spectra as expected. Finally, as said previously, the ”false” identification
of dolomite, montmorillonite and nontronite could be probably avoided by including other absorption parameters
in the identification procedure.

Table 9: Results of the mineral identification procedure for the four selected spectra.

Mineral Hyspex - spectrum 1 Hyspex - spectrum 2 PRISMA - spectrum 1 PRISMA - spectrum 2

- Idscore / Class Idscore / Class Idscore / Class Idscore / Class

Dolomite 6.10 / Mixture 6.05 / Mixture

Gibbsite 4.53 / Mixture 3.27 / Not identified 6.94 / Mixture

Kaolinite 7.76 / Mixture 9.80 / Mixture 7.59 / Mixture 6.83 / Mixture

Montmorillionite 7.71 / Mixture 8.11 / Mixture 8.21 / Mixture 8.51 / Mixture

Nontronite 3.27 / Not identified 7.24 / Mixture

5. CONCLUSION

In this study, we have presented a mineral identification procedure based on fuzzy logic and relying on a com-
parison with absorption positions from a reference database. The procedure computes an identification score for
each mineral, based on the main and secondary absorption positions, and takes into account uncertainties. Then,
a discrimination strategy is proposed to identify if the unknown spectrum corresponds to a mineral mixture or
to minerals with similar main absorptions. Several cases have been evaluated (synthetic data, hyperspectral
images) to validate and test its performances.

Several improvements should be considered at this stage. First, minerals with an unique main absorption
need to be handled differently as they may create false identifications. To this end, other absorption parameters,
such as width, amplitude and asymmetry, could be used to increase the information contained in the coincidence
results and to improve the confidence on the identification score. Finally, similar procedures could be developed
to characterize physico-chemical properties of minerals.
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