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Abstract

While lateral boundary conditions are crucial for the physical modelling of

ocean dynamics, their estimation may lack accuracy in coastal regions. Data-

assimilation has long been used to improve accuracy, but most of the widely-used

methods are difficult to implement. We tried a new and an easy-to-implement

method to estimate boundary conditions. This method uses data assimilation

with a stochastic gradient descent and successive approximations of the bound-

ary conditions. We tested it with twin experiments and a more realistic setting

on a tidal model in the lagoon of Ouano, in New-Caledonia. The method proved

successful and provided good estimation of the boundary conditions with various

settings of subsampling and noise for the pseudo-data in the twin experiments,

but there were important oscillations in the experiments with more realistic

settings. Here we present those results and discuss the use of our new and

easy-to-implement method.
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1. Introduction

Lateral boundary conditions for physical models are of major importance

and very difficult to tune with accuracy in coastal regions (James, 2002).They

strongly constrain the water circulation inside the domain, by controlling the

exchanges at the boundaries of the domain of interest. In many applications,5

they are derived from larger scale models, either with nesting techniques or with

interpolations. Unfortunately those boundary conditions are not always directly

interpolable, especially for coastal regions where the bathymetry, frictional ef-

fects and submesoscale variability constrain the small-scale dynamics.

A simple solution can be to implement data-assimilation to adjust the bound-10

ary conditions (Taillandier et al., 2004). However, some of those data assimi-

lation techniques require the development of an inverse model to compute the

corrections to apply to the boundary conditions (Devenon, 1990). This process

is time consuming, and requires a good knowledge both of the direct model and

of inverse method discretization theory (Lellouche et al., 1998). Finally, the in-15

verse model can simply be impossible to develop if the code of the direct model

is not available.

Some other methods do not require the coding of an inverse model. Some

methods use repeated runs of the direct model with perturbations in the param-

eters to generate approximations of the direct model that can then be inverted,20

such as the reduced model method of Vermeulen and Heemink (2006), Altaf

et al. (2012) or Hoteit and Köhl (2006). Other methods do not use approxima-

tions of the direct model and directly use the perturbations of the parameters

to determine the best set of parameters, such as the Simultaneous Perturba-

tions Stochastic Approximation (SPSA) algorithm (Spall (1998), Messié et al.25

(2020),). Those two kinds of methods both require limited coding work, since

they only need access to the parameters to be estimated in the model and to out-

puts of the model, and can therefore be implemented on any model. Their main

limitation is that they require large number of iterations of the direct model.

And unlike methods relying on an inverse model, this number of iterations grows30
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exponentially with the number of parameters. Therefore, parameters such as

lateral boundary conditions, which are clusters of at least hundreds of grid

points, each with independent values, were out of the reach of such methods.

But those methods could be used to estimate approximations of those kinds

of parameters. This is done naturally for the reduced model methods by the35

decomposition in empirical orthogonal functions. But for the SPSA algorithms,

finding good approximations is still an open problem. For example, Boutet

et al. (2015) used the SPSA algorithm for determining friction coefficients in

the Gascogne Gulf, by covering the gulf with a domain of constant friction ac-

cording to the type of sediments found and outside the domain of oceanography,40

Tympakianaki et al. (2015) used clustering techniques to generate approxima-

tions. The contribution of Altaf et al. (2011) was important in that regard,

because they compared the results of the SPSA algorithm with piecewise ap-

proximations with the results a reduced model for the calibration of the depth in

a North Sea model. They concluded that the SPSA method had the advantage45

of being able to identify many parameters at once with these approximations.

However the use of piecewise constant functions quickly becomes difficult

when the parameters vary continuously, or when the precise location of those

corrections is not known in advance. Examples of cases where those corrections

are hard to know a priori are coral lagoons, where the steep bathymetry, the50

presence of a coral reef and the optional connexion with other lagoons can bring

unexpected variations in currents and sea level.

Most approximation methods try to identify the coefficients of a given set of

basis functions for approaching boundary conditions. This approach is limited

because the only way to improve the approximations is to redo the entire ap-55

proximations with new basis functions. Instead, we chose to use several sets of

basis functions whose coefficients could be easily linked from one set to another,

so that approximations could be improved without having to redo the whole

procedure. This methodology had already been tested (Jahns (1966), Theve-

naz et al. (1998)), but never for boundary conditions in oceanography to the60

authors’ knowledge.
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We performed twin experiments on a tidal model of the Ouano lagoon, in

New-Caledonia to test our method. It is of interest as the boundary conditions

are complex to determine, due to the influence of the wave-breaking patterns,

the tides and the high bathymetric and friction variations due to the coral barrier65

(Sous et al., 2017). It enabled us to see how the approximations worked in a

complex situation, where boundary conditions sometimes vary very sharply and

sometimes are nearly constant. In addition by adding noise and subsampling

the data, we tested the robustness of the method in more realistic settings. We

finally tested the method in a more realistic setting with no a priori knowledge70

of the boundary conditions and data collected during survey of the lagoon.

2. Material and methods

2.1. Study zone and parameters

We studied the circulation patterns of the Ouano lagoon. This lagoon is

about 30 km long and 10 km wide and is connected to a wider lagoon system75

located on the south-west coast of New-Caledonia. The coral reef separates the

Pacific Ocean and the lagoon, and forms a porous wall with only 2 passes directly

linking the ocean and the lagoon. The currents inside this lagoon are dominated

by tides, with a spring amplitude of about 0.8 m (Chevalier et al. (2015), Sous

et al. (2017)). The wave-breaking occurring on the barrier reef also drives the80

currents (Chevalier et al., 2015) as it creates a horizontal gradient of radiation

stress across the coral barreer that leads to a water flux inside the lagoon (Sous

et al., 2017). The wave-breaking and the currents it generates are in addition

influenced by the tidal level of the lagoon. Therefore the determination of

accurate tidal boundary conditions in the lagoon is necessary for any proper85

physical modelling.

Tidal boundary conditions were provided by C. Chevalier, so as to be able

to test the method under realistic conditions. These consisted in phase and am-

plitude for the M2 component of the sea level are shown in Figure 1 . Both vari-

ables exhibited zones with strong variations, due to the fact that the southern90
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Figure 1: The upper image shows the Ouano lagoon between the ocean and the island of New-

Caledonia, with the location of New-Caledonia given by the red dot in the world-map insert.

We give the bathymetry of the lagoon and of the nearby ocean that we used in the model.

Some water areas of the lagoon do not have bathymetry values on the map because they are

very shallow reef or mangrove and we have not considered them here. The different boundaries

used in the model are indicated by a colour-scale. Depths over 50 meters are found outside

the lagoon. In the lower graphic, we present the boundary conditions for the amplitude and

phase of the M2 tide. The colour rectangles indicate the position of the different boundaries.
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boundary and the northern boundary passed through the barrier and therefore

encompassed both the ocean and the lagoon. Furthermore, boundary conditions

in shallow zones may have been influenced by the current coming from the rest

of the New-Caledonia lagoon complex (Ouillon et al. (2010),Jouon et al. (2006)).

The model used here is a reduced tidal model. It is based on a decomposition95

of the velocities and elevation in tidal modes in the shallow-water equations. It

was used because the equations can then be reduced to a purely boundary

conditions problem. The derivation of the model is given in the appendix.

2.2. Gradient descent algorithm

To identify boundary conditions for each of our successive problems, we100

used a gradient descent algorithm. The one we used is strongly inspired by the

Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm (Spall,

1998), that we adapted in order to speed up convergence.

As for any gradient descent algorithm, the objective was to determine the

gradient of a cost function according to certain parameters and to follow the105

gradient to determine an extremal value. In our case, we wanted to minimize

the discrepancies between the output of a model and pseudo-data previously

generated, by adjusting the boundary conditions of the model. The metrics

used are shown in equation 1.

J(θ) =
1

2

∑
k

(F (θ)k − Ŷk)2 (1)

Here J is the cost function, θ represents the set of control parameters, being110

here the boundary conditions, Ŷ represents the data or pseudo-data for twin

experiments and F is an operator that represents the action of the model. Those

data in our case are the complex values of the sea level. The index k serves to

localize the data point and the corresponding model output. We chose this cost

function because it is standard in the field and corresponds to an addition of115

Gaussian uncertainties. Some terms can be added in order to smooth the output
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(Sasaki, 1970) or to reduce the size of the search-space (Blum et al., 2009) but

those were not used here.

Now we have to determine new parameters incrementally. If we index the

iteration of the update of parameters with i, then we can write −→g i as the120

gradient of the cost function according to the parameters and ai =a parameter

used for controlling the size of updates at the iteration i, the gradient descent

then update the parameters is written as ,

θi+1 = θi − ai−→g i (2)

The modification of parameters is done until a stopping criterion is reached.

This criterion can be a measure of the magnitude of the gradient −→g i or a number125

of iterations of the gradient descent, for example. In this procedure, the value

of the parameters ai is crucial, as well as the value of the gradient −→g i, as it

indicates the direction to reach the minimum.

Here, we did not compute the gradient directly but rather an approximation

to the gradient. The approximation was the one used in the SPSA (Spall, 1998)130

algorithm and corresponded to a directional derivative, as shown in system 3 :



θi± = θi ± ci∆i

∂J(θi)
∂∆i

= (J(θi+)− J(θi−)) ∗∆k ∗ c−1
i

ĝi = ∂J(θ̂i−ai−1
−→g i−1)

∂∆̂i

−→g i = ĝi + β−→g i−1

(3)

In this algorithm the direction was determined by a random perturbation of

all the parameters, and the perturbation ci∆i was determined by a predeter-

mined term ci and a sign term ∆i given by a Bernouilli law. The perturbation

and its symmetric counterpart are used to determine a centered estimate of the135

derivative of the cost function in this direction. Finally, to provide an estimate

closer to the real value of the gradient, we used a momentum technique, as

described in Sutskever et al. (2013). This technique allows a smoother descent
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by averaging the current estimate of the gradient with the previous estimates

of the gradient. Hence the determination of the gradient is given in system 5 :140

−→g i = −→g i + β−→g i−1 (4)

(5)

where β is a parameter between 0 and 1 according to the importance we want

to give to previous estimates. In many applications this sum is normalized, but

here, we decided to take another option. This is due to the adjustment we made

to our algorithm compared to the standard SPSA. Normally, the gain coefficient

ai and the perturbation coefficient ci are supposed to be decreasing as in the145

system 6 :

ai = a0
(A+i)γ

ci = c0
iδ

(6)

where a0 and c0 are initial estimates of the perturbations and gain coefficients,

A is a regularization term for the decrease and γ and δ are exponents under one

Spall (1998). However, we used a different approach: we kept the perturbation

amplitude ci constant but started with a small value for the gain coefficient ai150

and increased it in geometric fashion during the gradient descent. This avoided

the necessity of choosing the right parameters for the gain of every subproblem.

The gain coefficient was updated to take into account the fact that we were

going to solve of succession of problems and that we would not be able to tune

the gain coefficient ai for each problem. This is shown in the system 7 :155

ai = a0(1 + q)i

ci = c0

(7)

where q was a small parameter for the increase.This growth value was chosen so

that the algorithm would fit every subproblem. We implemented a line-search
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procedure. We used the procedure described in Armijo (1966) that checked

whether the parameter modifications effectively reduced the cost functions, and

if not, reduced the gain coefficient ai a few times by a factor depending on the160

ratio between the estimated cost function and the lowest one. If after some

reductions of the gain coefficient ai the cost function still did not decrease, the

gain coefficient ai was reset to its initial value and momentum terms −→g i−1 were

cancelled for the gradient estimation.

In the SPSA algorithm, the gain coefficients and the perturbation coefficients165

are often decreasing, with the goal of being as small as possible in the last stage

of the parameters estimation in order to make only small adjustments around the

minimum. The growth procedure used in our case may seem to do the opposite.

However, the line-search algorithm tends to reduce the gain coefficient if we are

close enough to a minimum. If we combine this with a very small initial gain170

coefficient, we could expect that close to a minimum, our algorithm and the

SPSA would show close behaviour, by only performing small adjustments. In

contrast, at the beginning of each subproblem, we expect an important growth

of the gain coefficient so that it adjusts to the sub-problem.

Since the gradient descent algorithm relied on few parameters, we report175

them in table 1.

Table 1: Numerical parameters for the gradient descent algorithm. The units are given for

the case were the parameters are related to the phases or to the amplitudes.

a0 c0 β q

m−2 or no unit m or rad.s−1 No unit No unit

1e-2 1e-8 0.8 0.03

2.3. Successive approximations

As mentioned in the Introduction, here we suggested determining approxi-

mations of the boundary conditions. The boundary conditions conditions were

determined by amplitude and phase at each boundary point to give a complex180

number, as shown in equation 8
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ηk = |ηk|e−iφk (8)

where |ηk| is the local amplitude and φk the local phase. One can set the

boundary conditions on a 1D vector as shown in Figure 1. It is then possible to

approximate boundary conditions with one dimensional functions. In this case,

the phase and amplitude can be determined by equation 9 :185

|ηk| or φk =
M∑
j=0

fN (bj , xj , xk) (9)

where fN were the functions used at the level of approximation N, bj were their

coefficients and M the number of such functions used. Due to the fact that

we used nodal functions for the approximations, we also needed a parameter

xk that specifies the position where the value of the function is fixed; those

positions are called the nodes.190

The nodal functions we used are cubic splines with natural boundary condi-

tions. Those functions are a collection of piecewise cubic polynomial linked by

continuity and continuity of the first derivative. Their junctions are situated at

nodes xk and their values at those nodes at the bj values.



fN (bj , xj , xk) =
∑M
j=0(ajx

3 + bjx
2 + cjx+ dj)Π((xk − xj)/xj)

fN (bj , xj , xj) = bj

dfN (bj ,xj ,0)
dx = c0

dfN (bj ,xj ,t)
dx = cM

(10)

Where here Π((xk − xj)/xj) is the door function that is worth 1 between195

xj and xj+1 and 0 elsewhere. The computation of the coefficients aj ,bj ,cj and

dj is done following the python implementation of the algorithm of the Scipy

package of Python (Sci (2020), De Boor (1978))

Overall, our aim was to determine the parameters bj that minimized the

cost function for a given level of approximation N . Once a minimum is reached200
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or approached with a given number of nodes, we used this approximation to

generate a new set of nodes and node values. Then, we performed another

gradient descent to identify the minimum of the cost function relative to the new

set of parameters. We thought that reaching the new minimum would require

few iterations of the gradient descent, since the last step of minimization had205

brought us to a good starting point. An example of this approach by successive

approximations is shown in Figure 2.

Figure 2: Example of the first stage of boundary conditions identification. The black line

here represents the boundary conditions that we are trying to determine. The red dots and

green crosses represent the positions of the nodes for the spline interpolations. The red curve

represents the spline approximation with only three nodes, while the green curves represent

the approximation with five nodes. We begin by optimizing a three-node interpolation (a).

Then we use those three-node curves to generate a rough approximation with five nodes (b).

Then we adapt the values of the five nodes to optimize the boundary conditions with the

green curve (c).

The new nodes were created midway between existing nodes. Also, the
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values of the new nodes were determined by linear interpolation between the

values of the previously existing nodes.210

2.4. Implemented tests

2.4.1. Twin experiments and pseudo-data

We performed twin experiments to test our parameters identification algo-

rithm. We began by running our reduced model with known boundary condi-

tions for the M2 tide. Those boundary conditions were boundary conditions215

taken from the previous work of Chevalier et al. (2015). We used the output of

this run as references for our first assimilation. We will refer to them as pseudo-

data in the rest of the paper, as they will be used as data for our assimilation

but were initially produced by the model. That ensures a total compatibility of

this data with the physics of the model and avoids discrepancies between the220

model outputs and in-situ data.

We then used pseudo-data to try to identify the boundary conditions that

served to produce them. Since those pseudo-data were outputs of the model, we

knew we would not have any compatibility issues between the model and the

data. The model was a linear one, we knew that we had only one set of boundary225

conditions corresponding to the pseudo-data, if we restricted the domain of the

phase from 0 to 2π radians.

We also tested conditions closer to a real data assimilation by adding noise

and decimating the pseudo-data, so that they would be closer to real in-situ data.

It enabled us to know how the noise on data acted on the boundary conditions230

that were determined and how the position and number of data could affect the

shape of the boundary conditions.

Finally, we performed a final experiment with in-situ data and our reduced

model.

2.4.2. Parameter identification methods235

We wanted to prove the efficiency of the successive approximations method

was not due only to a good gradient descent algorithm but also to a well-
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chosen set of basis functions for the approximation. We then compared the

results obtained with this method with results obtained by two other methods.

Those methods did not use successive approximations, and only one of them240

used approximations with bicubic splines. But they used the same SPSA-like

gradient descent algorithm.

We ran the three methods with the same number of iterations of the gradient

descent algorithm. We also ensured that for the methods that relied on spline

approximations the approximations presented the same number of nodes at the245

end of the parameter identification. Finally, we started with the same constant

values of parameters on the entire boundary for each method.

For the successive approximations method, we began with a small number

of nodes and generated new ones after a certain number of iterations of the

gradient descent algorithm. Those numbers of iterations were determined by250

trial and error because they generally presented a sufficient decrease of the cost

function.

The second method used only one level of approximation and is referred to

as the high-order approximation method. The number of nodes used in the

high-order approximation method is the same as the number of nodes in the255

final stage of the successive approximation method.

The third method did not use approximation, and directly identified the

values of phase and amplitude for each grid cell that is situated at the open

boundary. We refer to this method as the no-approximation method.

We decided to split the parameter identification for amplitude and phase for260

the three methods. In the successive approximations methods, we alternated the

identification of amplitude and phase. Also, in the successive approximations

method we used more gradient descent iterations for the phase than for the

amplitude.

The parameter for the implementation of the three methods in our specific265

case can be found in Table 2.
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Table 2: Numerical parameters for the different methods. We refer to those parameters as

”NA” ( Not Applicable) when the method mentioned does not use the procedure involving

those parameters.

Parameter
Successive High-order No

Approximations Approximation Approximation

Number of stages 5 NA NA

Increment of iterations
20 NA NA

between stages

Increment of iterations
10 NA NA

between amplitude and phase

Number of iterations
20 NA NA

for the first stage

Initial number of nodes 3 33 397

Final number of nodes 33 33 397

Total number
1261 1260 1260

of iterations

2.4.3. Noise and subsampling

Parameter identification was also performed in the presence of noise and

subsampling. For this purpose, we added noise to the pseudo-data by adding a

uniformly distributed noise to each data point. We used different levels of noise270

but always paired the level of noise of amplitude with that of phase. We tested

respectively noise levels of 0.0001 m and 0.0001 rad, 0.001 m and 0.001 rad,

0.01 m and 0.01 rad and 0.1 m and 0.1 rad. In the Results section, those levels

of noise are labelled with their numerical value only and not the unit; we will

use ”Noise of 0.1” and not ”Noise of 0.1 m and 0.1 rad”. Those levels of noise275

were chosen to show the increase of impact of noise in the data. In addition, the

middle values of 0.01m and 0.01rad.s−1 are of the order of uncertainties that
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Table 3: List of the numerical experiments presented in the article.

Methods Sampling
Noise

m and rad

Successive Approximations All grid cells No

High-order Approximations All grid cells No

No Approximation All grid cells No

Successive Approximations
1/4, 1/64, 1/256

No
and 1/1024 of all grid cells

Successive Approximations All grid cells
0.0001, 0.001, 0.01

and 0.1

Successive Approximations
66 grid cells in the southern part,

No
the ocean or the lagoon

Successive Approximations 4 sensors in the lagoon No

we have when we treat our data of the tidal elevation of the lagoon with the

Python implementation of Codiga (2011). The values of 0.1m and 0.1rad.s−1

correspond to extremely high noise value, since we expect tidal amplitudes of280

the order of 0.4m, and they serve to test the robustness of the method.

The subsampling was performed by only keeping some pseudo-data. We

removed them in the same way in the two directions and with no special con-

sideration for the land. We respectively kept one pseudo-data on 2, 4, 16 and

32 in each direction for each case, which ended up with only one peudo-data on285

4, 64, 256 and 1024, 4. We chose levels which respectively correspond to 16275,

4143, 240, 55 and 12 available data points. This number of data will be use as

a label in the experiments.

Finally, we also performed a few tests with localized pseudo-data. This

was done in order to see how unequally distributed data would influence the290

parameter determination method and how robust it was. All those experiments
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are reported in table 3.

2.5. Computational cost of the algorithm

The code of the reduced model took about eight seconds to run on our local

computer with a Core i7 processor from Intel, while an entire assimilation loop,295

comprising three runs of the reduced model, an estimation of the cost function

and the update of the parameters took 28 seconds on average with our Python

implementation.

3. Results

3.1. Results obtained with successive approximations300

We first present the boundary conditions determined with the successive

approximations method in Figure 3. We see different stages of the successive

approximations method. If those stages are all around the reference boundary

conditions, the 5th stage has less oscillations around the true value. Those

oscillations are bigger between the boundary index 0 and 70 and around the305

boundary index 370, where variations are high. Between the boundary index 0

and 370 all the variations of the phase are not captured even at the 5th stage.

Furthermore, we see that the variations in this region are less steep at the 3rd

stage than at the 5th.

In Figures 4 and 5 we present the output of the model with the boundary310

conditions determined with the successive approximations method. The output

for the parameters determined with the successive approximations method are

close to the original, the only variations being in some oscillations close to the

southern and northern boundaries. Apart from those, variations are of the order

of one millimeter for amplitude and 1/1000 of a radian for the phase.315

3.2. Results obtained with the other two methods

We present the amplitude and phase determined with the no approximation

and the high-order approximation method in Figure 6, so that a comparison

16



Figure 3: Comparison of the reference boundary conditions (dotted red lines) and those

determined by the successive approximations method and the SPSA, at two different stages

of approximation. The green dotted lines represent the boundary conditions determined at

the second stage of approximation, and the blue crosses the position of the nodes during that

stage. The blue semi-dotted lines represent the boundary conditions determined at the fourth

stage of approximation, and the orange crosses the position of the nodes during that stage.

In the upper plot we show the boundary conditions for amplitude and in the lower plot the

boundary conditions for phase.

with the results of the successive approximations method can be made. We see

that both methods exhibit wide oscillations. Those oscillations are less marked320

and of larger scale for the high-order approximation method than for the no
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Figure 4: Amplitude output of the model in the Ouano lagoon for boundary conditions pro-

vided from a) The reference boundary conditions b) The boundary conditions determined by

the successive approximations method.

Figure 5: Phase output of the model in the Ouano lagoon for boundary conditions provided

from a) The reference boundary conditions b) The boundary conditions determined by the

successive approximations method.

approximation method. It is interesting to note that the boundary conditions

obtained with the successive approximations method are also plotted in Figure

6 but are undistinguishable from reference boundary conditions.
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Figure 6: Comparison of the reference boundary conditions (in dotted blue) and those de-

termined by the high-order approximation (in green) or the no approximation method (in

orange). In the upper plot we show the boundary conditions for amplitude and in the lower

plot the boundary conditions for phase.
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3.3. Comparison of the three methods during the identification325

The three methods take different paths to identify parameters. To show

those different paths we present the changes of the cost function during the

gradient descent for each the three methods in Figure 7. All methods give

a roughly equivalent cost function value up to the 50th iteration. After that

point, the successive approximation method gives the lowest cost function value330

and the steepest slope. The curves for the cost function values of high-order

approximation and no-approximation methods only separate around the 700th

iteration, which is the moment of the variable shift.

The three methods end up with different cost function values, with around

10−4 for the successive approximations method and around 1 for the high-order335

approximation method and 10 for the high-order approximation method. If we

use the definition of the cost function, we realize that this cost function corre-

sponds to a maximum error of 10−2 rad or m for the successive approximations

method, if all the error was on only one grid point.

The different behaviour for the three methods is even more explicit if we340

take a closer look at the patterns of change in the cost function. The high

order approximation method and no-approximation method have similar shapes.

They have a very steep descent at first and then continue to decrease slowly.

There is another steep descent when the parameter changes from amplitude to

phase. For the gradient descent of the method with successive approximations,345

we see that we have a very steep part before the second node creation. After

that, the gradient descent is smoother with a series of steep descents right after

node creations that slowly turn into plateaus, forming a stairway-like overall

shape. We also see that after each node creation we have an increase in the cost

function.350
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Figure 7: Evolution of the cost function value for the different methods. The filled lines

correspond to the mean values observed for ten runs, and the shaded zones to two standard

deviations around this value. The blue line represents the successive approximation method,

the orange line the high-order approximation method and the green line the no-approximation

method. The green crosses represent the shift between optimization of the amplitude and

optimization of the phase. The red dots represent the iteration at which we increase the

number of coefficients used in the approximation.

3.4. Noisy and subsampled pseudodata

Here we performed some boundary conditions identification where we used

only a fraction of the available pseudo-data. Since those pseudo-data were the

results of a reference run, they already corresponded to the position of the model

output and no interpolation was necessary. To extract a fraction of those pseudo-355

data for the subsampling, we simply kept one data out of a certain number in

both the Y and X direction. This means that if we began with 114 pseudo data

in the X direction for each Y level, we end up with only 57 pseudo-data in the X

direction with a subsampling level of two, and that those pseudo-data are still

equally spaced. The different subsamplings used are illustrated in figure 8.360

Since the decimation of the pseudo-data was done in the X and Y direction

at the same time, we refer to the different subsampling experiments by the
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Figure 8: Map of the pseudo-data for the different levels of subsampling.

fraction of pseudo-data used in the X direction multiplied by the fraction of

pseudo data considered in the Y direction. If we still use our example where we

used one pseudo-data out of two in the X and Y direction, we will refer to it as365

the experiment with a subsampling of one data point over 4. We chose levels of

subsampling of one pseudo data over 4, 64, 256 and 1024.

If we compare the number of data points available for each subsampling

level, of 16275, 4143, 240 and 12 available data points and the 33 nodes of the

final splines, we see that the cases with one pseudo-data out of 4 and 64 still370

have more pseudo-data than the final number of nodes of our procedure. The

case with one pseudo data over 256 would still have more pseudo-data (55 )than

the final number of nodes, but the land cells actually makes it close, while the

case with one pseudo-data over 1024 has less pseudo-data points than the final

number of nodes. At the end of the procedure, we therefore expect it to behave375

as an underdetermined problem.

We show the results with different levels of subsampling in Figure 9. We

see that results are fairly close until the subsampling reaches one data point

over 256. With so few data some oscillations begin to appear, especially in the

phase. Also, the conditions determined close to the northern boundary differ380

22



Figure 9: Variation of the boundary conditions determined for different levels of subsampling

in the pseudo-data.

strongly. Those oscillations are stronger with one data point over 1/1024. Still,

those oscillations are around the reference boundary conditions.

We also present the results with different levels of noise added to the pseudo-

data in Figure 10. The noise level of 0.0001m and rad.s−1 produces results

that are indistinguishable from those obtained without noise. The noise levels385

of 0.001m or rad.s−1 and 0.01m or rad.s−1 produce very comparable results,

where small scale oscillations start to appear. Finally, the noise level of 0.1

exhibits very strong oscillations around the reference boundary conditions.
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Figure 10: Variation of the boundary conditions determined for different levels of noise in the

pseudo-data.
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3.5. Grouped data

We also performed a few experiments in which we used only 60 pseudo-data390

located in a precise part of the domain. We tried with data in the lagoon part,

data in the deeper ocean and data in the shallow part in the south-east of the

domain. Those locations are visible in Figure 11.

Figure 11: Position of the data for the assimilation with grouped data.

As we can see in Figure 12, the data placed in the lagoon have oscillations

of the order of a centimeter relative to the true value. In the cases where the395

data were in the ocean, we have larger oscillations in the oceanic part of the

boundary and both the phase and the amplitude of the boundary conditions

are underestimated in the south-eastern boundary. When the data are located

in the south-eastern shallow part of the lagoon, the boundary conditions are

reconstructed with an accuracy of a few centimeters, but the estimates for the400

oceanic boundary conditions oscillate strongly with an overestimation of nearly

10 centimeters followed by an underestimation of nearly 20 centimeters.
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3.6. Assimilation with in-situ data

We also tried to determine boundary conditions from in-situ data gathered

during the 2016 campaign in the lagoon. In this situation, however, we had to405

reduce the number of nodes of the splines because we only had four data points.

Those are shown on the figure 13.

It seems that the variations in the boundary conditions were large, as is

shown in Figure 14. The mean trend of the true phase and amplitude is caught,

but the oscillations are very large, with 10cm for the amplitude and 0.1rad for410

the phase. In addition, the maxima do not seem to be correlated with any

variation in depth close to the boundaries. Those strong variations are damped

in the lagoon to have outputs that are around the data, with discrepancies of

around 0.05 m and less than 0.01 rad, as shown in Figure 15.
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4. Discussion415

4.1. Choice of the functions shape

The results obtained with the successive approximations method were very

close to the original boundary conditions. Compared to the other two methods,

not only was convergence speeded up but accuracy was also increased. This

is interesting for development of methods for determination of boundary con-420

ditions in a coastal model. Furthermore, this method does not depend on a

specific gradient descent method or type of parameters, and could be extended

to other problems, such as the determination of friction coefficients, or with

other algorithms, such as genetic algorithms.

We can say that the increase in accuracy and speed of convergence were in-425

deed linked to the successive approximations, as neither the no-approximation

or the high-order approximation method could approach the reference bound-

ary conditions. The slow convergence was expected for the no-approximation

method, as we knew that our algorithm had a speed of convergence close to that

of the SPSA, which depends on the number of parameters, even though the com-430

puting cost for gradient estimate does not. For the high-approximation method,

we expected the convergence to be faster since the number of parameters was

reduced. But by comparing it with the successive approximation method, it

seems that the starting point also plays an important role in the convergence

rate. And the successive approximation method effectively sped up convergence435

by first reducing the number of parameters and next by providing good starting

points for the successive problems.

This method also contrasts with what had already been done with a stochas-

tic gradient descent algorithm. Other examples exist, such as that of Altaf et al.

(2011) and Boutet et al. (2015), and Hoang and Baraille (2011) also used this440

algorithm for determining a reduced number of coefficients of approximation

for a covariance field of a Kalman filter. In all those cases, they reached an

acceptable level of precision. However, they worked with limited number of

actual parameters, less than 20 each time, and with parameters whose spatial
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and temporal variations were known before the assimilation.445

This number of parameters is close to the number of parameters we had in

our realistic application. In this case, we realized that our method led to strong

oscillations. This may be linked to the positions of the nodes of the splines,

or to the use of the spline approximations. This could be solved by trying a

dynamic placement of the nodes or by trying other basis functions such a akima450

interpolation or p-chip that do not have such a curvature.

Lastly, the algorithmic implementation of those approximations is also to

be considered. For example, the odd behaviour that we observed at the very

beginning and the very end of our determined parameters in Figure 3 was due

to the way a condition of zero normal gradient was imposed. The algorithm we455

used places null-derivative conditions at the extremities of the splines instead of

forcing the values of the nodes at those points and extending the function with

null derivative before and after those points. This illustrates that not only the

functions used, but the way they are implemented must be carefully taken into

account for good parameter identification.460

4.2. Impact of sampling

The effects of noise and of subsampling were also investigated. In Figures

9 and 10, we show that discrepancies stayed low for noise up to 10% of the

amplitude and phase value, and up to 1/16th of the pseudo-data taken into

account. With less data we expect a less precise definition of the boundary465

condition. Therefore, the problem may derive for the fact that we are looking for

a precision that is beyond what is achievable by any method for this combination

of model and data.

In that case, it may be that our problem was poorly constrained even with

1/32nd pseudo-data. The distance and the position of the data points relative to470

the boundaries may play on how they are affected by them. Furthermore, some

regions are nearly isolated from the rest of the domain, especially in the south-

eastern part of the lagoon. This appeared more clearly in the experiments with

the different locations of data. We saw that data located in the lagoon provided
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the best estimates of boundary conditions, showing that the lagoon zone was475

more sensitive to variations in the boundary conditions than the deeper oceanic

zone.

We emphasize the need for both a good sampling strategy and a good choice

of the node positions for reconstructing the function we are trying to approach.

Perhaps the hardest part in parameter identifications with regard to determining480

the boundary conditions is to identify not the value but the shape of those

boundary conditions. Indeed, methods using an inverse model (Devenon, 1990)

and the methods with empirical orthogonal functions of Vermeulen and Heemink

(2006) can provide such a shape, but requires the development of a second

numerical model or many iterations of the model before parameters can be485

determined. With the successive approximations, this shape is determined by

the functions used for approximations and the position of the nodes. Hence,

both factors should be carefully considered with the physical knowledge of the

problem to tackle in mind.

Furthermore, the successive approximation methodology presents a filtering490

effect on the reconstruction of the shape of the boundary conditions, as is visible

in Figures 9 and 10. This effect is inherent to the spline interpolation method

and has already been observed by Unser (1999). The filtering effect could also

be an advantage, since depending on the number of observations that we dis-

pose or the nature of the problem, we could also not want to deal with small495

scale variations. In addition, small scale variations can be destabilizing in some

applications and therefore filtering them out can be an important point, as was

discussed in Sasaki (1970).

4.3. Practical implementation

The implementation of the successive approximation strategy with an al-500

gorithm based on an SPSA-like algorithm is not necessary. The pyramidal ap-

proach presented in Thevenaz et al. (1998) or the ”stepwise approach” presented

in Jahns (1966) used other algorithms. However, in our case, the SPSA-like al-

gorithm presented many advantages as it was easy to implement and presented
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good convergence properties (Spall, 1998), which are important in geophysics505

for models that tend to be quite complex. Still, the reduction of the number

of variables could open up the way to other algorithms based on perturbations

of the parameters, such as genetic algorithms for example. The choice of the

gradient descent algorithm would of course be highly dependent on the problem

to be tackled.510

Our tests showed us some issues with the implementation of successive ap-

proximations. As different gradient descent are performed one after another, a

robust and versatile tuning of the gradient descent algorithm is important. As

already pointed out, there is no reason for the algorithm parameters to remain

constant for two successive problems. With some gradient-descent algorithms,515

the problem of the gain coefficient could be tackled by the use of algorithms

that use hessian approximation as step-size. With the SPSA algorithm, there

are some existing second order methods (Zhu and Spall, 2002) (Reddy et al.,

2016). Some work should also be devoted to the stopping criterion, as it is

difficult to estimate the number of iterations necessary for different stages. The520

number of iterations necessary depends on the adjustments needed at each stage,

which it would be difficult to estimate in advance. Some work has been done

with the SPSA in order to determine a stopping criterion (Wada and Fujisaki,

2013) but are so far not directly transposable to complex applications.

In a similar way, a line-search procedure was used because we knew the525

problem was convex and because we were not able to compute a correct step-

size with a second order algorithm. However, the use of line-search algorithm

is unwieldy and not suited to non-convex problems. Thus, some other methods

should be used for non-linear problems, perhaps second order approximations

could be more appropriate.530

One of the advantages of this method is its computational cost. We saw that

the time required for each step of the gradient descent was largely dominated

by the model runs. Since this method only requires estimation of the cost

function and generation of vectors of parameters, the ratio of the time taken by

the model runs to the generation of perturbations by the algorithm is likely to535
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increase with larger models with more data. The time necessary for parameter

identification is dominated by the time of the model runs. This time coud be

reduced by parallelizing the model runs of the same iteration.

4.4. Perspectives

Here, we successfully identified boundary conditions for a tidal linear model.540

The method described in this article could be used directly for other coastal

situations or other tidal components with in-situ data instead of doing twin

experiments. In addition, we could extend the work presented here to other

situations.

In fact, the problem of identifying lateral boundary conditions shares some545

features with other problems of interest in geophysics. The high-number of pa-

rameters and the continuity of the field of interest can also be found in initial

conditions or friction coefficient, for example. The methodology of approxima-

tion with splines can also be used directly for two-dimensional or even higher-

dimensional fields of parameters and therefore the problem addressed here can550

be seen as a first step towards a more general parameter identification method.

As a complement to these advantages, our method do not require an inverse

model, owing to the gradient descent algorithm used.

Also on the basis of this gradient descent algorithm, we could identify pa-

rameters in non-convex problems or with non-linear models. To perform this555

identification we should remove some of the adaptations that we made to the

algorithm in the present work but those modifications are minor, and non-linear

optimization has already been performed with the SPSA algorithm (Spall, 1998)

outside the field of oceanography, or even in the field of oceanography by Boutet

et al. (2015).560

Furthermore, the simplicity of implementation of the method enables us to

build more sophisticated tools for the study of the circulation patterns. We can

consider the use of the reduced tidal model as a special case of linearization

of a more complex circulation model. Hence, we could use this model in a

data-assimilation loop for optimizing the tidal boundary conditions for a more565
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complex model, such as CROCO, for example.

5. Conclusions

We performed, with a linear tidal propagation model, a series of twin exper-

iments and a more realistic experiment. We investigated whether a SPSA-like

gradient descent algorithm could be used to identify boundary conditions, as570

they represented a large number of parameters. We showed it was possible with

a special method involving several stages of approximations. We used approxi-

mations that have coefficients whose magnitude is close to the magnitude of the

function to be approximated. The fact that the magnitude of the coefficients

was close to the magnitude of the boundary conditions helped us in setting up575

the successive approximations used.

We were able to determine the boundary conditions of our tidal model up

to a tenth of centimeter for the twin experiments. The novelty here was that

we succeeded with tens of effective parameters, and with a methodology that

would enable us to go even further.580

However, the first try-outs with more realistic data locations and with in-

situ data showed us a more contrasted picture. As for any inverse methods,

the precision and location of data is crucial and the successive approximations

do not change that. The issue that is more specific to this method are the

oscillations occuring in the boundary conditions in the realistic experiments.585

This may be improved by trying other functions for approximations, with p-

chip or akima interpolation which reduces the oscillations or by playing with

the positions of the nodes.

To conclude, we have developed a method that was able to identify an arbi-

trary number of parameters and tested it with a tidal model in a lagoon setup.590

The results were affected both by the noise in data and their sampling, but also

by the number of parameters of the approximation used in the method. We

saw an effect of filtering smaller scales of the boundary conditions. There is

no theoretical drawback to the use of other gradient descent algorithms or even
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other optimization methods with the successive approximations method, but595

there are still some issues relative to its use with reduced numbers of data. The

use of approximations and the successive problems solved are fully compatible

with any method. However, we had to modify the gain sequence of our gradient

descent algorithm to perform efficiently the successive gradient descents.

Future work will focus on the implementation of this method in realistic600

applications. Specifically, we could use this method for non open-source models

or for models which do not have an adjoint. The CROCO model is a good

example but hardly the only one, and we are sure that modellers will find many

creative applications for the successive approximations method.
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Appendix A. Reduced tidal model

Development of the model

For the numerical modelling, we can start with the shallow water equations.

It seems justified because previous reports of the patterns of circulation in the

lagoon did not show stratification (Sous et al. (2017), Chevalier et al. (2015)).715


∂−→u
∂t + (−→u ·

−→
∇)−→u +

−→
f ∧ −→u +

−→
P = K−→u

H+η Momentum conservation

∂η
∂t +

−→
∇((H + η)−→u ) = 0 Mass conservation

(A.1)

Here, −→u is the velocity in m.s−1, H is the local depth in m, η is the sea

surface elevation in m, f is the Coriolis frequency at the Ouano lagoon in s−1

and K is the local friction coefficient in m.s−1. The linear form of the friction

can be used for an average over a tidal cycle (Csanady (1981), Devenon (1990)).

We can simplify those equations with a few observations in the lagoon. First,720

the depth in the lagoon is a few meters, and the tidal amplitude is of the order

of 0.4 m for the M2 component. We expect velocities of the order of a most

0.2 m.s−1 in the passes, and see that the frequency of the M2 component is

of the order of the Coriolis frequency of around 5.10−4 s−1. In the lagoon, we

expect strong friction coefficients and can work with an estimate of K of 10−2
725
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m.s−1. If we add to that we expect typical flow length of a few kilometers, we

can estimate the magnitude of the different terms.



10−5m.s−2︷︸︸︷
∂−→u
∂t

+

10−6m.s−2︷ ︸︸ ︷
(−→u ·

−→
∇)−→u +

10−5m.s−2︷ ︸︸ ︷−→
f ∧ −→u +

?m.s−2︷︸︸︷−→
P =

10−4m.s−2︷ ︸︸ ︷
K−→u
H

Momentum conservation

∂η

∂t︸︷︷︸
10−5m.s−1

+
−→
∇(H−→u︸ ︷︷ ︸

10−3m.s−1

) = 0 Mass conservation

(A.2)

We see that the only remaining term is the pressure gradient that must be

at equilibrium with the friction. And this equilibrium gives a linear system at

first order. In the passes and over the reef, where velocities are more important730

and depth reduced, non-linear terms can be bigger. However, the advection and

continuity terms generate compound tides and overtides and do not affect the

M2 coefficient when no constant current is present Andersen et al. (2006) ! The

linear friction term that we used was fitted for the M2 circulation but does not

allow for the generations of overtides and compound tides. We therefore can735

neglect those interactions at first order. Therefore, we can end up with the fol-

lowing system, that is close to those used previously (Devenon (1990),Le Provost

et al. (1994)).

(−iωk − r/H)
−→
U k + g

−→
∇ηk =

−→
0 Momentum conservation

−iωkηk +
−→
∇ · (H

−→
U k) = 0 Mass conservation

(A.3)

Here k is the index corresponding to a given tidal wave, M2 in this case, ωk

denotes the frequency of the considered tidal wave in s−1. Note that we have740

kept the acceleration term and the Coriolis term which were of the same order of

magnitude and two orders of magnitude smaller than the friction and pressure

gradient terms. However, the acceleration term was kept because it is required

for the oscillatory dynamics of the tide.

The usual argument for considering or not the Coriolis term is the Rossby745

number. If we consider the tidal velocities of 0.10 m.s−1, characteristic length
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of 5 km and a Coriolis of the order of factor of 5.10−5 s−1 (Sous et al., 2017),

we have a Rossby number of 0.4. But the Rossby number is mainly used for

comparing the advection terms and the Coriolis term in open sea. For tides

in coastal situation, the advection terms are neglected because they neglect750

compound and overtides and do not contribute directly to the M2 component.

It is more appropriate to compare the Rossby radius of deformation, which here

would be :

√
gh/f =

√
10m.s−2 ∗ 10m/5.10−5s−1 = 200km (A.4)

If we compare this value with the 30 km of the largest dimension of the

lagoon, we can consider that the corrections brought by the Coriolis term would755

be negligible at first order. We can then neglect it and with some algebraic

manipulations, we obtain a complex Helmholtz equation for the amplitude. And

the velocities can be deduced from the first derivative of the sea level. The

associated equation is the equation A.5.

iωkηk +
−→
∇(βk

−→
∇ηk) = 0

βk = gH
(r/H−iωk)

(A.5)

To discretize this equation, we used a second order finite-difference centered760

scheme, the first order Neumann condition was implemented directly in the

solving matrix. Finally, we solved it with an iterative Jacobi method with a

thousand iterations for ease of implementation with our programming language.

The number of iterations was fixed because variations were below a tenth of

millimeters after a thousand iterations, but the speed of convergence depended765

on the boundary condition.

The main goal here was to provide a model that could be run fast, so that

we could do the number of tests necessary for our method. We still wanted

something accurate enough to reproduce qualitatively what we observe with

the complete non-linear models such as CROCO, and that was consistent with770

39



the precision of the pressure sensors that were used in the 2016 campaign in the

lagoon (Sous et al., 2017), with discrepancies of at most a few centimeters and

a phase lag of a few degrees. However, we expected the precision to be lowest in

the shallower parts of the lagoons because that would be the most sensitive to

non-linear effects, and therefore we would expect our model to be less efficient775

in those parts.

Comparison with a reference model

We therefore compared the field of η obtained with this tidal model with

the output of the fully non-linear CROCO ( available on the site http://www.

croco-ocean.org) model in 2D for the M2 tidal component in a case that780

corresponded to the model outputs presented in Chevalier et al. (2015). The

output held less than 10% discrepancies with the CROCO output. The shal-

lowest region exhibited wider discrepancies in phase, as is presented in Figure

A.16. Those discrepancies may be attributed to the friction in those regions,

which was set as quadratic in a previous modelling effort Chevalier et al. (2015)785

but has been linearized in the tidal model, and to the challenging handling of

boundary conditions and of advection in those regions.
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Figure 12: Boundary conditions determined with the data located in specific parts of the

lagoon. The lines represent mean values for ten determinations of boundary conditions while

the shaded zone represents one standard deviation from that mean value.
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Figure 13: Position of the sensors for the real data assimilation experiment.
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Figure 14: Boundary conditions determined with the in-situ data only. The reference curves

are here to show what would be the first order expected results. The dots correspond to the

data of the sensors, but their positions are arbitrary.
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Figure 15: Comparison of the M2 tide amplitude and phase at the different stations for the

data and the outputs of the reduced model.
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Figure A.16: Differences in phase (left) and amplitude (right) in percentage of the M2 com-

ponent of the tide determined in the Ouano lagoon by the CROCO model and the Serpent

de Mer model, with the same boundary conditions
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